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Abstract

In this work, we derive the image flow fields for point force singularities placed outside a sta-

tionary drop covered with an insoluble, non-diffusing, and incompressible surfactant. We assume

the interface to be Newtonian and use the Boussinesq-Scriven constitutive law for the interfacial

stress tensor. We use this analytical solution to investigate two different problems. First, we derive

the mobility matrix for two drops of arbitrary sizes covered with an incompressible surfactant. In

the second example, we calculate the velocity of a swimming microorganism (modeled as a Stokes

dipole) outside a drop covered with an incompressible surfactant.
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I. INTRODUCTION

Point force singularity solutions are commonly used to represent the disturbance flow field

due to particles, drops and microorganisms in a low Reynolds number regime [1–3], where

the inertial forces are negligible. For instance, the disturbance flow field due to particles

of simple shape (e.g., sphere, spheroid or ellipsoid) in simple ambient flows (e.g., uniform

flow, linear flow) or that due to particles of slender geometry can be represented by an

internal distribution of point force singularities (and the higher order singularities) [2, 4].

More importantly, the far-field behavior of the disturbance flow field can be captured by a

Stokeslet (flow field due to a point force) or a rotlet (flow field due to a point torque) or a

stresslet (flow field due to a symmetric part of a force dipole), if the force, torque and the

stresslet experienced by the particle are known [2]. This far-field behavior can be used to

understand the interaction of particles, drops or microorganisms with interfaces [5–9].

In this work, we derive the image flow field due to the point force singularities placed

outside a drop covered with an insoluble, non-diffusing and an incompressible surfactant,

with allowance for the interfacial viscosity of the drop. This solution can be used to under-

stand the pair hydrodynamic interaction of bubbles and drops in the presence of surfactants

in bubbly flows and emulsion flows, respectively. It can also be used to investigate bacterial

dynamics in the vicinity of oil drops; an analysis that is essential in order to understand

the mechanism of bioremediation of insoluble hydrocarbons released in an oil spill. In the

event of an oil spill, surfactants are often used to break down the ‘heavier’ oil components

into tiny drops (O (100− 1000)µm), which act as a carbon source for marine bacteria [10].

Therefore, it is important to understand the hydrodynamic interactions between bacteria

and surfactant-laden drops, as a first step towards answering vital questions related to the

process of bioremediation in oil spills. Also, the distribution of bacteria near bubbles is

important in marine environments or in food cleaning procedures when cavitation bubbles

are used to clean infectious bacteria from surface of food products [11].

Non-uniform distribution of surfactant (which leads to the non-uniform interfacial ten-

sion), caused by fluid flow near an insoluble surfactant laden interface, significantly alters

the physics, e.g., the velocity of a force-free drop or the drag experienced by a drop. This

fluid flow can be due to (i) externally applied force (e.g., gravity), (ii) externally imposed

flow field, or (iii) hydrodynamic interactions with other particles. Among these, the buoy-

2



ancy (gravity) driven motion of drops covered with surfactants in an unbounded quiescent

fluid is well understood [1, 12]. There is a recent attraction to the motion of force-free,

surfactant-laden-drops in an unbounded externally imposed flow field. One interesting ob-

servation is the cross-stream migration of a non-deforming surfactant laden spherical drop

(towards the centerline of the flow) in an unbounded plane/cylindrical Poisuelle flow. Hanna

and Vlahovska’s work [13] was the first to observe this and they focused on the limits of large

Marangoni number, Ma (ratio of Marangoni forces to the viscous forces) or large viscosity

ratio of the drops, neglecting any surface diffusivity of the surfactant. Schwalbe et al. [14]

studied the influence of the interfacial viscosity of the drops, where the interface is assumed

to be Newtonian and the Boussinesq-Scriven constitutive law is used for the interfacial stress

tensor. Pak et al. [15] studied the effect of surface diffusivity of the surfactant in the limit

of large diffusivity (surface Péclet number, PeS ≪ 1, where PeS is the ratio of surface

advection of the surfactant to its surface diffusion).

A lot of work has been done on the interaction of particles/drops with surfactant-laden-

interfaces. Depending on the shape of the interface, one can classify these works into two

categories. The first category deals with the motion of particles near a plane interface cov-

ered with a surfactant. For instance, Blawzdziewicz et al. [16] developed a method to find

the image of an arbitrary flow field from a plane interface covered with an incompressible, in-

soluble and non-diffusing surfactant. They used this method to find the image of a Stokeslet,

which was further utilized in deriving the mobility of a rigid sphere near a surfactant-laden

interface. Recently, Lopez and Lauga [8] studied the dynamics of swimming microorganisms

near a plane interface covered with an incompressible surfactant. Modeling the microor-

ganisms with a force dipole or a rotlet dipole, they explained the attraction/repulsion of

microorganisms and their swimming in circles near such complex interfaces. These two

studies included the effects of interfacial viscosity. The second category deals with the in-

teraction of two or more spherical surfactant-laden-drops. For instance, Blawzdziewicz et

al. [17] derived the general solution of creeping flow equations surrounding a spherical drop

covered with an insoluble and incompressible surfactant (Ma → ∞). This solution was then

used to derive the pairwise mobility functions which were further utilized to determine the

collision efficiencies of two equal-sized bubbles covered with a surfactant in linear flows. In

the same limit of Ma, Ramirez et al. [18] studied the effect of buoyancy on the interaction of

neutrally buoyant rigid spheres (located outside the drop) with surfactant-covered bubbles,
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in the context of microflotation. Following the procedure of Ramirez et al. [18], Rother and

Davis [19] studied the buoyancy induced coalescence of two drops (of arbitrary size) covered

with an incompressible surfactant. These three works considered the additional influence

of Brownian motions and van der Walls attraction on the hydrodynamic interactions. Fur-

thermore, Blawzdziewicz et al. [20] studied the rheology of a dilute suspension of spherical

drops covered with surfactants, subjected to linear flows. They focused on the limit where

the redistribution of surfactant on the drop is significant Ma ∼ O (1). They observed that

the presence of surfactant can give rise to shear-thinning behavior with non-zero values of

first and second normal stress differences. Extension of this work to time-dependent flows

was carried out by Vlahovska et al. [21]. In the same limit of Ma, Cristini et al. [22] studied

the near contact motion of surfactant covered spherical drops using lubrication theory. Also,

Zinchenko et al. [23] studied the gravity induced collision efficiencies of two spherical drops

covered with compressible surfactants (valid for arbitrary Ma and PeS). An intriguing re-

sult of this work is that the surfactant enhances the coalescence of drops of equal size. These

works consider a linear relationship between interfacial tension and surfactant concentration

and they neglect the influence of interfacial viscosity.

Mechanisms other than fluid flows can cause the non-uniform distribution of surfactants

which thereby lead to the self-propulsion of particles in quiescent fluids. For instance, either

during initial stages of micelle adsorption on the surface of a clean drop or by using a

non-uniform mixture of two surfactants, one can observe the gradients in the surfactant

concentration and consequently the interfacial tension on the surface of the drop and this

propels the drop [24]. A second example is the Marangoni propulsion [25] of interface bound

particles due to the release of an insoluble surface active agent. For a simple shape of these

particles residing on a flat interface, such as a thin disc, Lauga and Davis derived analytical

expressions for the translational velocity due to the release of surfactants [26]. Later, Masoud

and Stone derived such expressions for oblate and prolate spheroidal particles using the

Lorentz reciprocal theorem [27].

A traditional approach to derive the mobility of particles near a plane interface is (i)

to derive the image systems of point force singularities near a plane interface [28–30] and

then (ii) to apply the Faxén’s law to a suitable combination of the images of these point

force singularities. This approach is general since, once we know the images of point force

singularities, we can readily derive the mobility of a rigid sphere, drop or even a swimming
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microorganism near a plane interface [8, 9]. Kim and Karilla [2] used this approach to derive

the mobility functions for two rigid spheres of arbitrary sizes while Fuentes et al. [31, 32]

derived the mobility functions for two spherical drops with clean interfaces. Following

this analogy, we derive the image systems for point force singularities and higher order

singularities placed outside a drop covered with an incompressible surfactant, including the

effects of interfacial viscosity, in Sections II and III, respectively. We thereafter, illustrate the

use of the images of point force singularities by providing two examples in Sections IV and

V. The first example concerns the mobility functions for two spherical drops (of arbitrary

sizes) covered with an incompressible surfactant. For this purpose, we require the Faxén’s

laws for a spherical drop covered with an incompressible surfactant, which are derived in

Appendix B. In the second example, we derive the velocity of a swimming microorganism

outside a stationary drop covered with an incompressible surfactant. A brief discussion on

the incompressible surfactant film is provided in Appendix A.

II. POINT FORCE OUTSIDE A DROP COVERED WITH AN INCOMPRESS-

IBLE SURFACTANT

In this section, we derive the image flow field due to a point force outside a stationary

spherical drop covered with an insoluble, non-diffusing and incompressible surfactant. As-

suming the interface to be Newtonian, we use the Boussinesq-Scriven constitutive law [33, 34]

for modeling the interfacial viscous stresses. For deriving the image flow field, we use the

multipole representation of the Lamb’s general solution [35]. Kim and Karrila [2] used this

method to derive the image of point force singularities near a rigid sphere while Fuentes

et al. [31, 32] used it to derive the images outside a drop with a clean interface, without

any interfacial viscosity. Recently, Daddi-Moussa-Ider and Gekle [36] used this method to

derive the images of a point force outside a spherical elastic membrane for axisymmetric

configurations.

Consider a point force F located at x2 outside a drop, whose center is at x1 (see Fig. 1).

Scaling the distances by the radius of the drop, the flow fields inside and outside the drop

are governed by Stokes equations and incompressibility conditions

−∇p(e) + µe∇
2v(e) = −Fδ (x− x2) , ∇ · v(e) = 0, for r1 = |x− x1| > 1, (1)
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FIG. 1: Point force outside a surfactant covered drop and the associated coordinate system

µi∇
2v(i) = ∇p(i), ∇ · v(i) = 0, for |x− x1| < 1, (2)

where δ is the dirac-delta function. Here v(k) and p(k) denote the velocity and pressure fields,

while µk denote the dynamic viscosity of the fluid. Also, k = i, e correspond to the interior

and exterior of the drop, respectively. The solution of these equations should satisfy the

boundary conditions on the surface of the drop given by

v(e)r = v(i)r = 0, (3)

vS = ∆ · v(e) = ∆ · v(i), (4)

∇S · vS = 0, (5)

er ·
(
T(i) −T(e)

)
·∆ = ∇Sσ + µS

(
2vS

r21
+ eθ

1

r1 sin (θ)

∂̟

∂φ
− eφ

1

r1

∂̟

∂θ

)

, (6)

where ∆ = I − erer, I is the identity tensor, (er, eθ, eφ) and (vr, vθ, vφ) are the unit

vectors and the components of the velocity vector in the radial, polar and azimuthal direc-

tions with the origin at the center of the drop. T(i) and T(e) represent the stress tensors

in the inner and outer fluids, σ denotes the interfacial tension, and µS denotes the in-

terfacial shear viscosity. ∇S is the surface gradient operator given by ∇S = ∆ · ∇ and

̟ = 1
r1 sin(θ)

(
∂vθ
∂φ

− ∂
∂θ

(sin (θ) vφ)
)

. As the drop is not deforming, Eq. (3) states that the

radial velocity is zero at the drop surface. Also, Eq. (4) states that the tangential velocity

(vS) is continous across the interface of the drop. The surface transport equation [37] of an

insoluble, non-diffusing, incompressible surfactant reduces to Eq. (5) [8, 16] (see Appendix A

for details). Using the Boussenisq-Scriven constitutive law along with Eq. (5) for the surface

viscous stresses τS, the surface divergence of surface viscous stress ∇S · τS for a spherical

interface reduces to that given on the right hand side of Eq. (6).
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Since Eqs. (1)-(6) are linear, we just need to solve for two orientations of the point force

to derive the flow field for all possible orientations of the point force. One such orientation

of the point force corresponds to an axisymmetric configuration, i.e. point force is oriented

along the line joining x1 and x2 or F ‖ d, where d = (x1 − x2) / |x1 − x2|. The other

configuration corresponds to a transverse or asymmetric configuration, where F⊥d. For

axisymmetric configuration, Eq. (5) implies vS = 0. Hence the image flow field due to

an axisymmetric Stokeslet outside a drop covered with an incompressible surfactant is the

same as that due to an axisymmetric Stokeslet outside a rigid sphere. Such a similarity

between the images of an axisymmetric Stokeslet near a plane interface covered with an

incompressible surfactant and that near a rigid wall was already noted by Blawzdziewicz et

al. [16]. Kim and Karrila have derived the images due to a Stokeslet outside a rigid sphere

[2]. Hence, we do not repeat this calculation but simply use their results in the next few

sections of this work. In this section, we therefore focus on deriving the image due to a

transverse Stokeslet. Utilizing the linearity of the problem, we write the flow field outside

the drop as a sum of the Stokeslet and its image (v∗)

v(e) = F⊥ · [G (x− x2) /8πµe] + v∗, (7)

where G is the free space Green’s function of the Stokes equations, the point force in the

transverse problem is denoted by F⊥, F⊥ = F⊥e and e is perpendicular to d.

We hereby derive the solution of this problem, following these four steps [31, 32]:

1. We write the Stokeslet in terms of harmonics based at x2, which are then transformed

to the harmonics based at x1 using a Taylor series expansion about x1 (or more

generally using an addition theorem). Using the properties of spherical harmonics,

one can arrive at the following expression for the Stokeslet

F⊥ · G (x− x2) =

∞∑

n=0

[

(1− n)R−(n+1)r2n+1
1 +

(2n+ 1) (n+ 1)

(2n+ 3)Rn+3
r2n+3
1

]

F⊥ (d · ∇)n

n!

1

r1

+

∞∑

n=0

[
R−(n+3)

(2n + 3)
r2n+5
1 −

R−(n+5)

(2n+ 7)
r2n+7
1

]

∇
(
F⊥ · ∇

) (d · ∇)n

n!

1

r1

−
∞∑

n=0

[

R−(n+2)r2n+3
1 −

(2n+ 3)

(2n+ 5)
R−(n+4)r2n+5

1

]

(t×∇)
(d · ∇)n

n!

1

r1
,

(8)

where R = |x1 − x2| and t = F⊥ × d.
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2. We then write the image flow field in terms of the multipole expansion about x1 as

given in Eq. (9) which is eventually written in terms of harmonics based at x1 as given

in Eq. (10)

v∗ =F⊥ ·
∞∑

n=0

(

A⊥
n

(d · ∇)n

n!

G (x− x1)

8πµe

+B⊥
n

(d · ∇)n

n!
∇2G (x− x1)

8πµe

)

+
n=∞∑

n=0

(

C⊥
n

(d · ∇)n

n!

(t×∇)

8πµe

1

r1

)

−
(
C⊥

0 − A⊥
1

)(t×∇)

8πµe

1

r1
.

(9)

v∗ =
∞∑

n=0

A⊥
n

[

1− n +
(2n+ 1) (n + 1)

(2n+ 3)

]

F⊥ (d · ∇)n

n!

1

8πµer1

+
∞∑

n=0

[
A⊥

n r
2
1

2n+ 3
−

A⊥
n+2

2n+ 7
− 2B⊥

n

]

∇
(
F⊥ · ∇

) (d · ∇)n

n!

1

8πµer1

+
∞∑

n=1

(
C⊥

n − A⊥
n+1

)
(t×∇)

(d · ∇)n

n!

1

8πµer1

+

∞∑

n=0

(2n+ 3)

(2n+ 5)
A⊥

n+1 (t×∇)
(d · ∇)n

n!

1

8πµer1
,

(10)

where A⊥
n , B

⊥
n , C

⊥
n are the unknown constants determining the image flow field.

3. We thereafter write the flow field interior to the drop using Lamb’s general solution.

The connection between the Lamb’s general solution and the multipole expansion is

then used to write this flow field in terms of harmonics based at x1 as

v(i) =

∞∑

n=1







c⊥n

(

r2n−1
1 (t×∇) (d·∇)n−1

(n−1)!
1
r1
+ (2n− 1) r2n−3

1 (t× (x− x1))
(d·∇)n−1

(n−1)!
1
r1

)

+b⊥n

(

r2n+1
1 ∇ (F · ∇) (d·∇)n−1

n!
1
r1
+ (2n+ 1) r2n−1

1 (x− x1) (F · ∇) (d·∇)n−1

n!
1
r1

)

+a⊥n





(n+3)
2

r2n+3
1 ∇ (F · ∇) (d·∇)n−1

n!
1
r1

+ (n+1)(2n+3)
2

r2n+1
1 (x− x1) (F · ∇)× (d·∇)n−1

n!
1
r1











,

(11)

where a⊥n , b
⊥
n , c

⊥
n are the unknown constants determining the flow field inside the drop.

4. As a final step in this method, we apply the boundary conditions to determine the

unknown coefficients A⊥
n , B

⊥
n , C

⊥
n , a

⊥
n , b

⊥
n and c⊥n . Using Eq. (3) of the vanishing radial

velocity on the surface of the drop, we obtain the following two equations

(n + 1)

2
a⊥n + b⊥n − c⊥n+1 = 0, (12)

(n + 3)

(2n+ 3)
A⊥

n+1 −
(n+ 1)

(2n− 1)
A⊥

n−1 + 2 (n+ 1)B⊥
n−1 −C⊥

n =
n

(2n + 3)

1

Rn+2
−

(n− 2)

(2n− 1)

1

Rn
.

(13)
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After applying Eq. (4) to satisfy the continuity of tangential velocity across the inter-

face, we obtain the following two conditions

−
(n + 3)

2n
a⊥n −

1

n
b⊥n +

1

n
c⊥n+1 −

c⊥n+3

(n + 2)
−

nA⊥
n+1

(2n+ 3) (n + 2)

+
(n− 2)

(2n− 1)n
A⊥

n−1 − 2B⊥
n−1 = −

(n− 2)

(2n− 1)n

1

Rn
+

n

(2n+ 3) (n+ 2)

1

Rn+2
,

(14)

(n+ 1)

(n+ 2)
c⊥n+3 −

2

(n+ 2)
A⊥

n+1 + C⊥
n =

2

(n + 2)

1

Rn+2
. (15)

The surface divergence of the surface flow field is zero, thus Eq. (5) applied to the flow

field interior to the drop gives the following condition

(
n + 3

2

)

a⊥n + b⊥n − c⊥n+1 = 0. (16)

Lastly, in order to satisfy the tangential stress boundary condition (Eq. (6)), one should

expand the interfacial tension in terms of surface spherical harmonics and derive two

equations from Eq. (6). Noting that er · ∇ ×∇Sσ = 0, we operate er · ∇× on Eq. (6)

and derive the following equation

(
c⊥n+3λ− C⊥

n

)
n2 +

(
c⊥n+3λ− 2R−n−2 − 5C⊥

n + 2A⊥
n+1

)
n

−6C⊥
n + 6A⊥

n+1 = −βnc⊥n+3 (n + 3) (n+ 1) ,
(17)

where β = µS/ (µea) and λ = µi/µe. Now, we can solve Eqs. (12)-(17) to directly

determine the image flow field and the flow inside the drop. By using these flow fields,

one can determine the interfacial tension satisfying Eq. (6). Note that we use the

general approach of expanding the interfacial tension in terms of surface spherical har-

monics in Appendix B to derive Faxén’s laws for a drop covered with an incompressible

surfactant.

Solving Eqs. (12)-(17), we derive the explicit expressions for the unknown coefficients A⊥
n ,

B⊥
n , C

⊥
n , a

⊥
n , b

⊥
n , and c⊥n as follows

a⊥n = 0, (18)

b⊥n = c⊥n+1, (19)

c⊥n =
(4n− 6)

(n− 2) [βn2 + (−3β + λ + 1)n− 3λ]

1

Rn−1
, (20)

A⊥
n =

(−2n2 − 3n− 1)R−n−3 + (2n2 + n− 3)R−n−1

2n+ 4
, (21)
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B⊥
n =











(n+ 3) (n + 2) (n+ 1) (βn2 + (5β + λ+ 1)n+ 4β + λ+ 4)R−n−5

−2




βn4 + (10β + λ+ 1)n3 + (32β + 6λ+ 9)n2

+ (29β + 8λ+ 27)n− 12β − 3λ+ 28



 (n+ 1)R−n−3

+ (n+ 4) (n− 1) (n+ 3) (βn2 + (5β + λ+ 1)n+ 4β + λ+ 4)R−n−1











4 (n+ 4) (n+ 3) (n + 2) (βn2 + (5β + λ+ 1)n + 4β + λ+ 4)
, (22)

C⊥
n = −




(βn2 + 3 + (3β + λ+ 1)n) (n+ 2)R−n−4

− (βn2 + (5β + λ+ 1)n + 6β + 2λ+ 3)nR−n−2



 (2n+ 3)

(n+ 3) (βn2 + 3 + (3β + λ+ 1)n) (n + 2)
. (23)

From the multipole representation of the image flow field, Eq. (9), we know that the

hydrodynamic force and the stresslet experienced by the drop are given by −A⊥
0 F

⊥ and

A⊥
1

(
F⊥d + dF⊥

)
/2, respectively. But from Eq. (21) and [2], we can show that

A⊥
n

∣
∣
point force outside a drop covered
with an incompressible surfactant

= A⊥
n

∣
∣
point force outside
a rigidsphere

. (24)

Hence, we conclude that a point force outside a drop covered with an incompressible surfac-

tant exerts a force and stresslet on the drop which are the same as those exerted on a rigid

sphere in a similar configuration. This conclusion holds for all separations between the point

force and the drop. This conclusion is more general since it is valid for situations such as a

translating surfactant-laden-drop in an arbitrary flow field as shown in Appendix B, where

we also provide the physical reasons behind such behavior of a surfactant-laden-drop. Since

the slowest decaying terms (and hence dominant in the far-field) in the multipole expansion

of the image flow field are those due to the force and stresslet experienced by the drop, we

expect that the flow field far away from the surfactant-laden-drop to be same as that outside

a rigid sphere in the similar configuration. This observation is merely a consequence of the

earlier observation - a surfactant-laden-drop experiencing the same force and stresslet as

that of a rigid sphere due to a point force outside it. For the flow field close to a surfactant-

laden-drop, the higher order terms in the multipole expansion of the image flow field (which

depend on the viscosity ratio and the interfacial viscosity) become important due to which,

this flow field is different from that near a rigid sphere in a similar configuration. Note that

for the limiting values, λ or β → ∞, all of these expressions for A⊥
n , B

⊥
n , C

⊥
n , a

⊥
n , b

⊥
n and c⊥n

approach the corresponding expressions for a rigid sphere as expected.
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III. HIGHER ORDER SINGULARITIES OUTSIDE A DROP COVERED WITH

AN INCOMPRESSIBLE SURFACTANT

In this section, we summarize the approach used for deriving the images of higher order

singularities such as a Stokes dipole and a degenerate quadrupole from a drop covered with

an incompressible surfactant.

A. Image of a Stokes dipole

We derive the images of a Stokes dipole by operating∇2 on the images of Stokeslet outside

a drop covered with an incompressible surfactant, where∇2 denotes the gradient with respect

to the location of the singularity. We hereby summarize the necessary operations required for

obtaining the images of few Stokes dipoles in Eqs. (25). As these Stokes dipoles are the only

singularities required for deriving either the mobility of two drops covered with a surfactant

or the velocity of a swimming microorganism near a drop covered with a surfactant, we do

not report the images of other Stokes dipoles. Note that, here Im {d · G (x− x2)} denotes

the image of an axisymmetric Stokeslet while Im {e · G (x− x2)} denotes the image of a

transverse Stokeslet.

Im {(d · ∇)d · G (x− x2)} = − (d · ∇2) Im {d · G (x− x2)} (25a)

Im {(e · ∇)d · G (x− x2)} = − (e · ∇2) Im {d · G (x− x2)} −
1

R
Im {e · G (x− x2)} (25b)

Im {(d · ∇) e · G (x− x2)} = − (d · ∇2) Im {e · G (x− x2)} (25c)

Im {(e · ∇) e · G (x− x2)} = − (e · ∇2) Im {e · G (x− x2)}+
1

R
Im {d · G (x− x2)} (25d)

B. Image of a degenerate quadrupole

Starting with the representation of the flow field as a sum of degenerate quadrupole and

its image described in Eq. (26), we use the solution methodology analogous to Section II

to derive the unknown coefficients in the image flow and the flow field interior to the drop.

We denote the coefficients which appear in the image flow field of an axisymmetric and

transverse degenerate quadrupole as
(

A
‖Q
n , B

‖Q
n , C

‖Q
n

)

and
(
A⊥Q

n , B⊥Q
n , C⊥Q

n

)
, respectively.

11



As these coefficients are the same as those of a rigid sphere, we note that the flow fields both

inside and outside of a drop covered with an incompressible surfactant due to a degenerate

quadrupole located outside the drop are same as those of flow fields due to a degenerate

quadrupole outside a rigid sphere.

v = F ·
[
∇2

G (x− x2) /8πµe

]
+ v∗ (26)

The image flow field from a surfactant-laden-drop can be written as a combination of surface

irrotational flow (which is the same as that due to a rigid sphere) and a surface solenoidal

flow (see Appendix B). The image of a degenerate quadrupole from a surfactant-laden-drop

is surface irrotational (i.e., the surface solenoidal part of the image flow field is zero), and

the entire image flow field from the surfactant-laden-drop is the same as that from a rigid

sphere.

IV. MOBILITY FUNCTIONS FOR TWO DROPS COVERED WITH AN INCOM-

PRESSIBLE SURFACTANT

A. A small drop near a large drop

As a first application of the image flow fields of point force singularities outside a drop

covered with an incompressible surfactant, we derive the mobility matrix for hydrodynamic

interactions between a large drop (radius a) and a small drop (radius b) accurate to O (δ5),

where δ = b/a ≪ 1. As this matrix for axisymmetric configurations is the same as that for

two rigid spheres [2], we only focus on the transverse configuration (the velocity of the drops

is perpendicular to the line joining their centers). For this purpose, we use a procedure

similar to the method of reflections, where we consider the entire multipole expansion when

the images are taken with respect to the large drop. However, we truncate this multipole

expansion to a prescribed order in b/R when taking images with respect to a small drop. We

require Faxén’s laws for a drop covered with a surfactant along with singularity representa-

tion of the flow field due to a translating drop covered with a surfactant to be able to use

the method of reflections. From the derivation of Faxén’s laws presented in Appendix B, we

conclude that the Faxén’s laws for the force and stresslet experienced by a drop covered with

an incompressible surfactant are the same as those of a rigid sphere. On the other hand,

the Faxén’s laws for the torque experienced by a drop covered with a surfactant is the same

12



as that of a drop with a clean interface and without any interfacial viscosity, namely the

drop experiences zero hydrodynamic torque. Also, since the flow field due to a translating

drop covered with a surfactant is axisymmetric, it behaves as a rigid sphere (namely fluid

inside the drop with respect to itself is stationary) and hence the singularity representation

of the flow field due to a translating drop covered with a surfactant is the same as that of

a translating rigid sphere. The mobility functions, which relate the velocities of the drops

with the forces acting on them, are written as [2]




U1

U2



 =
1

µe




ya11 ya12

ya21 ya22








Fe

1

Fe
2



 . (27)

1. Mobility functions y
a
12 and y

a
22

a
b

R

2
eF

1iµ

2iµd
e 1x 2x

eµ

FIG. 2: Schematic used for deriving the mobility functions (ya12, y
a
22) for the transverse

motion of the drops. Here, an external force, Fe
2 is acting on the small drop while no

external force is applied on the large drop.

For deriving the mobility functions ya12 and ya22, we apply a force Fe
2 on drop 2 and zero

force on drop 1 (see Fig. 2). At zeroth reflection, the velocity of drop 2 and the flow field

due to its translation are given by

6πµebU
(0)
2 = Fe

2, (28)

v2 = Fe
2 ·

(

1 +
b2∇2

6

)
G (x− x2)

8πµe

. (29)

At the first reflection, the velocity of the drop 1 is obtained by applying the Faxén’s law for

force (same as that of a rigid sphere) given by Eq. (30) which reduces to Eq. (31)

U
(1)
1 =

(

1 +
a2∇2

6

)

v2|x=x1
, (30)

13



6πµebU
(1)
1 = Fe

2

[

3

4

(
b

R

)

+
1

4

(
b

R

)( a

R

)2

+
1

4

(
b

R

)2
]

. (31)

Up to this reflection, the velocities of drops covered with surfactants are the same as those

of rigid spheres. For finding the flow field reflected from drop 1, v21, we need the images of a

Stokeslet of strength Fe
2 and a degenerate quadrupole of strength b2

6
Fe

2 located at x2 (center

of drop 2) from a force-free drop located at x1. The images from a force-free drop can be

obtained by first deriving the force exerted by the flow fields of a Stokeslet and degenerate

quadrupole on a stationary drop (−Fe
2A0) and then adding the flow field due to a translating

drop, acted upon by an external force (−Fe
2A0), to the images of the aforementioned point

force singularities with respect to a stationary drop (derived in Sections II and III). Hence

the flow field reflected from a force-free drop 1 is given by

v21 = Fe
2 ·

∞∑

n=0

(

An
(d·∇)n

n!
G (x−x)
8πµe

+Bn
(d·∇)n

n!
∇2 G (x−x)

8πµe

)

+
∞∑

n=0

Cn (t×∇) (d·∇)n

n!
1

8πµer1
− (C0 − A1) (t×∇) 1

8πµer1

−Fe
2A0 ·

(

1 +
a2∇2

6

)
G (x− x)

8πµe
︸ ︷︷ ︸

Flow added to satisfy the force−free condition for the drop

,

(32)

where An = A⊥
n +

b2

6
A⊥Q

n , Bn = B⊥
n + b2

6
B⊥Q

n and Cn = C⊥
n + b2

6
C⊥Q

n . At the second reflection,

drop 2 is force free. Hence its velocity is obtained by applying the Faxén’s law for the force

U
(2)
2 =

(

1 +
b2

6
∇2

)

v21|x=x2
. (33)

Using the properties of spherical harmonics, we obtain

6πµebU
(2)
2 = Fe

2











(
b
R

)
(

x5

16
− 9

8

∞∑

n=1

1+β1n
2+

(

3β1+λ1−
1
3

)

n

3+β1n2+(3β1+λ1+1)n
x2n+3

)

+1
8

(
b
R

)3
∞∑

n=1

(4n2 + 6n− 1) x2n+3

− 1
48

(
b
R

)5
∞∑

n=1

(2n+ 1) (2n+ 3) (n+ 1)2x2n+1











, (34)

where x = a/R. At this reflection, one can also derive the stresslet experienced by the drop

covered with a surfactant using the Faxén’s laws for a stresslet (same as that of a rigid

sphere)

S
(2)
2 =

20

3
πµeb

3E21|x=x2
+O

[
(b/a)5

]
= S

(2)
2 (Fe

2d+ dFe
2) . (35)
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Here, we only include the Stokeslet component of v21 in evaluating the rate of strain field

E21. The flow field reflected from drop 2 is given by the flow field due to a stresslet

v212 =
(

S
(2)
2 · ∇

)

·
G (x− x2)

8πµe

, (36)

where this solution is accurate to (b/R)4. At the third reflection, drop 1 is also force free.

Hence, we determine its velocity by applying the Faxén’s law for the force given by Eq. (37)

which simplifies to Eq. (38)

U
(3)
1 =

(

1 +
a2

6
∇2

)

v212|x=x1
, (37)

6πµebU
(3)
1 =

15

16

(
b

R

)4

Fe
2

(

−
x7

3
+

∞∑

n=1

(2n+ 3)
1 + β1n

2 +
(
3β1 + λ1 +

1
3

)
n

3 + β1n2 + (3β1 + λ1 + 1)n
x2n+5

)

. (38)

Using the images of a Stokes dipole from a drop covered with a surfactant which was de-

scribed in Section III, we find the flow field reflected from drop 1, v2121. Applying the

Faxén’s law for the force to drop 2, U
(4)
2 = v2121|x=x2

, we find

6πµebU
(4)
2 = −

45

64

(
b

R

)4

Fe
2

(

x5

3
−

∞∑

n=1

(2n+ 3)
1 + β1n

2 +
(
3β1 + λ1 +

1
3

)
n

3 + β1n2 + (3β1 + λ1 + 1)n
x2n+3

)2

. (39)

Equations for the droplet velocities at various reflections, Eqs. (28), (31), (34), (38), and

(39) can be used to find the mobility functions accurate to O
[
(b/a)5

]
as given below

6πbya12 =δ

(
3

4
x+

1

4
x3

)

+ δ3
(
1

4
x3

)

+ δ4

[

15

16

(

−
x11

3
+

∞∑

n=1

(2n+ 3)
1 + β1n

2 +
(
3β1 + λ1 +

1
3

)
n

3 + β1n2 + (3β1 + λ1 + 1)n
x2n+9

)]

+O
(
δ6
)
,

(40)

6πbya22 =1 + δ

(

x6

16
−

9

8

∞∑

n=1

1 + β1n
2 +

(
3β1 + λ1 −

1
3

)
n

3 + β1n2 + (3β1 + λ1 + 1)n
x2n+4

)

+ δ3
(
1

8

x8 (x4 − 9)

(x− 1)3(x+ 1)3

)

− δ4




45

64

(

x7

3
−

∞∑

n=1

(2n + 3)
1 + β1n

2 +
(
3β1 + λ1 +

1
3

)
n

3 + β1n2 + (3β1 + λ1 + 1)n
x2n+5

)2




+ δ5
[
1

16

x8 (x8 − 5x6 + 11x4 + 5x2 + 20)

(x− 1)5(x+ 1)5

]

+O
(
δ6
)
.

(41)
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2. Mobility functions y
a
21 and y

a
11

For deriving the mobility functions ya21 and ya11, we apply an external force Fe
1 on drop

1 and carry out the procedure outlined in the previous subsection. Doing so, we notice

that ya21 = ya12 which means the mobility matrix is symmetric for drops covered with an

incompressible surfactant. Also, to an order of approximation of O (δ5), only U
(0)
1 and U

(2)
1

contribute to ya11. Here, U
(2)
1 can be easily derived by swapping (1, 2) and (a, b) in the

equation for U
(2)
2 , Eq. (34) and truncating the resulting expression to (b/R)5. Hence, the

mobility function ya11 is given by

6πaya11 = 1− δ3
(
5

4
x8

)

+ δ5
[
3

8

(
1

6
−

2 + 12β2 + 3λ2

4 + 4β2 + λ2

)

x6 +
9

8
x8 −

105

16
x10

]

+O
(
δ6
)
. (42)

All of these mobility functions approach the corresponding mobility functions for rigid

spheres when either (β1, β2) → ∞ or (λ1, λ2) → ∞.

10-3 10-2 10-1 1 10 102 103
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

FIG. 3: Variation of (6πbya22 − 1) /(6πbya22 − 1)|R with the viscosity ratio (λ1) and the

interfacial viscosity (β1) of the large drop. Here ⋆ (∗) denotes the situation of a small rigid

sphere outside a large clean drop without any interfacial viscosity (rigid sphere). The other

symbols denote the situation of two surfactant-laden-drops of disparate sizes. Also,

x = a/R = 0.8, δ = b/a = 0.1 and Λ2 = λ2/ (1 + λ2)

From Eqs. (40), (41, and (42), we see that the mobility functions, ya12 (= ya21) and ya11

of two surfactant-laden-drops are identical to the corresponding mobility functions of two

rigid spheres, upto an approximation of δ3. However, the mobility function, ya22 of two
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surfactant-laden-drops is different from that of two rigid spheres. Also, we note that ya22

does not depend on the viscosity ratio (λ2) and the interfacial viscosity (β2) of the small

drop. So, as long as the interface of the small drop is incompressible, ya22 does not depend

on the identity of the small drop. To study the dependence of ya22 on the viscosity ratio

(λ1) and the interfacial viscosity (β1) of the large drop, we plot in Fig.3, the correction in

ya22 due to the presence of a large surfactant-laden-drop (6πbya22 − 1), normalized with the

correction due to the presence of a large rigid sphere (6πbya22 − 1)|R for various values of λ1

and β1. As ya22 denotes the velocity of a small drop, we see from Fig.3 that the velocity of

a small drop near a large drop (with or without surfactants) is always less than that near

a rigid sphere. Also, the velocity of small drop near a large clean drop is minimum and its

velocity near a large surfactant-laden-drop increases with the interfacial viscosity. A similar

trend is observed for the variation of the mobility of a particle near a plane interface covered

with an incompressible surfactant[16].

B. Drops of similar sizes

In this section, we comment on the mobility functions of two drops covered with an

incompressible surfactant, if the drops sizes are of the same order of magnitude. Noting

that (i) the flow field due to an isolated translating drop covered with an incompressible

surfactant (axisymmetric problem) is the same as that of an isolated translating rigid sphere

and (ii) the Faxén laws for a drop covered with an incompressible surfactant are the same as

those of a torque-free rigid sphere, we conclude that the far-field mobility functions of two

similar sized drops covered with an incompressible surfactant are the same as those of two

similar sized torque-free rigid spheres. Since the mobility functions for two torque-free rigid

spheres were already derived in [2] (see chapter 8), we do not pursue this calculation further.

As the flow field close to a translating surfactant-laden-drop, in an arbitrary ambient flow,

is different from that near a translating torque-free rigid sphere, we expect the near-field

mobility functions of two similar sized surfactant-laden-drops to be completely different from

those of two similar sized torque-free rigid spheres.

Blawzdziewicz et al. [17] derived the mobility functions of two equal sized bubbles cov-

ered with an incompressible, insoluble and diffusing surfactant without accounting for the

interfacial viscosity. For zero surfactant diffusivity, they report that their far-field mobil-
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ity functions are the same as those of two torque-free rigid spheres. Our analysis, on the

far-field mobility functions, not only agrees with that of Blawzdziewicz et al. [17] for zero

viscosity ratio, interfacial viscosity and surfactant diffusivity but also generalizes the result

− the far-field mobility functions of two similar sized surfactant-laden-drops is the same as

those of two similar sized torque-free rigid spheres − to arbitrary values of viscosity ratio

and interfacial viscosity.

V. SWIMMING MICROORGANISM OUTSIDE A STATIONARY DROP COV-

ERED WITH AN INCOMPRESSIBLE SURFACTANT

f

2x
θ

1x

R

e

d

a

2b

µi

µe

FIG. 4: Schematic: Spheroidal swimmer of aspect ratio γ = b/c outside a stationary

spherical drop of radius a. The drop has a viscosity of µi while the viscosity of the

surrounding fluid is µe. The swimmer is oriented along f. The distance between the center

of the drop and the swimmer is denoted by R. The position vectors of the center of the

drop and the swimmer are denoted by x1 and x2, respectively. The origin of the coordinate

system is located at the center of the drop.

As a second application of image flow fields, we derive the velocity of a spheroidal microor-

ganism swimming outside the drop covered with an incompressible surfactant (see Fig. 4).

We also provide the expression for the velocity of the same microorganism swimming outside

a drop with a clean interface, without any interfacial viscosity using the image flow fields
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provided in [31, 32]. Flow field far away from the microorganism in an unbounded medium

is represented by a parallel Stokes dipole (force and force gradient are parallel/anti-parallel

to each other). Therefore, when R− a ≫ b, the leading order velocity of the swimmer near

the drop is obtained by applying Faxén’s laws to the image of a Stokes dipole. So, the flow

field outside a drop is written as sum of a Stokes dipole and its image

v = −P (f · ∇) f ·
G (x− x2)

8πµe

+ v∗, (43)

where P is the dipole strength of the swimmer [7], f is the orientation of the swimmer

and v∗ is the image flow field. Here P > 0 means the swimmer is a pusher while P < 0

means the swimmer is a puller. We use the images of a Stokes dipole given in Section

III to derive the image flow field v∗. The translational velocity of the swimmer given by

U = v∗|
x=x2

+O
[
(b/R)2

]
can be simplified to

U = sin2 (θ)U1 − sin (θ) cos (θ)U2 + cos2 (θ)U3, (44)

where U1, U2 and U3 for a drop covered with an incompressible surfactant are given by

U1 = −
P

8πµeR2

3x

(−1 + x)2(x+ 1)2
d, (45a)

U2 = −
P

8πµeR2

∞∑

n=0

3 (2n+ 3)
[
1 + βn2 +

(
3β + λ+ 1

3

)
n
]
x2n+3

6 + 2βn2 + (6β + 2λ+ 2)n
e, (45b)

U3 =
3P

16πµeR2

x

(−1 + x)2(x+ 1)2
d. (45c)

The expressions for U1, U2 and U3 for a drop with a clean interface, without any interfacial

viscosity are given by

U1 = −
P

8πµeR2

(Λ + 2) x

(−1 + x)2(x+ 1)2
d, (46a)

U2 = −
P

8πµeR2

∞∑

n=0

3Λ (n− Λ + 1) (2n+ 3)

2n+ 6− 6Λ
x2n+3e, (46b)

U3 =
P

16πµeR2

(Λ + 2) x

(−1 + x)2(1 + x)2
d, (46c)

where Λ = λ/ (1 + λ). Also, the angular velocity of the swimmer is given by

ω =
1

2
∇× v∗

∣
∣
∣
∣
x=x2

+ Γ f × E∗|
x=x2

· f +O
[
(b/R)3

]
, (47)
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where Γ = (1− γ2) / (1 + γ2), γ is the aspect ratio of the swimmer which is 1 for a spherical

swimmer and tends to infinity for a rod shaped swimmer and E∗ = 1
2

[

∇v∗ + (∇v∗)T
]

is

the rate of strain tensor of the image flow field. This expression for the angular velocity,

ω = ω (e× d) can be simplified to

ω = ω(1) + Γω(2), (48)

where ω(1), ω(2) for a drop covered with an incompressible surfactant are given by

ω(1) =
3P sin (2θ)

32πµeR3

∞∑

n=0

n (n+ 2)
[
βn2 +

(
β + λ+ 5

3

)
n− 2β − λ+ 7

3

]

βn2 + (β + λ+ 1)n− 2β − λ + 2
x2n+1, (49a)

ω(2) = −
P sin (2θ)

16πµeR3

(
ω̃cos2 (θ) + ω̂

)
, (49b)

where

ω̃ =
9

8

(6β + 3λ− 2)

(2β + λ− 2)
x

+
3

4

∞∑

n=0

n3β +
(
5
2
β + λ+ 3

)
n2 +

(
−1

2
β + 1

2
λ+ 17

2

)
n− 3β − 3

2
λ+ 5

βn2 + (β + λ+ 1)n− 2β − λ+ 2
(n+ 3)x2n+1,

ω̂ =−
1

2

(6β + 3λ− 2)

(2β + λ− 2)
x

−
3

2

∞∑

n=0

n3β +
(
2β + λ+ 5

3

)
n2 +

(
−β + 14

3

)
n− 2β − λ+ 8

3

βn2 + (β + λ+ 1)n− 2β − λ+ 2
(n+ 2) x2n+1.

The expressions for ω(1) and ω(2) for a drop with a clean interface, without any interfacial

viscosity are given by

ω(1) =
3

4

P sin (2θ)

8πµeR3

∞∑

n=0

n (n + 2) (−2Λ2 + n+ 1)

n + 2− 3Λ
x2n+1, (50a)

ω(2) = −
P sin (2θ)

16πµeR3

(
ω̃cos2 (θ) + ω̂

)
, (50b)

where

ω̃ =
27

8

Λ2x

(−2 + 3Λ)

−
3

4

∞∑

n=0

(Λ− 2)n2 +
(
3Λ2 + 5

2
Λ− 6

)
n+ 3

2
Λ2 + 4Λ− 4

(n + 2− 3Λ)
(n + 3)x2n+1,

ω̂ =−
3

2

Λ2x

(−2 + 3Λ)
−

3

2

∞∑

n=0

n2 + (−2Λ2 − Λ + 3)n− Λ2 − 2Λ + 2

(n+ 2− 3Λ)
(n+ 2) x2n+1.
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FIG. 5: Variation of (a) the dimensionless velocity of the swimmer that is normal to the

line of centers and (b) dimensionless angular velocity of the spherical swimmer with the

viscosity ratio (λ) and dimensionless interfacial viscosity (β). Here ⋆ (∗) denotes the

situation of the swimmer lying outside a clean drop without any interfacial viscosity (rigid

sphere). The other symbols denote the situation of swimmer moving outside the

surfactant-laden-drop.

In the limit λ → ∞ (Λ → 1) or β → ∞, these expressions for the swimmer velocity outside

a drop reduce to those outside a rigid sphere [38]. From Eqs. (44), (45a), and (45c), we

see that the component of the swimmer’s velocity along the line of centers (U · d), outside

a surfactant-laden-drop, is the same as the corresponding velocity outside a rigid sphere.

The viscosity ratio of the drop and its interfacial viscosity only affect the component of the

velocity that is normal to the line of centers (U2). To understand this, we plot in Fig.5a, the

dimensionless counter part of U2 for various values of λ and β. This figure shows that, in the

limit λ or β → ∞, the velocity of the swimmer outside a drop approach its velocity outside a

rigid sphere. From Eq. (46b) and also from Fig.5a, we see that a swimmer outside a bubble

(λ = 0 or Λ = 0) cannot move normal ot the line of centers. So, irrespective of its orientation

and the angular velocity, a puller (pusher) outside a bubble always moves towards (away

from) the bubble along the line of centers. We can also see from Fig.5a that the presence

of an interface reduces the velocity normal to the line of centers when compared to this

velocity outside a rigid sphere. The velocity of the swimmer (normal to the line of centers)
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outside a clean drop is minimum while that outside a surfactant-laden-drop increases with

the interfacial viscosity. Similar to Fig.5a, we plot in Fig.5b, the variation of the angular

velocity of the swimmer with the viscosity ratio and the interfacial viscosity. From Fig.5b,

we see that the angular velocity of the swimmer outside a surfactant-laden-drop decreases

with the interfacial viscosity and it is always larger than that outside a rigid sphere. Also,

the angular velocity of the swimmer outside a clean drop can be larger or smaller than that

outside a rigid sphere, depending on the viscosity ratio of the drop.

VI. CONCLUSIONS

Using the multipole representation of the Lamb’s general solution, we derived the image

systems for point force singularities located outside a stationary drop covered with an in-

soluble, non-diffusing and incompressible surfactant. Our derivation includes the role of the

interfacial viscosity of the drop by assuming the interface to be Newtonian and using the

Boussenisq-Scriven constitutive law for the interfacial stress tensor. We demonstrate the sig-

nificance of these image systems by providing two examples. In the first example, we derive

the mobility functions of two surfactant-laden drops of disparate sizes, using the method of

reflections. We unveil the role of the viscosity ratio and the interfacial viscosity of the large

surfactant-laden-drop on the mobility of the small surfactant-laden-drop. In the second ex-

ample, we derive the velocity of the swimming microorganism (modeled as a Stokes dipole)

outside (i) a surfactant-laden-drop and (ii) a clean drop without any interfacial viscosity.

Here, we summarize the range of separations between the drops or drop and singularity

where the solutions presented in the manuscript are accurate. The image system of a point

force or higher order singularity outside a drop is accurate for all separations between the

drop and the singularity except for the singularity touching the drop. The mobility functions

of two drops of disparate sizes, derived in Section IV A, is accurate for all the separations

between the drops whereas the mobility functions of two drops of similar sizes, discussed

in Section IV B, is accurate only for the large separations between the drops. Hence, one

can use twin multipole expansions along with the addition theorem to derive the mobility

functions of two similar sized drops for arbitrary separations between them. Since the flow

field far away from a microorganism (swimmer) can be represented by the flow due to a

force dipole placed at the center of the swimmer, the velocity of such a swimmer outside a
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drop, derived in Section V where the swimmer is replaced by a force dipole, is accurate for

large separations between the swimmer and the drop.

We emphasize that our derivations can be used to study the trapping characteristics

[38] of bacteria near oil drops and air bubbles, in applications like bioremediation and food

cleansing, respectively. One can proceed to determine the following quantities (a) critical

trapping radius of the drop/bubble: minimum drop radius beyond which a bacteria near

a drop/bubble gets trapped, (b) basin of attraction: space around the drop/bubble, with

radius larger than the critical trapping radius, within which if a bacteria is present, gets

trapped and (c) probability density function of mean trapping time: time during which

a bacterium orbits around the surface of the drop/bubble before escaping. This analy-

sis can then be used to understand the hydrodynamics induced trapping of bacteria near

drops/bubbles and also the (possible) usefulness of surfactant in this trapping process.

Appendix A: Incompressible surfactant film

In this section, we derive the incompressible surfactant film condition, Eq. (5), which

holds in one of the two limits − (a) large values of the Marangoni number (Ma, the ratio

of tangential stresses generated at the surface by surface tension gradients to tangential

stresses applied to the surface by bulk viscous forces) [16, 17, 39] or (b) large values of the

interfacial dilatational viscosity [14, 40]. Our derivation is focused on large Ma limit and it

is similar to the derivation presented in [16, 17]. In addition to the incompressibility of the

surfactant, we assume it to be insoluble, both inside and outside the drops and non-diffusing

(the interfacial diffusivity of the surfactant is zero or the surface Péclet number is infinity).

Since the interfacial tension is a function of the surfactant concentration, we can expand the

former as follows

δσ = (σ − σ0) =

(
dσ

dΓ

)

Γ=Γ0

(Γ− Γ0) =

(
dσ

dΓ

)

Γ=Γ0

δΓ, (A1)

where Γ0 and σ0 = σ (Γ0) are the reference surfactant concentration and the interfacial

tension, respectively. The above equation can be rewritten as

δΓ

Γ0
= −Ma−1 δσ

τa
, (A2)
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where the Marangoni number (Ma) is the ratio of the surfactant elasticity (E) and the

capillary number (Ca)

Ma =
E

Ca
; E = −

Γ0

σ0

(
dσ

dΓ

)

Γ=Γ0

; Ca =
τa

σ0
. (A3)

Here, τ denotes the characteristic bulk viscous stresses while a is the characteristic length

scale of the problem. From the tangential stress boundary condition, Eq. (6), we deduce

that
δσ

τa
∼ O (1) . (A4)

From this equation and Eq. (A2), we conclude that

δΓ

Γ0

∼ O
(
Ma−1

)
. (A5)

In the limit of very large Ma, finite changes in the interfacial tension are caused by the in-

finitesimal changes in the surfactant concentration, and this is how the Marangoni stresses

develop at the interface [16, 17]. Hence, it is reasonable to assume that the surfactant is

uniformly distributed over the interface, i.e., Γ = Γ0. Using this condition, the transport

equation for an insoluble, non-diffusing and incompressible surfactant over the surface of a

stationary and non-deforming drop reduces to Eq. (5). Since the typical value of the surfac-

tant elasticity is E ∼ O (1), from Eq. (A3), we conclude that the small values of Capillary

number (Ca ≪ 1) correspond to the large values of Marangoni number (Ma ≫ 1) or the in-

compressible surfactant limit. This limit for the small molecular weight surfactants results

from their large Marangoni numbers since the dilatational viscosity of these surfactants is

not large. But, this limit for the large molecular weight surfactants is due to their large

dilatational viscosity.

Appendix B: Faxén’s Laws for a drop covered with an incompressible surfactant

In this section, we derive the Faxén’s laws for a drop covered with an incompressible

surfactant. For this purpose, one can use the Lorentz reciprocal theorem for Stokes flows

with a suitable choice of the auxiliary problem [15, 41–44]. However, in this work, we use the

Lamb’s general solution to derive Faxén’s laws for a spherical surfactant-laden-drop. This

approach is used earlier to derive the Faxén’s laws for drops with a clean interface [45] and

for drops covered with a surfactant, without any interfacial viscosity [46]. Accordingly, we
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consider a drop covered with an incompressible surfactant, translating with velocity U in

an arbitrary ambient flow field V∞. In a frame of reference fixed at the center of the drop,

the flow fields inside and outside of the drop should satisfy the Stokes equations along with

an incompressibility condition

µe∇
2v(e) = ∇p(e), ∇ · v(e) = 0, (B1)

µi∇
2v(i) = ∇p(i), ∇ · v(i) = 0. (B2)

The flow field far away from the drop should approach the ambient flow field

v(e) = v∞ = V∞ −U, as r → ∞. (B3)

These flow fields should satisfy the boundary conditions at the interface given by [45, 46]

v(e)∗ = v(i)∗, (B4a)

v(e)∗r = v(i)∗r = 0, (B4b)

∇S · v∗
S = 0, (B4c)

T
(i)∗
(r) −T

(e)∗
(r) = [∇Sσ]

∗ + µSw
∗
S + f (σ,v) er, (B4d)

where T
(k)
(r) = er ·T

(k), wS = 2vS

r2
+eθ

1
r sin(θ)

∂̟
∂φ

−eφ
1
r
∂̟
∂θ

and̟ = 1
r sin(θ)

(
∂vθ
∂φ

− ∂
∂θ

(sin (θ) vφ)
)

.

Also, ( )∗ denotes that the variables are evaluated at the interface and f (σ,v) denotes the

terms which contribute to the normal stress balance at the interface. Since, we assume the

drop to be spherical, our solution does not satisfy the normal stress boundary condition,

instead this condition can be used to determine the leading order interface deformation. As

the governing equations and boundary conditions are linear, we initially write the exterior

flow field as v(e) = v∞ +V (similarly p(e) = p+ p∞). Assuming that the ambient flow field

satisfies the Stokes equations, we see that the disturbance flow field also satisfies the Stokes

equations. Using the Lamb’s general solution, we write the disturbance flow field as

V =

∞∑

n=1

[

∇× (rχ−n−1) +∇Φ−n−1 −
(n− 2)

2n (2n− 1)µe

r2∇p−n−1 +
n + 1

n (2n− 1)µe

rp−n−1

]

,

(B5a)

and

p =

∞∑

n=0

pn. (B5b)
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As the flow field interior to the drop also satisfies the Stokes equations, we have

v(i) =

∞∑

n=0

[

∇× (rχn) +∇Φn +
n + 3

2 (n+ 1) (2n+ 3)µi

r2∇pn −
n

(n+ 1) (2n+ 3)µi

rpn

]

,

(B6a)

and

p(i) =

∞∑

n=0

pn. (B6b)

Similarly, we can write the ambient flow field as

v∞ =

n=∞∑

n=−∞

[

∇× (rχ∞
n ) +∇Φ∞

n +
n+ 3

2 (n+ 1) (2n+ 3)µe

r2∇p∞n −
n

(n+ 1) (2n+ 3)µe

rp∞n

]

,

(B7a)

and

p∞ =
n=∞∑

n=−∞

p∞n , (B7b)

where (χ−n−1,Φ−n−1, p−n−1) and (χn,Φn, pn, χ
∞
n ,Φ∞

n , p∞n ) are the solid spherical harmonics

of degree −n − 1 and n, respectively. We hereby rewrite the boundary conditions at the

interface, Eq. (B4) as

v(i)∗ · er = 0, (B8a)

V∗ · er + v∗
∞ · er = 0, (B8b)

[

r
∂v

(i)
r

∂r

]∗

= 0, (B8c)

−

[

r
∂Vr

∂r

]∗

=

[

r
∂v∞r

∂r

]∗

, (B8d)

[
r · ∇ × v(i)

]∗
− [r · ∇ ×V]∗ = [r · ∇ × v∞]∗, (B8e)

[

r · ∇ ×T
(i)
(r)

]∗

−
[
r · ∇ × π(r)

]∗
= µS[r · ∇ ×wS]

∗ +
[
r · ∇ × π∞(r)

]∗
, (B8f)

[

r · ∇ ×
(

r×T
(i)
(r)

)]∗

−
[
r · ∇ ×

(
r× π(r)

)]∗

= [r · ∇ × (r×∇Sσ)]
∗ + µS[r · ∇ × (r×wS)]

∗ +
[
r · ∇ ×

(
r× π∞(r)

)]∗
.

(B8g)

Substituting Eqs. (B5)-(B7) into Eqs. (B8), we obtain a set of seven equations. From

Eq. (B8a), we obtain
∞∑

n=1

{
na

2 (2n+ 3)µi

p∗n +
n

a
Φ∗

n

}

= 0. (B9a)

26



From Eq. (B8b), we obtain

∞∑

n=1

{
(n+ 1) a

2 (2n− 1)µe

p∗−n−1 −
(n + 1)

a
Φ∗

−n−1

}

= −
∞∑

n=∞

{
na

2 (2n+ 3)µe

p∞∗
n +

n

a
Φ∞∗

n

}

. (B9b)

From Eq. (B8c), we obtain

∞∑

n=1

[
n (n + 1) a

2 (2n+ 3)µi

p∗n +
n (n− 1)

a
Φ∗

n

]

= 0. (B9c)

From Eq. (B8d), we obtain

∞∑

n=1

[
n (n+ 1) a

2 (2n− 1)µe

p∗−n−1 −
(n + 1) (n+ 2)

a
Φ∗

−n−1

]

=
∞∑

n=−∞

[
n (n + 1) a

2 (2n+ 3)µe

p∞∗
n +

n (n− 1)

a
Φ∞∗

n

]

.

(B9d)

From Eq. (B8e), we obtain

∞∑

n=1

{
n (n+ 1)

[
χ∗
n − χ∗

−n−1

]}
=

n=∞∑

n=−∞

n (n+ 1)χ∞∗
n . (B9e)

From Eq. (B8f), we obtain

∞∑

n=1

{
n (n+ 1)

[
λ (n− 1)χ∗

n + (n+ 2)χ∗
−n−1

]}
+

∞∑

n=1

βn (n + 2) (n2 − 1)χ∗
n

=
∞∑

n=−∞

(n− 1)n (n + 1)χ∞∗
n .

(B9f)

From Eq. (B8g), we obtain

∞∑

n=1

{

2n (n + 1) (n+ 2)

a
Φ∗

−n−1 −
(n+ 1)2 (n− 1) a

(2n− 1)µe

p∗−n−1

}

+
∞∑

n=1

{
2λ

a
(n− 1)n (n+ 1)Φ∗

n +
n2 (n + 2) aλ

(2n + 3)µi

p∗n

}

+
∞∑

n=1

{

−β
(n+ 3)na

(2n+ 3)µi

p∗n −
2n (n + 1) β

a
Φ∗

n

}

+
[r · ∇ × (r×∇Sσ)]

∗

µe

=
n=∞∑

n=−∞

{
2

a
(n− 1)n (n+ 1)Φ∞∗

n +
n2 (n + 2) a

(2n+ 3)µe

p∞∗
n

}

.

(B9g)

The solid spherical harmonics are defined as [45, 46]

pn = Anµia
−n−1rnSn (θ, φ) , (B10a)

p−n−1 = A−n−1µea
nr−n−1Sn (θ, φ) , (B10b)
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Φn = Bna
−n+1rnSn (θ, φ) , (B10c)

Φ−n−1 = B−n−1a
n+2r−n−1Sn (θ, φ) , (B10d)

χn = Cna
−nrnSn (θ, φ) , (B10e)

χ−n−1 = C−n−1a
n+1r−n−1Sn (θ, φ) , (B10f)

p∞n =
2 (2n+ 3)

n
αnµea

−n−1rnSn (θ, φ) , (B10g)

Φ∞
n =

1

n
βna

−n+1rnSn (θ, φ) , (B10h)

χ∞
n =

1

n (n+ 1)
γna

−nrnSn (θ, φ) . (B10i)

Furthermore, we expand the interfacial tension in terms of surface spherical harmonics as

σ =

∞∑

n=0

σnSn (θ, φ). (B11)

Note that, we used a shorthand notation for terms of the form AnSn (θ, φ) to represent a

sum of 2n+ 1 terms as given below

AnSn (θ, φ) =
n∑

m=0

(

Am
n cos (mφ) + Âm

n sin (mφ)
)

Pm
n (cos (θ)), (B12)

where Pm
n (cos (θ)) is the associated Legendre polynomial of order m and degree n. We

substitute Eqs. (B10) and (B11) into Eq. (B9) and solve for the unknown constants Am
n ,

Bm
n , Cm

n , Am
−n−1, B

m
−n−1, C

m
−n−1 and σm

n (and the corresponding variables with carat over

them) in terms of the constants αm
n , β

m
n and γm

n . The result of this procedure is the following

equations

Am
n = 0, (B13a)

Bm
n = 0, (B13b)

Cm
n =

2nγm
n + γm

n

n (n+ 1) [βn2 + (β + λ+ 1)n− 2β − λ+ 2]
, (B13c)

Am
−n−1 = −

2 (2n− 1)
[
n (αm

n + βm
n ) + 1

2
βm
n + 3

2
αm
n + αm

−n−1

]

n+ 1
, (B13d)

Bm
−n−1 =

(−2βm
n − 2αm

n )n + βm
n − αm

n + 2βm
−n−1

2n+ 2
, (B13e)

Cm
−n−1 =







−β
(
γm
−n−1 + γm

n

)
n2 +

[(
−γm

−n−1 − γm
n

)
β + (−λ− 1) γm

−n−1 − γm
n (λ− 1)

]
n

+
(
2γm

n + 2γm
−n−1

)
β + (λ− 2) γm

−n−1 + (λ− 1) γm
n







n (n+ 1) [βn2 + (β + λ+ 1)n− 2β − λ+ 2]
,

(B13f)
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σm
n = −

2 (2n+ 1)
[
(αm

n + βm
n )n− 1

2
βm
n + 3

2
αm
n

]
µe

n (n + 1)
. (B13g)

From Eq. (B13), we can make few deductions. Noting that γm
−2 = 0, we find that Cm

−2 =

−1
2
γm
−2 = 0. As the torque experienced by the drop is given by T = −8πµe∇ (r3χ−2) = 0,

we find that the drop covered with an incompressible surfactant does not experience any

hydrodynamic torque. Furthermore, we note the following equation holds

Am
−n−1

∣
∣
drop covered with an
incompressible surfactant

= Am
−n−1

∣
∣
rigid sphere

(B14)

Using the equations for force and stresslet experienced by a drop, F = −4π∇ (r3p−2),

S = −2π
3
∇∇ (r5p−3) and Eq. (B10b), we conclude that the force and stresslet experienced

by a translating drop covered with an incompressible surfactant are the same as those

experienced by a translating rigid sphere. In summary, we hereby provide the Faxén’s laws

for a drop of radius a covered with an insoluble, non-diffusing and incompressible surfactant

as

F = 6πµea

(

1 +
a2∇2

6

)

V∞|O − 6πµeaU, (B15a)

T = 0, (B15b)

S =
20

3
πµea

3

(

1 +
a2∇2

10

)

E∞|O, (B15c)

where the subscript O denotes that the quantities are evaluated at the center of the drop

and E∞ denotes the rate of strain field of the ambient flow field.

For zero surface viscosity, we would like to compare this flow field due to an isolated

translating drop covered with an incompressible, insoluble, and non-diffusing surfactant in

an arbitrary ambient flow field with that reported in the literature [17]. For this purpose,

we note that

{
Am

n , B
m
n , Am

−n−1, B
m
−n−1

}∣
∣
drop covered with an
incompressible surfactant

=
{
Am

n , B
m
n , Am

−n−1, B
m
−n−1

}∣
∣
rigid sphere

,

{
Cm

n , Cm
−n−1

}∣
∣
drop covered with an incompressible
surfactant and β=0

=
{
Cm

n , Cm
−n−1

}∣
∣
clean drop

.

(B16)

Also, note that the flow field using Lamb’s general solution, Eqs. (B5a), (B6a), and (B7a)

can be written as a sum of the surface solenoidal and the surface irrotational flow fields on

the family of concentric spherical surfaces

v = vSol + vIrr, (B17)
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where

vSol =
∞∑

n=−∞

∇× (rχn),

vIrr =
∞∑

n=−∞

[

∇Φn +
n+ 3

2 (n + 1) (2n+ 3)µ
r2∇pn −

n

(n+ 1) (2n+ 3)µ
r pn

]

.

Here vSol and vIrr satisfy the conditions

ir ·
(
∇S × vIrr

)
= 0,

∇S · vSol = 0; ir · v
Sol = 0.

(B18)

In lieu of Eqs. (B10), (B16), and (B17), we conclude that the surface solenoidal flow field

due to a surfactant-laden-drop with zero surface viscosity is the same as that due to a clean

drop. Similarly, the surface irrotational flow field due to a surfactant-laden-drop is the

same as that due to a rigid sphere. These results agree with the general solution due to a

drop covered with incompressible, insoluble and non-diffusing surfactant with zero surface

viscosity, as derived by Blawzdziewicz et al [17].

One can understand the peculiar behavior of the translating surfactant-laden-drops, in an

arbitrary ambient flow, experiencing the same force and stresslet as that of rigid spheres in

a similar configuration as follows. As shown earlier, any flow past a particle, irrespective of

the boundary conditions on the particle (i.e., the particle can be a rigid particle, a drop or a

surfactant-laden-drop), can be decomposed into a surface solenoidal flow field and a surface

irrotational flow field on the family of concentric spherical surfaces. The surface irrotational

flow field is torque-free and it exerts a force and a stresslet on the particle whereas the

surface solenoidal flow field is force-free and stresslet-free and it exerts a torque on the

particle. For a drop (both clean and surfactant laden), the surface solenoidal flow field is

torque-free too. For a drop covered with an incompressible surfactant with zero surfactant

diffusivity, the surface irrotational flow field due to a surfactant-laden-drop is the same as

that due to a rigid sphere. Due to this reason, the force and the stresslet experienced by

a surfactant-laden-drop are independent of the viscosity ratio and the interfacial viscosity;

also this force and stresslet are the same as those experienced by a rigid sphere.
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