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We revisit the longstanding question of the onset of sediment transport driven by a turbulent fluid
flow via laboratory measurements. We use particle tracking velocimetry to quantify the fluid flow
as well as the motion of individual grains. As we increase the flow speed above the threshold for
sediment transport, we observe that an increasing fraction of grains are transported downstream,
although the average downstream velocity of the transported grains remains roughly constant. How-
ever, we find that the fraction of mobilized grains does not vanish sharply at a critical flow rate.
Additionally, the distribution of the fluctuating velocities of non-transported grains becomes broader
with heavier tails, meaning that unambiguously separating mobile and static grains is not possi-
ble. As an alternative approach, we quantify the statistics of grain velocities by using a mixture
model consisting of two forms for the grain velocities: a decaying-exponential tail, which represents
grains transported downstream, and a peaked distribution centered at zero velocity, which repre-
sents grains that fluctuate due to the turbulent flow but remain in place. Our results suggest that
more sophisticated statistical measures may be required to quantify grain motion near the onset of
sediment transport, particularly in the presence of turbulence.

I. INTRODUCTION

The transport of sediment by flowing water is a fundamental physical process with broad applications in fields
ranging from geomorphology to land use and agriculture1–3. In many of these applications, the source of sediment is
a bed of granular or other erodible material over which the water flows. If the stress delivered to the bed by the water
is too weak, the bed will not be mobilized and it will be stable; but once the stress becomes large enough, the bed
will become unstable and sediment will be entrained into the flow. Thus, understanding the conditions under which
bed grains first start to move, often called incipient motion4, is of immense practical importance. Incipient motion is
typically considered to be determined by the Shields number Θ5, which compares the shear stress τ exerted by the
fluid on the bed to the buoyancy-reduced gravitational stress (ρg − ρf )gd, where ρg and ρf are the mass densities of
the grains and fluid, respectively, g is the gravitational acceleration, and d is the diameter of a typical grain. The
threshold for incipient motion is often quantified by measuring the sediment flux q6,7 as a function of Θ and identifying
a critical value Θc above which grain velocities are nonzero.
However, this simple picture is incomplete for a variety of reasons. Both fluid forces8,9 and grain dynamics10,11

change qualitatively with the strength of the fluid driving, as quantified by the shear Reynolds number Re∗ at the
grain scale, meaning that there may not be a single, sharp transition to incipient motion12. Previous studies have
observed granular creep as the bed begins to mobilize13, suggesting a non-sharp transition, but also long transients14,15,
suggesting an underlying bifurcation of some kind. Moreover, incipient motion is inherently stochastic due to disorder
and variation in the bed structure16, and turbulent fluctuations from the fluid begin to play a role at moderate to
high Reynolds number17–20. The presence of these fluctuations suggests that one may need to consider not only the
mean stress but also the impulses imparted to grains via turbulent fluctuations21,22. Thus, describing incipient grain
motion involves mapping out the evolution of grain motion in a high-dimensional parameter space, and therefore is
an ongoing scientific challenge.
Here, based on the results of laboratory experiments in which we measured grain trajectories near incipient motion

in a turbulent flow, we argue that since incipient motion is a stochastic process, it is best captured by a careful
characterization of its statistics. We used high-speed imaging and particle tracking velocimetry to measure both the
fluid flow and the grain motion. We quantify grain motion via the probability density function P (ug) of streamwise
grain velocities ug. We find that P (ug) is well described by a mixture model that is the sum of a function that
is peaked at ug = 0 (which we fit to a Student’s t-distribution), corresponding to grains that are not transported
downstream but still fluctuate in place due to the turbulent flow, and a function with an exponential tail for positive
ug, corresponding to transported grains. We find that as Θ is increased above the threshold for incipient motion,
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FIG. 1. Schematic of the experimental apparatus. The top panel shows a three-dimensional view, including the clear-walled
test section with the grains and triangular wedges, and the enclosed, motorized belt drive on the opposite side. The bottom
panel shows an overhead view, indicating the clockwise fluid flow direction. Overall, the apparatus is 1.8 m long, 21.25 cm tall,
and 50 cm wide, with a 5.08 cm channel width. In the 1.2 m test section, the grain bed height is approximately 5.7 cm.

the increase in sediment flux arises almost exclusively from an increased number of transported grains, while the
average downstream velocity of mobile grains remains constant. Additionally, we find that the velocity distribution
of non-transported grains becomes broader near the incipient motion threshold and thus the sediment flux does not
vanish sharply.
We begin below in Sec. II by describing our experimental methods, including the flow apparatus, the bed preparation

protocols, and the measurement techniques. In Sec. III, we describe our results in the context of previous studies.
Section III A describes selected prior approaches used to characterize incipient motion along with similar measurements
from our data, and Sec. III B describes our new approach where we fit grain velocity statistics to a mixture model.
Finally, in Sec. IV, we summarize and contextualize our results.

II. EXPERIMENT

A. Apparatus

Our experimental apparatus is a closed, racetrack-shaped channel consisting of two straight sections joined by two
U-shaped curves, as shown in Fig. 1. The channel width is a uniform 5.08 cm, and its height is 21.25 cm. We drive the
fluid flow with a toothed H series timing belt connected to a external rotary motor. The trapezoidal belt teeth span
the width of the belt (3.8 cm), which is slightly smaller than the width of the channel (5.08 cm). The center-to-center
spacing between the belt teeth is 1.27 cm. The base width (in the streamwise direction) of the trapezoidal tooth is
6.12mm, and the width of the top of the tooth is 4.45mm. The teeth protrude by 2.29 mm. The belt is fully immersed
in water and is mounted to the top of one of the straight sections. The fluid velocity is controlled via the voltage
sent to the motor controller. To calibrate the fluid driving, we measure the fluid velocity in the test section directly
(described in Sec. II B) and correlate that measurement with the voltage we apply to the motor controller. The entire
apparatus is fully enclosed, so that there is no free surface. The side walls of the test section are made of tempered
glass and the top surface of the test section is made of clear acrylic, allowing optical access for imaging.
To prepare our experiments, we first add soda lime glass beads with diameter d = 0.1125± 0.0125 cm and density

ρg = 2.5 g/cm3 to the test section, up to a fill height of roughly 5.7 cm (about 51 grain diameters). This erodible bed
is constrained in the streamwise direction by triangular wedges, which both help to slow the formation of large-scale
bedforms as the experiments proceed and keep most of the grains in the test section. After the grains are added, we
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completely fill the apparatus with water. We then drive the fluid at a slow speed (far below the threshold for grain
motion) to dispel trapped air bubbles in the system. We note that this weak fluid forcing also allows the beads on
the surface of the bed to slightly rearrange. However, the grains do not move sufficiently for any bed armoring or size
segregation to take place15,23.
To collect data on grain motion and fluid flow, we record video in a small region in the test section (shown in Fig. 1).

We choose this region to be sufficiently far (that is, more than the entrance length) from the triangular wedge at the
entry point of the test section that the flow is developed. Thus, we do not investigate differences in grain motion at,
for example, the entry point of the test section compared with the middle of the test section.
After the initial state is prepared, we quasistatically increase the free stream fluid velocity in increments of approx-

imately 0.95 cm/s up to a maximum velocity for a given experimental run. After each increment, we allow the flow
to stabilize, and then acquire data. We reset the initial bed state as described above before each set of experiments.
The granular bed and the fluid flow are imaged separately: one camera views the bed from overhead, through the
top of the test section, to image the bed surface, and a second camera views the fluid flow through a side window, to
image the velocity profile of the fluid flow.

B. Fluid Flow and Shear Stress

To quantify the fluid flow, we add fluorescent red polyethylene microspheres that are 75-90 µm in diameter and
density-matched with water. We illuminate a vertical slice in the center of the test section with a light sheet produced
by a 532 nm laser and a cylindrical lens mounted above the apparatus. Particles in the light sheet fluoresce, and are
imaged using a high-speed camera at a frame rate of 1400 frames per second and a spatial resolution of 181 pixels/cm.
We record 5-second videos through the side of the test section, and track the tracer particles via a multiframe predictive
particle-tracking algorithm24. Accurate velocities are then computed from the particle trajectories via convolution
with a smoothing and differentiating kernel25.
To extract the hydrodynamic stress exerted on the granular bed, we first construct the mean vertical velocity profile

by binning the measured velocities in height (with at least 20,000 samples per bin). An example profile is shown in
Fig. 2, where the error bars show the standard deviation of the velocities in each bin. To compute the wall shear stress
τwall, we fit the velocity profile using the modified logarithmic law method described by Rodŕıguez-López et al.26, the
result of which is shown as the dashed curve in Fig. 2. The wall shear stress is then given as τwall = µ∂u

∂y evaluated

at y = 0, where µ is the dynamic viscosity of water. τwall in turn allows us to compute the friction Reynolds number
Reτ = δ/δν , where δ is the channel half-height, δν = ν

√

ρf/τwall is the viscous length scale27, and ν = µ/ρf is the
kinetic viscosity of water. For the results presented here, 450 < Reτ < 2200.
The wall shear stress also allows us to compute the Shields number Θ as

Θ =
τwall

(ρg − ρf )gd
, (1)

where in our experiments the Shields numbers are in the range 0.005 < Θ < 0.045. The shear Reynolds number at
the grain scale Re∗ = d/δν is also used to specify the sediment-transport regime, and in our experiments, we have
6 < Re∗ < 30.

C. Granular Bed

To quantify the motion of bed grains, about 5% of the glass beads in the bed are colored black, which appear dark
against the bright background of illuminated, clear beads. Aside from the color, the black beads are identical to the
clear beads. We illuminate the measurement region (see the gray rectangle in Fig. 1) with an array of LEDs, and use
a second camera positioned above the bed to take videos of the bed surface at 250 or 500 frames per second (fps) with
a resolution of 190 pixels/cm. Initial data was taken at 500 fps, but we determined that 250 fps is also sufficiently fast
such that beads move no more than half of a grain diameter per frame over the range of driving flows we consider.
The image shown in Fig. 3 has physical dimensions of 6.8 cm long by 2.7 cm wide. Thus, our images capturing grain
motion span roughly the middle half of the channel, which is 5.08 cm wide, neglecting the areas near the outer wall.
We do not investigate the dependence of grain motion in the lateral direction of the bed. However, since the flow is
turbulent, we expect the fluid velocity to have only a very weak dependence on the lateral position, except perhaps
at the wall where grain-wall friction becomes important.
After normalizing each image to correct for lighting inhomogeneities, we use a circular Hough transform to locate

the position of black beads on the bed surface accurately. With those positions, we then use the same Lagrangian
particle tracking algorithm as used for the fluid flow to extract trajectories for each bead. Fig. 3 shows an example
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FIG. 2. A typical fluid velocity profile, as measured from the streamwise velocities u of tracer particles in the fluid. Each data
point (open circles) represents a time average over all tracer particle trajectories for binned values of the height. The error
bars show the standard deviation of the velocities in each bin. The dashed line is a fit following the procedure described by
Rodŕıguez-López et al.26, from which we extract the wall shear stress τwall (see text).

raw image frame from a video of the granular bed. Selected grain trajectories are shown in white, with the current
position of each grain in the frame shown as a white circle, indicating both the position and the radius extracted from
the Hough transform. We note that when we allow the experiment to run for very long times, we observe propagating
bedforms (e.g. ripples). However, we reset the bed before each set of experiments, which prevents these bedforms
from influencing the data we show here.

III. RESULTS

A. Comparison with Selected Previous Approaches

Incipient motion is typically defined as the point at which the sediment flux q vanishes. If all grain motion is
associated with downstream transport, then the mean grain velocity 〈ug〉 should be proportional to q; thus, since
〈ug〉 is typically easier to measure, it is often used as a proxy for q in determining the onset of sediment transport.
In Figure 4(a), we plot 〈ug〉 as a function of Θ, where in our case the average is taken over all measured velocities
for each tracked grain. For small Θ, 〈ug〉 is approximately zero. For Θ > 0.023, we observe that 〈ug〉 clearly grows,
but the exact value of Θ where this growth begins is unclear. In addition to the mean grain velocity, we can also
investigate the standard deviation of grain velocity σg , since we would expect variation among the grains and in time.
Figure 4(b) shows σg for the grain velocity as a function of Θ. Although it varies in a qualitatively similar way as
〈ug〉 with Θ, σg does not vanish for small Θ; instead, the magnitude of the fluctuations in grain velocity remain finite.
This result suggests that even below the onset of net sediment transport, grains can rattle on the surface of the bed.
Measuring the mean grain velocity is not the only method that has been used to determine the onset of sediment

transport. For example, several recent studies7,28,29 have taken the approach of first choosing a velocity threshold to
identify which grains are in motion. The ratio of the number of these “active” grains to the total number of grains
or the bed surface area is known as the particle or grain activity. The critical Shields number Θc can ideally be
determined by identifying the point at which the grain activity vanishes7. After identifying mobilized grains, one can
examine the statistics of the velocities of moving grains, since the grain flux q is proportional to the product of the
grain activity and the mean velocity. The probability density function (PDF) Pm(ug) of the velocities ug of mobile
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FIG. 3. A raw image of the granular bed shown from above. The physical dimensions are 6.8 cm in the horizontal, streamwise
direction by 2.7 cm in the vertical, cross-stream direction, spanning roughly the middle half of the channel width. Selected
grain trajectories are overlaid in white. This snapshot shows white circles to indicate the position and radius of a selected
subset of tracked grains during a single frame, with trailing lines behind each grain indicating the motion from the beginning
of each track. The time interval for each track varies, as the time at which the Lagrangian particle tracking algorithm began
to track each specific grain also varies. We include a 5 mm scale bar on the bottom left, and the fluid flows from right to left.
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FIG. 4. (a) The mean grain velocity 〈ug〉 as a function of Shields number Θ. The error bars show the standard error computed
for six trials, and the inset shows the same data plotted on semilogarithmic axes. (b) The standard deviation of grain velocity
σg as a function of Θ.

grains is often found to be close to exponential7,28,30,31, so that it is well fit by

Pm(ug) =
1

u∗

g

e−ug/u
∗

g . (2)

Here, u∗

g is the average velocity of the mobile grains. This distribution can be derived from maximum-entropy
statistical-mechanical arguments, starting from a microcanonical ensemble and constraining the total grain momen-
tum30. Equation (2) is particularly successful for describing bedload transport when the number of moving grains
becomes large30,31. However, this entire approach is predicated on first identifying moving grains. But very close to
the threshold of incipient motion, the grain activity and subsequent velocity statistics may become highly sensitive to
the choice of threshold, especially when the driving flow is turbulent. In this case, the transition to sustained sediment
transport may not be sharp, but may be blurred by the turbulent fluctuations in the driving flow.
Figure 5(a) shows activity distributions from our experiments. Each curve shows a PDF of the fraction of active
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FIG. 5. (a) The probability density that a fraction nactive of all tracked grains are moving at any given time for Θ = 0.023,
plotted for four different values of the velocity threshold uthreshold defining grain motion: 0.75 cm/s (circles), 1 cm/s (squares),
1.5 cm/s (stars), and 2 cm/s (triangles). These PDFs are highly sensitive to the choice of threshold. (b) The mean fraction of
active grains for the same values of uthreshold as a function of Θ.
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FIG. 6. PDFs P (ug) of grain velocities ug (solid curves), for Θ = 0.0059, 0.0232, 0.0283, and 0.0425. Dashed curves show fits
of the data to Eq. (3). The inset shows a close-up of the same data near the core of the PDF.

grains nactive in any given video frame from all experiments at a given value of Θ, where active grains are defined
as those that have an instantaneous streamwise velocity greater than a threshold velocity uthreshold. These PDFs are
sensitive to the choice of uthreshold. We plot the mean fraction of active grains 〈nactive〉 as a function of Θ in Fig. 5(b).
The behavior is qualitatively similar to the mean velocity shown in Fig. 4(a), but 〈nactive〉 remains non-zero in general
for small Θ. The value of this plateau at small Θ is dependent on uthreshold.
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B. Fitting to a Mixture Model

It is not surprising that mobile and non-mobile grains are difficult to separate, especially very near the onset of
sustained sediment transport. This blurring arises from physical effects, primarily turbulence, as well as from finite
experimental measurement accuracy. Thus, instead of identifying only mobile grains and examining their statistics,
we examine all tracked grains together. In Fig. 6, we show PDFs of all tracked grain velocities for several values of
Θ. The solid lines show measured data, and the dashed lines are a model that is fit to the data, as described below.
Several features of these PDFs are noteworthy. As one might expect, most of the measured particle velocities are
clustered near zero. These points are from bed particles that we identify but that are not mobile, since near incipient
motion most of the bed is still not moving. However, the peak at ug = 0 is not sharp but rather is somewhat broad,
even in the low-Θ limit, which arises from a combination of physical fluctuations and experimental noise. At larger
values of ug, the PDF becomes a decaying exponential with a characteristic velocity scale u∗

g, as in Eq. 2. This part
of the PDF arises from mobilized grains. Between the static and mobile parts of the PDF, there is a crossover region
that does not fit well either with an exponential or with a normal distribution centered at ug = 0. In addition, the
magnitude of P (ug) for small velocities increases with Θ for both positive and negative ug. Visual inspection of the
crossover region for ug > 0 suggests that uthreshold should be chosen between 1 and 4 cm/s, but there is no objective
way to choose within this range. Moreover, the width of the crossover region appears to grow with Θ, meaning that
the appropriate choice for uthreshold would vary with Θ.
These PDFs clearly show why activity and mean velocity are difficult to use as precise indicators of the onset of net

sediment transport: the development of the exponential tail that characterizes downstream flux is gradual, and occurs
at the same time as the central peak broadens due to turbulence and noise. As an alternative way to quantify our
data over the full range of Θ, we instead here suggest a fit of the entire PDF via a mixture model. As we have already
indicated, the tail at positive ug ought to be exponential. The central core due to turbulence is quasi-Gaussian; we,
however, find better agreement (and are better able to fit the entire PDF) if we use a Student’s t-distribution instead.
Thus, we fit the grain velocity PDFs to a function of the form

P (ug) = A
Γ
(

ζ+1

2

)

σ
√
ζπΓ

(

ζ
2

)

[

ζ +
(ug

σ

)2

ζ

](− ζ+1

2 )

+B
1

u∗

g

e−ug/u
∗

g . (3)

Here, A and B are mixture fractions that sum to unity (to keep the overall PDF normalized) and give the relative
fraction of particles in the (static) core and the (mobile) tail; Γ is the gamma function; σ is the characteristic width
of the t-distribution and ζ is its shape parameter that sets the heaviness of its tails. When ζ is small, the tails are
heavier than a Gaussian with the same variance, and as ζ → ∞, the t-distribution becomes a Gaussian with standard
deviation σ.
Figure 7 shows the parameters σ, ζ, u∗

g, and B that characterize Eq. (3) as a function of Θ. Although we allow
both A and B to vary in our fits, we always recover A + B = 1 ± 0.04. Figure 7(a) shows the characteristic width
σ of the t-distribution. For small Θ, σ fluctuates somewhat but remains roughly constant. For Θ > 0.023, σ grows
strongly. We note that we observe identical behavior for σ when we fit the core to a normal distribution, where
σ is simply the standard deviation. Additionally, as shown in Fig. 7(b) we observe a decrease in ζ for Θ > 0.023,
meaning that the tails of the distribution are becoming heavier for both positive and negative ug. We interpret this
effect as a manifestation of the increasing turbulence (since in our experiment the Shields and Reynolds numbers vary
together): the more intense turbulence implies stronger fluctuations in wall shear stress and velocity, which in turn
lead to more rapid fluctuations of non-mobilized bed grains. We note that the t-distribution is symmetric about zero,
so the agreement of our model with the data suggests that the turbulence-driven fluctuations of the grains have similar
positive and negative downstream values. By definition, the grains described by the t-distribution do not contribute
to the net transported flux.
For larger grain velocities, we find excellent agreement with a decaying exponential, as in Eqs. (2) and (3). Fig-

ure 7(c) shows u∗

g, which can be interpreted as the mean velocity of the transported grains. For Θ ≥ 0.023, u∗

g remains
roughly constant at u∗

g ≈ 3.5 cm/s. Thus, just above the onset of net sediment transport, increases in the grain flux
appear to be primarily driven not by increasing the velocity of mobilized grains but by increasing their number. This
conclusion is supported by Fig. 7(d), which shows that B, which can be roughly interpreted as the fraction of grains
that fall into the exponential tail, clearly grows with increasing Θ for Θ > 0.023. However, B does not vanish sharply
at a particular value of Θ. This behavior can be more clearly seen in the inset of Fig. 7(d), which follows the same
trend of 〈ug〉, shown in Fig. 4(a). For Θ < 0.018, B vanishes to within our experimental precision. Over roughly
0.018 < Θ < 0.023, we observe a transition between B ≈ 0 for Θ < 0.018 and clear growth with increasing Θ for
Θ > 0.023, but the precise boundaries are not well defined. Thus, the transition to net sediment transport is blurred,
presumably by the turbulence in our experiment.
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g, and (d) B from Eq. (3) as a function of Shields number Θ. In all cases, the error
bars are the standard error computed over six different experimental trials. We mark on panel (c) points (in gray) at which
B < 2× 10−3, where our fit for u∗

g is no longer physically meaningful. The inset to panel (d) shows the same data plotted on
semi-logarithmic axes, with a horizontal line at B = 2× 10−3.

The numerical values for B in Fig. 7(d) are similar to the values of 〈nactive〉 plotted in Fig. 5(b). However, fitting to
Eq. (3) allows us to separate transported grains from fluctuating grains, as B vanishes for small Θ, while the fraction
of active grains does not. Note that as B vanishes, our fit for u∗

g is no longer physically meaningful, as there are no

transported grains. Thus, although we include data for u∗

g for all Θ, we note in Fig. 7(c) points at which B < 2×10−3.
Additionally, we note that the mean velocity of mobile grains u∗

g is not the same quantity as 〈ug〉 plotted in Fig. 4,
where the latter includes all nonmoving grains that we track. Instead, one should expect 〈ug〉 to be quantitatively
similar to the product of B, the fraction of mobile grains, and u∗

g, the mean velocity of mobile grains. A comparison
of 〈ug〉 in Fig. 4(a) and B and u∗

g in Fig. 7(c) and (d) demonstrates that this is true.

Finally, we note that weaker grain motion at two of the six data sets at Θ ≈ 0.037 cause an anomalous dip in our
data (Figs. 4 and 7), possibly due to a change in bed morphology during these experiments (although nothing was
observable from our overhead movies). This value of Θ is significantly above onset, so we believe it does not influence
our conclusions. Note that we have omitted this data point from the grain activity plots in Fig. 5. Additionally, Fig. 7
shows that u∗

g shows no change, while B and σ both decrease for this value of Θ. This is consistent with our other
results, in that smaller grain flux is associated with fewer grains moving and not a decrease in the velocity of mobile
grains.
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IV. DISCUSSION AND CONCLUSIONS

Here we have presented experimental measurements of the statistics of grain motion across the transition to net
sediment transport in a laboratory flow. We quantify the grain motion and the fluid flow using high-speed video and
particle tracking. We considered several methods for identifying the onset of sediment transport, and argued that
fitting a mixture model to the full PDF of grain velocities gives the most objective way of accomplishing this goal,
particularly in the presence of turbulence. Appealingly, this method does not require the choice of a threshold for
deciding which grains are contributing to net sediment transport and which are simply rattling in the presence of
turbulent fluctuations. Instead, the different statistical properties of these two classes of grains are used directly to
distinguish them.

Using this approach, we showed that the density of grains transported downstream does not vanish sharply at a
well-defined critical Shields number Θc. Instead, we find a crossover region somewhere below Θ ≈ 0.023 (roughly in
the range 0.018 < Θ < 0.023), which is similar to Θc as measured in Ref.7. Thus, our results indicate that there
may not always be a clear separation between mobile and static grains. In the PDFs of grain velocities, we find a
crossover region between transported grains and immobile grains that changes as Θ is varied. Here, we attribute this
“blurring” of the transition to sediment transport as an effect of the turbulent fluctuations. We note, however, that
this kind of continuous rather than sharp transition was also recently reported in the laminar case and interpreted as
resulting from granular creep13. We also find that as Θ is increased above the onset of net downstream grain motion,
the fraction of grains that are mobilized increases although the mean velocity of mobilized grains remains roughly
constant. This result is consistent with the findings in Ref.28, but different from those in Ref.7, where both activity
and mean velocity of mobile grains apparently increased with increasing Θ, albeit at higher transport rates. Further
work is therefore required to settle this question, and to understand whether there are additional physical effects that
distinguish these situations.
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