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Abstract

We compare the stability of a static pendent drop under two types of con-

trol, volume control and pressure control. The drops are taken to be pinned

to curves of arbitrary shape. The two types of control introduce integrals into

the eigenvalue problems that determine the points of instability. We show

that these integrals are solely responsible for the possible occurrence of bi-

furcation points, depending only on the Bond number. We then show that the

points of instability for either type of control can be related to one another

and predicted precisely from the eigenvalues of, yet, a third problem, one

that is devoid of any integrals. If the curves of attachment are symmetric we

can derive a result that predicts the instability point and associated pattern,

all without solving any eigenvalue problem.

Introduction

A pendent drop is an equilibrium configuration that reaches a point of instability

as its volume or its pressure is increased. [10, 11, 14, 15] A pendent drop’s point

of instability depends on the opposition of gravity and curvature. We are going to

deal with the stability of static drops pinned at their edges. We do not ask what

happens beyond the point of instability, but we can guess the patterns at breakup,

a pattern that can be observed.
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The equilibrium shape or base shape of a drop depends on its volume or its

pressure, given the density difference, the surface tension and the diameter of its

closed curve of attachment. The shape then determines the point of instability and

hence variational methods seeking the least potential energy have been used to

first determine the shape and then to learn if the shape is stable, i.e., to learn that

drops pinned to circles break in a symmetrical pattern at their greatest volume.

Now it has been thought since Maxwell’s time that drops at small volumes

ought to break in unsymmetrical patterns. Because drops start their lives as plane

surfaces pinned at their edges, supporting a heavy fluid lying above a light fluid,

where gravity is destabilizing and surface tension is stabilizing, their stability is

determined by solving the Rayleigh-Taylor problem and this problem has been

solved by Maxwell (1927, [8]), for plane surfaces pinned to circles or to rectan-

gles. And, in the case of circles, Maxwell finds that the shape of the surface at the

point of instability is not symmetric about the axis. Hence this is the expectation

for drops of small volume even though a symmetric pattern is expected at large

volumes.

The volume or the pressure at the point of instability depends on the Bond

number, a dimensionless group made up of the density difference, the surface

tension and the diameter of the cross section and there is a Bond number at which

a planar surface becomes unstable. A drop experiment is run by setting the Bond

number less than its critical value for a plane surface and increasing the volume

or the pressure until a point of instability is reached.

The shape of symmetric drops pinned at their edges and their stability have

been determined the calculations being carried out by variational methods cf. [7,

12, 13]. At each volume, the shape corresponds to the least potential energy and

stability is predicted if the potential energy increases on imposing a symmetric

perturbation. Upon increasing the volume the drop reaches a volume where the

potential energy no longer increases on introducing a symmetric perturbation. A

critical point has been reached. The volume can no longer be increased and the

drop has reached its greatest possible volume.

It may be that upon imposing an unsymmetrical perturbation, an instability

will be found at a volume less than the greatest volume. If this is the case, the

critical point at the lower volume will be a bifurcation point, due to the fact that

a drop shape can be computed even if the volume is increased through this point.

Bifurcation points have found for drops pinned to circles and it is known that at

bifurcation points contact at the edge is horizontal, cf., (Michael and Williams

1976 [9])

At each point along the path of increasing volume or pressure, at a given Bond
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number, we can discover whether the drop is stable to small perturbations by first

finding its shape and then solving an eigenvalue problem based on the shape. A

critical point is reached when one of the eigenvalues becomes equal to the Bond

number. The pattern seen at breakup then depends on which eigenvalue reaches

the Bond number first.

Now integrals appear in these eigenvalue problems due to constraints on the

allowed perturbations. These integrals account for the difference between volume

controlled and pressure controlled experiments and for differences seen in either

experiment which depend on the Bond number.

There is a limiting, but not uncommon, pressure controlled experiment, an

experiment of physical interest, in which no integrals appear in the corresponding

eigenvalue problem. We refer to this as a diffusion eigenvalue problem and find

that the eigenvalues for all other drop stability problems can be derived from the

diffusion eigenvalues and hence can be connected to one another.

The shape of the cross section is a variable of interest and we start with a more

or less arbitrary shape. Then we move on to more symmetric shapes. Upon in-

creasing symmetry we come to cross sections where certain diffusion eigenvalues

become critical points of other drop problems, leading, if there is enough symme-

try, to predictions of bifurcation points from the base shape itself.

Thus, say, for a drop pinned to a circle, as the volume increases, from the drop

shapes and a plot of the drop volume vs the pressure, and nothing more, we can

find the maximum volume i.e., the turning point and we can say whether of not

there is a bifurcation point appearing before the turning point. And if there is, at

what volume it appears.

Our view is that the problem of finding critical points is hydrostatic. There is

no dynamics. This is explained in Appendices 1 and 2 where we prove that if the

real part of the growth constant vanishes so too the imaginary part, assuming the

viscosity is not zero. Hence if we were running an experiment, we would creep

up slowly on the critical point by increasing the volume or the pressure.

Our plan is to introduce models for two thought experiments, one for drops

under volume control, called experiment I, and the other for drops under pressure

control, called experiment II. We call these experiments thought experiments be-

cause they are to be used to guide real experiments. After presenting what we find

for drops pinned to arbitrary curves, we write a one-dimensional model, i.e., a

model where the drop shape depends on only one independent variable, where the

drop is pinned to two points and where there is only one curvature. This model

predicts all the qualitative results that are known about drops pinned to circles,

including the fact that there is a discontinuous change in the pattern of the insta-
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bility at critical as the Bond number decreases, an abrupt change not seen in the

case of a drop pinned to an arbitrary closed curve, notwithstanding the fact that

drops pinned to circles have two curvatures. The odd and even eigenfunctions in

the one-dimensional model correspond to m = 0 and m = 1 eigenfunctions in the

case of circular symmetry.

Our assumptions are: (1) the drop is pinned to a closed horizontal curve and (2)

the critical points can be identified by a static perturbation. The second is proved

in Appendices 1 and 2 and is an application of the Rayleigh work principle [2].

The first, pinned edges, is supported by Mason (1970, [6]) who, in an experiment,

obtained a critical bridge length equal to the circumference of the bridge, a pinned-

edge result.

1 Arbitrary Cross Sections

1.1 Volume Control

Figure 1 illustrates a static pendent drop, pinned along a curve C bounding a cross

section A of areaA. We denote the shape of the drop by z = Z (x, y) and we write

our equations for Z in scaled variables, introducing the Bond number, denoted B,

where B =
∆ ρ g

γ
D2, where ∆ ρ = ρ−ρ∗, where D denotes half the diameter of

A and where all lengths are scaled byD, whereD is the greatest distance between

any two points on C. The origin of our coordinate system lies in the plane of A
with z measured upward.

The assumption that we can express the shape z = Z (x, y) (or z = Z (r, θ))
cannot be true if the Bond number is small. Thus if B is near zero we write

z = R (θ, z) for z∗ < z < 0 and z = Z (r, θ) for z < z∗ and glue the two pieces

together at z = z∗. This is explained elsewhere [3].
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z = Z(x, y)

surface having

surface tension γ

adding

volume

subtracting

volume

heavy fluid

of density ρ

light fluid

of density ρ∗

z = h

z = −h∗

z = 0

g

2D

cross section

Figure 1. A Sketch of a Drop Pinned Along a curve, C, Bounding a Cross

Section, A, Under Volume Control, Experiment I.

Our model, derived unscaled in Appendix 5, is

P − BZ = ∇·
∇Z

(1 +∇Z·∇Z)1/2
(1)

Z = 0 along c (2)

and
∫∫

A

Z dxdy = −V (3)

where P denotes the scaled value of P top + ρgh + ρ∗gh∗ − P bottom and P top =

P (z = h), etc.

In our first experiment B and V are input variables where V denotes the vol-

ume of the drop. The outputs are Z (x, y) and P . At V = 0 we have Z = 0
and P = 0. Now B is our primary control variable and, setting a value of B, we
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increase V and we wish to know if the drop is stable to small perturbations at each

V along the way.

Our aim is to write the perturbation problem at zero growth rate and identify

conditions where this problem has solutions other than zero. The static perturba-

tion problem at constant B and V is

P1 − BZ1 = LZ1 = 2H1 (4)

Z1 = 0 on c (5)

and
∫∫

A

Z1 dx dy = 0 (6)

where

L = ∇·







−→−→
I (1 +∇Z·∇Z)−∇Z∇Z

(1 +∇Z·∇Z)3/2
·∇







(7)

and where Z denotes the solution to Eqs. (1), (2) and (3) at the B and V of

interest.

The perturbation problem is homogeneous and we seek steady solutions Z1,

not zero. In Appendix 1 we prove that if the real part of the growth constant

corresponding to a time-dependent perturbation is zero, so too the imaginary part.

In Appendix 2 we prove that a non-zero static perturbation causes the potential

energy of the drop to decrease.

As we advance V we wish to know whether or not there is a limit, i.e., a

greatest value of V . So at an inputB and V , and a drop shape, Z, we wish to know

if we can obtain
.
Z =

dZ

dV
. The problem to be solved, obtained by differentiating

Eqs. (1), (2) and (3), is

.
P − B

.
Z = L

.
Z (8)

.
Z = 0 on c (9)

and
∫∫

A

.
Z dxdy = −1 (10)
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1.2 Pressure Control

In experiment I, V is an input. In experiment II, cf. Fig 2, V is an output, P is

now an input. Our model in experiment II is

P +B∗
1

A

∫∫

A

Z dx dy −BZ = ∇·
∇Z

(1 +∇Z·∇Z)1/2
(11)

Z = 0 along c (12)

and
∫∫

A

Z dx dy = −V (13)

where B∗ =
ρ gD2

γ
> B.

P

z = Z(x, y)

z = 0

z = h

z = h∗ assumed
constant

heavy
fluid 

light fluid 

Patm

Figure 2. A Sketch of a Drop Under Pressure Control, Experiment II.

The inputs are P , B∗ and B, the outputs are Z (x, y) and V . At P = 0 we

have Z = 0 and V = 0. If we need to distinguish variables in experiment I

from those in experiment II we will introduce the labels I and II. In Eq. (11) P

denotes the scaled difference P − P0 and the integral
1

A

∫∫

A

Z dxdy accounts for
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the difference (h− h0), where P0 and h0 correspond to Z = 0. The integral is

important. It accounts for the fact that the total volume of heavy fluid remains

constant.

Again B is our primary control variable and, setting a value of B, we increase

P and we wish to know if the drop is stable to small perturbations at each P along

the way. The perturbation problem at constant B and P is

B∗
1

A

∫∫

A

Z1 dx dy − BZ1 = LZ1 (14)

and

Z1 = 0 on c (15)

where

∫∫

A

Z1 dx dy = −V1 and as we advance P we wish to know if there is a

bound, i.e., a greatest value of P . Therefore, we wish to know if, at an input B

and P , and therefore Z, we can find
.
Z =

dZ

dP
where the problem to be solved for

.
Z is

1 +B∗
1

A

∫∫

A

.
Z dx dy − B

.
Z = L

.
Z (16)

and

.
Z = 0 on c (17)

where

∫∫

A

.
Z dx dy = −

.
V

1.3 Eigenvalue Problems for Volume and Pressure Control

Associated with the perturbation problem at constant B and V , viz., Eqs. (4), (5)

and (6), we have the eigenvalue problem

C − λ2ψ = Lψ (18)

ψ = 0 on c (19)
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and
∫∫

A

ψ dx dy = 0 (20)

We denote its solutions λ2, ψ and C and observe that the perturbation problem at

constant B and V has a solution Z1 6= 0 if and only if one of the λ2’s satisfying

Eqs. (18), (19) and (20) is equal to B.

Likewise we associate an eigenvalue problem with the perturbation problem

at constant B and P , viz., Eqs. (14) and (15). It is

B∗
1

A

∫∫

A

ψ dx dy − λ2 ψ = Lψ (21)

and

ψ = 0 on c (22)

and we denote its solutions λ2, ψ and again we observe that the perturbation prob-

lem at constant B and P has a solution Z1 6= 0 if and only if one of the λ2’s
satisfying Eqs. (21) and (22) equals B.

The integrals appearing in Eq. (20) and Eq. (21) account for the way exper-

iments I and II differ and for the way both experiments differ from the pressure

controlled experiment proposed by Wente (1980). In that experiment the funda-

mental eigenfunction is singly signed and the first neutral point found on increas-

ing the pressure is always a turning point.

1.4 Increasing V in Experiment I

We first set V = 0. Then Z and P are both zero no matter the value of B and the

eigenvalues satisfying Eqs. (18), (19) and (20) are positive and independent of B.

The stable values of B lie in the range (0, λ21) and the critical value of B, at

V = 0, is λ21 (V = 0). Then we set B to a value less than Bcrit (V = 0) and ob-

serve that at V = 0 all the eigenvalues lie to the right of B, i.e., λ21 (B, V = 0) >
B. Holding B fixed we increase V whereupon the eigenvalues decrease and

sooner or later the drop shape becomes unstable at a value of V denoted Vcrit (B),
viz.,

λ21 (B, Vcrit) = B (23)
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Now at any B and V , where we have Z and P , we wish to know if we can

increase V . We can if we can solve Eqs. (8), (9) and (10) for
.
Z. The

.
Z problem

is not homogeneous, being driven by the right-hand side of Eq. (10). The corre-

sponding homogeneous problem has only the solution
.
Z = 0 so long as B and

V are such that λ21 (B, V ) 6= B. Thus as V increases at a given B we can find.
Z until V reaches Vcrit (B). At that point, where λ21 (B, Vcrit) = B, a solvability

condition, viz.,

C

∫∫

A

.
Z dx dy = 0 (24)

must be satisfied and it is not satisfied because C is not zero. Thus the drop has

become unstable at the greatest value of V and the increase of V halts at the point

of instability. The drop breaks at a turning point, not at a bifurcation point, and

the pattern is determined by ψ1.

1.5 Increasing P in Experiment II

We run experiment II just like experiment I. We first set P = 0 whence Z = 0
and V = 0 for all values of B. At first the eigenvalues are just as they were in

experiment I, again independent of B, and the critical value of B, corresponding

to a non-zero solution, Z1, to the perturbation problem, is

B = λ21 (P = 0) = λ21 (V = 0)

Again we set B < Bcrit (P = 0) and increase P . At P = 0 the eigenvalues

lie greater than B but as P increases they move toward B and the drop shape

becomes critical, i.e., Eqs. (14) and (15) have a solution Z1 6= 0, at a value of P
such that

λ21 (B,P ) = B

This defines the critical value of P , viz., Pcrit (B)
Having a drop shape, Z, at a value of P along the path of increasing P , we

wish to know if we can increase P . We can if we can find
.
Z, i.e., if we can solve

Eqs. (16) and (17) for
.
Z where

.
Z is driven by the inhomogeneity in Eq. (16).

The corresponding homogeneous problem has only the solution zero, hence the

inhomogeneous problem can be solved for
.
Z, so long as λ21 (B,P ) > B. This
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obtains until we reach the critical drop shape where λ21 (B,P ) = B. At that point

a solvability condition must be satisfied, viz.,
∫∫

A

ψ1 dxdy = 0

and it is not satisfied because

∫∫

A

ψ1 dxdy can not be zero. Thus the drop becomes

unstable at the greatest value of P and the increase of P halts at the point of

instability.

2 The Diffusion Eigenvalue Problem

To see what we can say about drops suspended from arbitrary cross sections, we

introduce an eigenvalue problem depending only on Z (x, y) no matter how Z is

obtained. It is

−µ2 φ = Lφ (25)

and

φ = 0 on c (26)

This is the eigenvalue problem corresponding to the way Wente (1980) thinks

about running pressure controlled experiments. But the Z that appears in L cor-

responds to our experiments.

If Z is zero, L = ∇2 and Eq. (25) is an ordinary diffusion eigenvalue problem.

Otherwise Eq. (25) is a diffusion eigenvalue problem having a space dependent

diffusivity. The base equations corresponding to our experiments differ and so too

their eigenvalue problems. Each differs from Eq. (25) yet the solutions to each

can be written in terms of the solutions to Eqs. (25) and (26).

Now L is self-adjoint and we have

∫∫

A

φL φ dA = −

∫∫

A

dA∇φ ·

−→−→
I (1 +∇Z·∇Z)−∇Z∇Z

(1 +∇Z·∇Z)3/2
·∇φ

= −

∫∫

A

|∇φ|2 + | ∇φ×∇Z|2

(1 +∇Z·∇Z)3/2
dA (27)
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Hence we denote the solutions to Eqs. (25) and (26)

0 < µ2
1 < µ2

2 < µ2
3 · · ·

and

φ1 > 0, φ2, φ3, · · ·

and we denote the integrals of the φ’s by I’s, viz.,

Ii =

∫∫

A

φi dx dy

where I1 > 0.

Our solutions to Eqs. (25) and (26) depend on the drop shape Z where Z gives

us what might be called the diffusion coefficient, an input to Eq. (25).

On an arbitrary cross section it is likely that none of the Ii’s are zero and,

assuming this is so, none of the C’s in Eq. (18) nor the integrals of the eigenfunc-

tions in Eq. (21) can be zero.

We start with experiment I and we solve the eigenvalue problem at constant

B and V , viz., Eqs. (18), (19) and (20), by expanding ψ in the eigenfunctions φi

where we assume that

∫∫

A

φ2
i dx dy = 1. Thus we have

ψ =
∑

ci φi, ci =

∫∫

A

ψ φi dx dy

and we find

ci =
C Ii

λ2 − µ2
i

whence ψ is given by

ψ = C
∑ Ii

λ2 − µ2
i

φi

Thus because C 6= 0 and

∫∫

A

ψ dx dy = 0, we can obtain the λi’s by solving

∑ I2i
λ2 − µ2

i

= 0 (28)
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From the graph of the LHS of Eq. (28) vs λ2, shown in Fig. 3, we derive the

ordering

0 < µ2
1 < λ21 < µ2

2 < λ22 < · · ·

which holds for all B and V .

λ
2

µ1
2

µ2
2

µ3
2

λ1
2

λ2
2

∑ I2
i

λ2
−µ2

i

Figure 3: Graph of Equation (28).

In the case of experiment II we can solve the eigenvalue problem at constant

B and P , Eqs. (21) and (22), in the same way. But first, because we wish to

learn about both experiments, we set the values ofB and V and obtain Z and P (I),

solutions to the drop shape problem (I). Then we set B at the same value and set

P (II) such that P (II) −B∗
V

A
= P (I) holds. By doing this the shape Z is the same in

the two experiments and so too V . Thus the solutions to the diffusion eigenvalue

problem, Eqs. (25) and (26), are common to experiments (I) and (II) and we solve
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Eqs. (21) and (22) by again expanding ψ in the set of φi’s. By doing this we obtain

ci =
Ii

λ2 − µ2
i

B∗
1

A

∫∫

A

ψ dx dy

whence our equation for the λ2’s is now

∑ I2i
λ2 − µ2

i

=
1

B∗
(29)

The left-hand-side of Eq. (29) is plotted vs λ2 in Fig. 4 and we conclude

0 < µ2
1 <

(

λ21
)(II)

<
(

λ21
)(I)

< µ2
2 <

(

λ22
)(II)

<
(

λ22
)(I)

< µ2
3 < · · · (30)

At large values ofB∗, (λ2i )
(II)

−→ (λ2i )
(I)

, at small values of B∗, (λ2i )
(II)

−→ µ2
i

λ
2

µ1
2

µ2
2

µ3
2

λ1
2

λ2
2

∑ I2
i

λ2
−µ2

i

1
B∗

Figure 4: Graph of Equation (29).
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If we set a value of B, the shapes z = Z (x, y, B, V ) or z = Z (x, y, B, P ) are

stable to small perturbations so long asB is not one of the eigenvalues (λ2)
(I)
(B, V )

or (λ2)
(II)

(B,P ).
We also can see that experiment II is less stable than experiment I. Thus as

we increase V in I and P in II we always have the same Z and V but we know

(λ21)
(II)

(B,P ) < (λ21)
(I)
(B, V ), cf., Figs. (3) and (4). Hence experiment II be-

comes unstable at a volume and shape at which experiment I is stable. Indeed the

greatest volume in I exceeds the greatest volume in II.

Now B∗ is important. If its effect is omitted [11], experiment II always acts

like Wente’s (1980) pressure controlled experiment, viz., increasing P always

ends in a turning point. No bifurcation points can be found. In fact, on omitting

B∗ the diffusion eigenvalue problem tells us everything about experiment II and

a constant pressure experiment would be predicted to have an instability before it

ought to, viz., µ2
1 < λ21, and no bifurcation point can precede the turning point.

2.1 Adding Symmetry

Now in all of the foregoing we only need I1 6= 0 and I2 6= 0 to keep λ21 and

λ22 apart, i.e., to keep the fundamental eigenvalue simple, and hence the drop is

always unstable to a ψ1 mode having one internal nodal curve. But if the cross

section were a rectangle or an ellipse the symmetry of Z and hence the symmetry

of φ2 ought to cause I2 to be zero.

Thus if I2 is zero at any B and V , one of the two smallest solutions, λ2, ψ, to
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λ
2

µ1
2

λ1
2

µ2
2

µ3
2

λ2
2∑ I2

i

λ2
−µ2

i
i=1,
3, ...

Figure 5a.
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λ
2

µ2
2

µ
2
1

λ2
2

µ3
2

λ1
2∑ I2

i

λ2
−µ2

i
i=1,
3, ...

Figure 5b.

Graph of Equation (28) Depicting Two Cases:

5a) µ2
1 < λ21 < µ2

2, λ22 = µ2
2 and

5b) λ21 = µ2
2, µ2

2 < λ22

Eqs. (18), (19) and (20) will be

λ2 = µ2
2, ψ = φ2,

∫∫

A

ψ dxdy = 0, C = 0

And on plotting
∑

i=1,3,...

I2i
λ2 − µ2

i

vs λ2, omitting the term corresponding to i = 2,

we find the other solution will be on (µ2
1, µ

2
3) but we don’t know on which side

of µ2
2 it lies. Thus one eigenvalue is pinned at µ2

2 while the other may lie to its

left or right. This is illustrated in Fig. 5. The two eigenfunctions have different

symmetries.

Here then is our conclusion: if the cross section has no symmetry we can

increase V to the point of instability and we will see only continuous dependence

on B. Upon adding enough symmetry, at some B’s we will see one pattern at

critical, at others another pattern.

17



3 Symmetric Cross Sections

The symmetry of a drop pinned to a curve bounding a symmetric cross section

leads to symmetry conditions on the solutions to the diffusion eigenvalue problem.

Thus we expect to find cross sections for which I2 =

∫∫

A

φ2 dxdy = 0 and, hence,

for which one of the solutions to the eigenvalue problems, Eqs. (18), (19) and (20)

and Eqs. (21) and (22), will be

λ2 = µ2
2, ψ = φ2 and C = 0 =

∫∫

A

ψ dxdy

The eigenvalues of interest are the smallest and the next smallest, one being equal

to µ2
2 the other lying on the interval (µ2

1, µ
2
3). The corresponding eigenfunctions

have different shapes and the one accompanying the smallest eigenvalue will pre-

dict the pattern at drop breakup.

3.1 One-Dimensional Model, Experiments I and II

We ought to begin with the case of a circular cross section but everything of in-

terest for a drop pinned to a circle is already present in a simple one-dimensional

model. One dimension, two dimensions, etc. refer to the number of independent

variables. In one dimension Z depends only on x, it is independent of y and hence

there is only one curvature. At Z = 0, and V = 0, all of our drop problems are

Rayleigh-Taylor problems. They remain Rayleigh-Taylor-like for small increases

in V , but for how long depends on B.

3.1.1 Experiment I

We start with the first experiment and with a drop having the shapeZ = Z (x,B, V )
where Z satisfies

P − BZ =
d

dx

Zx

(1 + Z2
x)

1/2
(31)

Z = 0 at x = ±1 (32)

and
∫ 1

−1

Z dx = −V (33)
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The perturbation problem is

P1 − BZ1 =
d

dx

Z1x

(1 + Z2
x)

3/2
(34)

Z1 = 0 at x = ±1 (35)

and

∫ 1

−1

Z1 dx = 0 (36)

The eigenvalue problem is

C − λ2ψ =
d

dx

ψx

(1 + Z2
x)

3/2
(37)

ψ = 0 at x = ±1 (38)

and

∫ 1

−1

ψ dx = 0 (39)

And the
.
Z =

dZ

dV
problem is

.
P − B

.
Z =

d

dx

.
Zx

(1 + Z2
x)

3/2
(40)

.
Z = 0 at x = ±1 (41)

and

∫ 1

−1

.
Z dx = −1 (42)

Now, the drop shape, Z, is an even function of x and thus the solutions to the

eigenvalue problem are either odd or even functions of x.

The diffusion eigenvalue problem is

d

dx

φx

(1 + Z2
x)

3/2
+ µ2φ = 0 (43)
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and

φ = 0 at x = ±1 (44)

and we denote its solutions by

0 < µ2
1 < µ2

2 < µ2
3

and

φ1 (even) > 0, φ2 (odd) , φ3 (even) , · · · , I1 > 0, I2 = 0, I3 6= 0, · · ·

We first set V = 0, hence Z = 0, then for any B we have odd and even

eigenfunctions, viz.,

ψ = sinλx, λ2 = n2π2, C = 0

and

ψ = cosλx− cosλ,
sin λ

λ
− cosλ = 0. C = −λ2 cosλ

whence the least value of λ2 is π2, Bcrit = π2, ψ is odd and at Bcrit the drop is

unstable to a perturbation having odd symmetry.

Now we set B to a value less than π2 and increase V from zero. For B near

π2 the fundamental eigenfunction ought to remain odd upon increasing V and we

ought to arrive at the critical value of V where λ2 (B, Vcrit) = µ2
2 (B, Vcrit) = B

is satisfied and where the corresponding eigenfunction is an odd function of x.

We wish to know if Vcrit limits the increase in V , i.e., we wish to know if

Eqs. (40), (41) and (42) have a solution at Vcrit where λ2 (B, Vcrit) = B. The

solvability condition, viz.,

∫ 1

−1

.
Pψ dx−

∫ 1

−1

C
.
Z dx = 0

is satisfied due to

∫ 1

−1

ψ dx = 0 = C

Thus our critical point is a bifurcation point and we can continue to increase

V beyond Vcrit. At Vcrit we have λ2odd (B, Vcrit) = B < λ2even (B, Vcrit). As we

increase V , beyond Vcrit, we have λ2odd = µ2
2 and λ2even ∈ (µ2

2, µ
2
3) both moving

to the left and sooner or later λ2even (B, V ) = B. Again Eqs. (40), (41) and (42)
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have a non-zero solution. We have arrived at a second critical point but now ψ is

an even function of x and C is not zero. Hence Eqs. (40), (41) and (42) cannot be

solved for
.
Z because solvability fails, viz.,

∫ +1

−1

.
Pψ dx−

∫ +1

−1

C
.
Z dx = C 6= 0

Thus we have reached the greatest value of V and the second critical point is

not a bifurcation point but a turning point. The drop is unstable at the first critical

point and presumably breaks in the pattern of an odd eigenfunction so any advance

through this point is hypothetical and we see that the drop does not break at the

greatest volume.

We present what we have found in a series of figures where we denote the

first two eigenvalues λ2odd and λ2even because the order λ2odd < λ2even is not

maintained as B decreases. We plot V vs P at a sequence of B’s and at each B
we indicate the eigenvalues µ2

1, µ
2
2, µ

2
3, λ

2
odd and λ2even at each of a set of V ’s.

First at B slightly less than π2, we present Fig. 6a where we see the eigenval-

ues moving to the left as V increases. The bifurcation point and the turning point

are marked. Fig. 6b is drawn at a lower value of B and shows the bifurcation

point moving closer to the turning point. Decreasing B again we arrive at Fig. 7

where λ2odd = B = λ2even. The corresponding value of B is denoted B⋆.

For all B < B⋆, λ2even is less than λ2odd at critical. Now, no matter the value

of B, at V = 0 we have λ2odd < λ2even. At B = B⋆, the exchange of the order

occurs at the critical value of V . For B < B⋆ the change in the order occurs at

0 < V < Vcrit and we have Fig. 8.

Thus there is a value of B, denoted B⋆, at which, at critical, the fundamental

eigenvalue is a double root. For larger values of B the first critical point is a

bifurcation point corresponding to an odd eigenfunction, for smaller values of B
the first critical point is a turning point corresponding to an even eigenfunction.

The pattern of the instability changes as we decrease B from large values to small

values.
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P→

-3 -2 -1 0
0

0.1

0.2

0.3

0.4

0.5

V↑

B < λ 2
odd

 < λ 2
even

B = λ 2
odd

 < λ 2
even

←

→

→

λ 2
odd

 < B = λ 2
even

 

V
1

V
2

V
3

8 9 10 11 12

V
1

V
2

V
3

←  µ
1
2

  (2.4)

λ 2
odd

µ
2
2

     µ
3
2 →

    (22)

←  µ
1
2

  (2.3)

λ 2
odd

µ
2
2

     µ
3
2 →

    (21)

µ
2
2

λ 2
odd

λ 2
even

   µ
3
2

(11.7)

    ↑
B = 9.5Figure 6a.
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P→

-3 -2 -1 0
0

0.2

0.4

0.6

B < λ 2
odd

 < λ 2
even

λ 2
odd

 < B = λ 2
even

B = λ 2
odd

<λ 2
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←

→

←

V↑V
1

V
2

V
3
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V
1

V
2

V
3

←  µ
1
2

  (1.9)
µ

2
2

 λ 2
odd

  µ
3
2 →

(18.3)

←  µ
1
2

  (1.6)
µ

2
2

λ 2
odd

  µ
3
2 →

(14.9)

←  µ
1
2

  (0.8)
µ

2
2

λ 2
odd

λ 2
even

   µ
3
2

(9.9)

    ↑
 B = 8

Figure 6b.

Graph of V vs P Depicting λ2’s: 6a) B = 9.5, 6b) B = 8
o, bifurcation point, ∗, turning point
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2
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↑

Figure 7: Graph of V vs P at B = B⋆ = 5
o, bifurcation point, ∗, turning point
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P→

-3 -2 -1 0
0

0.2

0.4

0.6
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crit

V↑
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2
odd

 = λ2
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← µ
1
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  (0.2)

 λ2
even

 µ
3
2 →

(5.1)

λ
2
odd

µ
2
2

B = 4

↑

Figure 8: Graph of V vs P at B < B⋆, B = 4
∗, turning point

Finding a Bifurcation Point without Solving an Eigenvalue Prob-

lem

Ordinarily, critical points are found by solving eigenvalue problems. But, because

the drop is static, we can derive an exceptional result. Thus, given a base curve

V vs P , we can find bifurcation points along the curve by drawing a line which

intersects the curve. In this section we derive and illustrate this result.
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Upon integrating Eq. (31) over −1 ≤ x ≤ 1 we have

2P +BV =
Zx

(1 + Z2
x)

1/2

∣

∣

∣

∣

∣

x=1

x=−1

(45)

The right hand side is the vertical force that the pins exert on the drop, see Ap-

pendix (3).

For input values of B and V we solve Eqs. (31), (32) and (33) for Z and P
and plot the curve V vs P . Now we will see that the right-hand side of Eq. (45) is

zero at a bifurcation point. Hence

P→
-3 -2.5 -2 -1.5 -1 -0.5 0

0

0.2

0.4

0.6

0.8

V↑

Figure 9a.
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P→
-3 -2.5 -2 -1.5 -1 -0.5 0

0

0.5

1

1.5

V↑

Figure 9b.

Graphs Showing the Intersection of 2P +BV = 0 and V vs P :

9a) Large B, 9b) Small B.

o, bifurcation point, ∗, turning point

the line 2P +BV = 0 intersects the curve V vs P at the first critical point, if the

critical point is a bifurcation point. This is illustrated in Figs. 9a and 9b which

present the construction for two values of B, one above B⋆, and the other below.

To see that the right-hand side of Eq. (45) is zero at a bifurcation point and

thus to see that we can find a bifurcation point using only the base shape, we need

the equation for Zx. Differentiating Eq. (31) we have

−BZx =
d

dx

(Zx)x

(1 + Z2
x)

3/2
(46)

and we also have, due to pinned edges,

∫ +1

−1

Zx dx = 0

At a critical point corresponding to an odd eigenfunction we have C = 0 in Eq.

(37). Multiplying Eq. (37) by Zx, Eq. (46) by ψ, subtracting, integrating over
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−1 ≤ x ≤ 1, using λ2 = B, Z even and Zx odd we have

0 =
2Zx (x = 1)

(1 + Z2
x (x = 1))3/2

due to the fact that ψx, even, cannot be zero at x = ±1. Thus we conclude: Zx

is zero at x = ±1 at a bifurcation point and hence the right-hand side of Eq.

(45) is zero. This is due, not only to symmetry, but also to the fact that the ends

are pinned. The upward force exerted by the pins on the drop vanishes at the

bifurcation point. (cf., Michael and Williams, 1976)

3.1.2 Experiment II

In the case of experiment II whereB and P are the inputs andZ and V the outputs,

Z satisfies

P +B∗
1

2

∫ 1

−1

Z dx−BZ =
d

dx

Zx

(1 + Z2
x)

1/2
, Z = 0 at x = ±1 (47)

This is our one-dimensional model and we must have B < B∗.

We solve Eq. (47) by first solving Eqs. (31), (32) and (33) for Z and P (I) given

B and V . Then if we set P (II) in Eq. (47) to P (I)+
1

2
B∗V , Z and V satisfying Eq.

(47) are identical to Z and V satisfying Eqs. (31), (32) and (33) and hence we can

derive the V vs P curve in experiment II from the V vs P curve in experiment I.

At P = 0, hence Z = 0 and V = 0, the solutions to the eigenvalue problem,

Eqs. (21) and (22), are

ψ = sinλx, λ2 = n2π2,

∫ 1

−1

ψ dx = 0

and

ψ = cosλx+
B∗/λ2

1−
B∗

λ2

1

λ
sin λ, 1−

λ2

B∗
=

sinλ

λ cosλ
,

∫ +1

−1

ψ dx =
2 sinλ

λ

1

1−
λ2

B∗

and we have µ2
1 =

1

4
π2, µ2

2 = π2, · · · .

We are looking for the smallest λ2 because at P = 0 this is Bcrit.
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If B∗ < π2 then the first eigenfunction is even the second odd and B∗ < λ21 <

π2 = λ22. But if B∗ > π2 the first eigenfunction is odd, the second even and we

have λ21 = π2 < λ22 < B∗.

Now we must have B < B∗ and thus at P = 0, if B∗ is less than π2, there

are no values of λ2 that can be equal to B and we have stability to all small

perturbations.

If B∗ is greater than π2, the critical value of B at P = 0 is π2. Thus we can

set a value of B less than π2 and increase P . Now the drop shapes and volumes

in the second experiment derive from those in the first experiment, and we obtain

the curves shown in Fig. 10.

Experiment II also has a straight line construction predicting the bifurcation

point using only the base shape. It is

2P (II) − B∗V +BV = 0, (48)

and it predicts the bifurcation point shown in the figure.

The figure also indicates that perturbations at constant V are stable at higher

V ’s than perturbations at constant P . Of course this repeats what we learned for

arbitrary cross sections.
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0.4

0.6
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V↑

P(I) P(II) = P(I) + 1
2B
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λ
2
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(B, V) = B
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2
odd

(B, V) = B

λ
2
even

(B, P) = B

λ
2
odd

(B, P) = B

Figure 10.

Graphs of V vs P Showing that Experiment II is Less Sta-

ble than Experiment I B = 7, B∗ =
11

10
π2

There is a value of B, denoted B⋆
(II), such that λ2odd

(

B⋆
(II)
)

= λ2even

(

B⋆
(II)
)

.

Its significance is the same as that of B⋆ in experiment I, viz., B⋆
(I). Now B⋆

(II)

depends on B∗ and as B∗ becomes large B⋆
(II)→B⋆

(I) because λ2 (II)’s →λ2 (I)’s,

see Fig. 4. In Fig. 10 we have B > B⋆
(II).

3.2 Square and Rectangular Cross Sections, Experiment I

Both rectangular and square cross sections have enough symmetry for I2 to vanish

and hence we wish to see if our way of locating bifurcation points, using only the
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shape of the drop, carries over to these cross sections, one having more symmetry

than the other.

Denote the cross section by A. It is bounded by a curve C along which Z = 0
and the normal to C in the plane of A is

∇Z

(∇Z·∇Z)1/2

Thus, integrating Eq. (1) over the cross section we have

PA+BV =

∫

C

ds
(∇Z·∇Z)1/2

(1 +∇Z·∇Z)1/2
(49)

where the right hand side is zero if and only if ∇Z is pointwise zero.

If the cross section is the rectangle −a ≤ x ≤ a, −b ≤ y ≤ b, the C = 0
solutions to the eigenvalue problem, Eqs. (18), (19) and (20), at V = 0 are, cf.,

Maxwell (1927, [8]).

sinmπ
x

a
sin nπ

y

b
m, n = 1, 2, . . .

sinmπ
x

a
cos

(

n+
1

2

)

π
y

b
m = 1, 2, . . . n = 0, 1, . . .

and

cos

(

m+
1

2

)

π
x

a
sinnπ

y

a
m = 0, 1, . . . n = 1, 2, . . .

And, if a > b, the least λ2 corresponds to

cos
1

2
π
x

a
sin π

y

b

even in x, odd in y. There are solutions where C 6= 0 but the corresponding

eigenvalues are greater than
1

4

π2

a2
+
π2

b2
.

We assume the symmetry of the eigenfunctions at V > 0 is the same as it is at

V = 0 and we set B and advance V until we arrive at the bifurcation point where

λ21 (B, V ) = B and where λ21 and ψ1 satisfy

−λ21ψ1 = Lψ1, C1 = 0 (50)
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Now, we differentiate Eq. (1) with respect to y obtaining

−BZy = LZy (51)

whereupon multiplying Eq. (50) by Zy, Eq. (51) by ψ1, subtracting, using λ21 = B
and integrating over A we have

0 =

∫

C

dsZy

−→n ·∇ψ

(1 +∇Z·∇Z)3/2
(52)

due to −→n =
∇Z

|∇Z|
Now along x = ±a we have Z = 0, hence Zy = 0. Along y = −b we have

ds = dx and −→n ·∇ψ = −ψy. Along y = b we have ds = −dx and −→n ·∇ψ = ψy.

Thus Eq. (52) becomes

0 =

∫ a

−a

dx
Zy (−ψy)
(

1 + Z2
y

)3/2
−

∫

−a

a

dx
Zy (ψy)

(

1 + Z2
y

)3/2
(53)

The first integral is along y = −b, the second is along y = b. Now Z is an even

function of y and hence Zy is an odd function of y, viz., Zy (x,−b) = −Zy (x, b).
Because ψ is an odd function of y we have ψy (x,−b) = +ψy (x, b) and ψy is not

zero because ψ (x,−b) = 0 = ψ (x, b). Thus, by Eq. (53) we have Zy = 0 on c
at a bifurcation point.

However there is nothing we can say about Zx on c and hence not enough

about ∇Z on c in the case of a rectangular cross section.

But for a square cross section the least eigenvalue at C = 0 corresponds to

two eigenfunctions, one odd in x, even in y, the other even in x, odd in y. Thus

we can carry out the above derivation twice at the same eigenvalue equal to B and

conclude that ∇Z vanishes on c at a bifurcation point.

Hence, in the case of a square cross section, we can plot V vs P and its in-

tersection with PA + BV = 0 will locate the critical point so long as it is a

bifurcation point, all without using more than the base solution. The base solution

also identifies the turning point.
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3.3 Circular Cross Section Experiment I

On a circular cross section, where our inputs are B and V and our outputs are

Z (r) and P , Eqs. (1) – (9) are, first

P − BZ =
1

r

d

dr

r

(1 + Z2
r )

1/2

dZ

dr
(54)

Z = 0 at r = 1 (55)

and

−2π

∫ 1

0

Zr dr = V (56)

second,

.
P − B

.
Z =

1

r

d

dr

r

(1 + Z2
r )

3/2

d
.
Z

dr
(57)

.
Z = 0 at r = 1 (58)

and

−2π

∫ 1

0

.
Zr dr = 1 (59)

and, third,

C − λ2ψ =
1

r

∂

∂r

r

(1 + Z2
r )

3/2

∂ψ

∂r
+

1

(1 + Z2
r )

1/2

1

r2
∂2ψ

∂θ2
(60)

ψ = 0 at r = 1 (61)

and

∫ 2π

0

dθ

∫ 1

0

ψr dr = 0 (62)

where Z (r) in Eqs. (57) – (62) is the solution of Eqs. (54), (55) and (56). If

Z is zero, this is the Rayleigh-Taylor problem on a circle, solved by Maxwell

(1927, [8]). Our aim is to show that everything found out here can be forecast by

what we already know about the one-dimensional problem.
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We set V = 0 whereupon Z = 0 = P for all B. The solutions to Eqs. (60),

(61) and (62) are then

m = 0 :

ψ = J0 (λr)− J0 (λ) , λJ0 (λ) + 2J1 (λ) = 0, C = λ2J0 (λ)

m = 1 :

ψ = J1 (λr) cos θ, J1 (λ) = 0, C = 0

The critical value of B at V = 0 is the square of the first positive zero of J1
and the drop is unstable to a cos θ perturbation.

We set B < Bcrit (V = 0) and advance V from zero until the least λ2 (B, V )
attains the value B, viz.,

λ2 (B, Vcrit) = B

If B is near Bcrit (V = 0), the first critical point corresponds to m = 1. It is a

bifurcation point and Eqs. (57), (58) and (59) have a solution there. Ideally we can

pass through this point and increase V beyond Vcrit (B). Doing this we arrive at a

point where the least eigenvalue, corresponding now to an m = 0 eigenfunction,

becomes equal to B. Eqs. (57), (58) and (59) fail to have a solution and we

have reached the greatest value of V . The instability occurs before V reaches its

greatest value.

At a smaller value of B the picture is just as it was in the one-dimensional

model and we come to a value of B where at Vcrit (B) the least eigenvalues at

m = 0 and m = 1 coincide and we have

λ2 (m = 1) = B⋆ = λ2 (m = 0)

This is the greatest V at that B and it is not preceded by a bifurcation point. For

lower values of B the critical V always corresponds to an m = 0 eigenfunction,

the critical point is a turning point and Vcrit is the greatest value of V .

There is no qualitative difference between the one-dimensional model and the

drop pinned to the edge of a circular cross section. The m = 1 eigenfunctions

here correspond to the odd eigenfunctions there, the m = 0 eigenfunctions to the

even eigenfunctions.

Now so long as the drop is critical at an m = 1 eigenvalue we can locate the

critical point by drawing the line, Pπ +BV = 0, see Fig. 11.
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Figures 11a and 11b.

The V vs P Curve for a Circular Cross Section Showing the

Straight Line Construction, B = 13 ( top ), B = 9 ( bottom ),

B⋆ = 10
o, bifurcation point, ∗, turning point
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To do this we only need to observe that

Zr (r = 1) = 0

at critical. Thus, differentiating Eq. (54) with respect to r we have

−BZr =
1

r

d

dr

r

(1 + Z2
r )

3/2

dZr

dr
−

1

(1 + Z2
r )

1/2

1

r2
Zr

and observing that the radial part of the m = 1 eigenfunction satisfies

−λ2ψ =
1

r

d

dr

r

(1 + Z2
r )

3/2

dψ

dr
−

1

(1 + Z2
r )

1/2

1

r2
ψ

we set λ2 = B and derive

0 = −
Zr

(1 + Z2
r )

3/2
r ψr

∣

∣

∣

∣

∣

r=1

r=0

(63)

whereupon we have

Zr (r = 1) = 0 (64)

at critical due to ψr (r = 1) 6= 0. Hence if we multiply Eq. (54) by r and integrate

over 0 ≤ r ≤ 1 we obtain

Pπ +BV = 0 (65)

and we can predict bifurcation points by our familiar construction.

At large values of B the drop breaks before it reaches its greatest volume and

it breaks in an antisymmetric pattern, m = 1. At small values of B the drop

breaks at its greatest volume and it breaks in a symmetric pattern, m = 0. Now

the drop has two curvatures and it might be thought that the transition fromm = 1
breakup to m = 0 breakup must be due to the transverse curvature asserting itself

as it does in a jet or bridge. But that cannot be true because the same transition

occurred in the one-dimensional model wherein there is only one curvature. This

is a static result. Beyond critical, transverse curvature is dominates the dynamics

of breakup, [1].

If we view circular and elliptical cross sections in the light of what we know

about square and rectangular cross sections we would guess that our straight line
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construction ought to fail in the case of an ellipse. But what about a cross section

in the shape of a ring, β ≤ r ≤ 1? The calculation resulting in Eq. (63) now gives

us

0 = r
Zr

(1 + Z2
r )

3/2
ψr

∣

∣

∣

∣

∣

r=1

r=β

(66)

where neither ψr (r = 1) nor ψr (r = β) is zero. We might wish to conclude Zr =
0 on c at critical, but it is not true. Eq. (66) has solutions other than Zr = 0 . We

do not have the symmetry needed to conclude PA+BV = 0 at critical.

3.4 A Circle Displaced to a Nearby Ellipse of the Same Cross

Sectional Area

We are going to set the value of B high enough that a drop pinned to a circle has

a bifurcation point at a volume V0 where the least λ20 is equal to B. Then Z0, P0,

ψ0, λ20 and C0 satisfy Eqs. (54) – (56) and (60) – (62) where C0 = 0, where ψ0 is

an m = 1 eigenfunction and where

dZ0

dr
= 0 at r = R0 = 1

Now we displace the circle to an ellipse of the same cross sectional area and write

R (θ) = R0 + εR1 (θ)

where R1 (θ) = R0 cos 2θ
We set B and V to their circle values and look for the corrections Z1, P1, ψ1

and λ21 to Z0, P0, ψ0 and λ20. We find that Z1 and P1 must satisfy

P1 − BZ1 = L (Z0)Z1

Z1 = 0 at r = R0

and

∫ 2π

0

dθ

∫ R0

0

Z1r dr = 0

due to
dZ0

dr
= 0 at r = R0. Because B = λ20 we find Z1 = Aψ0 and P1 = 0.
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Now the ellipse has enough symmetry that we can assume its instability at B
and V0, like that of the nearby circle, is a bifurcation point. Thus the equation

satisfied by λ21 and ψ1 is

C1 − λ21ψ0 − λ20ψ1 = lim
ε→ 0

1

ε

{

L (Z0 + εZ1) (ψ0 + εψ1)−L (Z0)ψ0

}

where

L (Z0 + εZ1) = L (Z0) + εL (Z0, Z1)

and where

L (Z0, Z1) = ∇·

{

(−→−→
I (1 +∇Z0·∇Z0)−∇Z0∇Z0

)

(

−3∇Z0·∇Z1

(1 +∇Z0·∇Z0)
3/2

)

+

−→−→
I 2∇Z0·∇Z0 −∇Z0∇Z1 −∇Z1∇Z0

(1 +∇Z0·∇Z0)
5/2







·∇

whereupon we have

C1 − λ21ψ0 − λ20ψ1 = L (Z0)ψ1 + L (Z0, Z1)ψ0 (67)

ψ1 = −R1
∂ψ0

∂r
at r = R0

and

∫ 2π

0

dθ

∫ R0

0

ψ1r dr = 0

Multiplying Eq. (67) by ψ0, Eq. (60) by ψ1, subtracting and integrating over

0 ≤ θ ≤ 2π, 0 ≤ r ≤ R0 we have

−λ21

∫∫

A0

ψ2
0r drdθ =

∫∫

A0

{ψ0L (Z0)ψ1 − ψ1L (Z0)ψ0} r drdθ

+

∫∫

A0

ψ0L (Z0, Z1)ψ0r drdθ
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where, due to ∇Z0 =
−→
0 on C0, the first integral on the right hand side is

R0

∫ 2π

0

dθ R1

(

∂ψ0

∂r

)2

(r = R0) = R2
0

(

dψ0

dr
(r = R0)

)2 ∫ 2π

0

cos 2θ cos2 θ dθ

The second integral on the right hand side is zero because

∫ 2π

0

dθ cos θ,

∫ 2π

0

dθ cos3 θ and

∫ 2π

0

dθ cos θ sin2 θ

all vanish.

Thus λ21 is negative and hence upon advancing V , λ2 (ellipse) becomes equal

to B before λ2 (circle) and thus a drop pinned to an ellipse is more unstable than

a drop pinned to a circle, the cross sectional areas being the same.

Now we would guess that if the term R1 (θ) in the expansion of R (θ) had

terms in cos 3θ, cos 4θ, etc. the above would continue to hold true and hence our

straight line construction based on the circle would tell us that most nearby shapes

had already reached their first point of instability.

This may not be surprising in view of the fact that the m = 0 eigenvalues of

∇2 on a circle increase if the circle is displaced to a nearby ellipse, the m = 1
eigenvalues decrease.

4 Conclusions

In our study of the stability of a static pendent drop we draw two major conclu-

sions. Both have to do with integral constraints in the problem determining the

shape of the drop. The first is that the critical point of the static drop, whether it is

formed by volume or pressure control, is bounded and the bound is determined by

an eigenvalue problem free of any integral and therefore of any constraint. This

is so no matter the symmetry of the curve of the attachment as long as the drop

is pinned. The unrestricted eigenvalue problem is termed the diffusion eigenvalue

problem and it corresponds to an ideal thought-experiment on static drop forma-

tion. This implies that the stability limits for one static drop experiment may be

used to bound and even predict the stability limits for drop experiments with other

types of control.

The second conclusion applies to experiments where the curve of attachment

is made perfectly symmetric. Here we derive a simple construction, knowing

only the base drop shape, to determine whether the drop is unsymmetrically or
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symmetrically unstable. This construction then yields the critical points for either

type of instability.
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Appendix 1: Need the Perturbation be other than Hy-

drostatic at Critical?

Below is a simplified picture of experiment I. There is no light fluid.

n

k

i

j

z = Z(x, y, t)

, φ =g zg

S

Figure A.1. A Sketch of Experiment I.

Our aim is to show that at critical we have only a hydrostatic solution to the

small perturbation problem at constant volume.

Denoting the surface of the drop z = Z (x, y, t), our unscaled nonlinear equa-

tions on the domain are

ρ
∂−→v

∂t
+ ρ−→v ·∇−→v = ∇·

−→−→
T − ρ∇φ

and

∇·−→v = 0

At all walls we have −→n ·−→v = 0. Along z = Z (x, y, t) we have

−→n ·−→v =
Zt

(1 +∇Z·∇Z)1/2
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−→n −→n :
−→−→
T + γ2H = 0

and

−→
t −→n :

−→−→
T = 0, any tangent

−→
t

where

−→n =

−→
k −∇Z

(1 +∇Z·∇Z)1/2
,

−→
k ·∇Z = 0

Assuming we have a base solution to the nonlinear equations, viz.,

Z = Z0 (x, y)

−→v0 =
−→
0

dp0
dz

= −ρg, p0 = −ρgz + const

and

−→−→
T = −p0

−→−→
I

we introduce a small perturbation. Thus we write

Z = Z0 + εZ1 and −→v = ε−→v 1

and we have

−→n = −→n0 + ε−→n1

where

−→n0 =

−→
k −∇Z0

(1 +∇Z0·∇Z0)
1/2

and

−→n1 = −

−→−→
I (1 +∇Z0·∇Z0) +

−→
k −∇Z0

(1 +∇Z0·∇Z0)
3/2

·∇Z1
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The perturbation problem must be solved on the base domain, the domain obtained

by writing z = Z0 (x, y) in place of z = Z (x, y, t) in Fig. A.1.

Along z = Z0 (x, y) we have

−→n0
−→n0 :

−→−→
T1 + ρgZ1 + γ2H1 = 0 (68)

−→
t 0
−→n0 :

−→−→
T1 = 0 (69)

and

−→n0·
−→v1 =

Z1t

(1 +∇Z0·∇Z0)
1/2

(70)

where 2H1 is the perturbation of 2H . On the domain we have

ρ
∂−→v1
∂t

= ∇·
−→−→
T1, ∇·−→v1 = 0 (71)

and
∫∫

A

Z1 dxdy = 0

We assume a solution

−→v1 (x, y, z, t) = eσt−→v1 (x, y, z) , Z1 = eσtZ1 (x, y) , etc.,

hence on the domain we have

ρσ−→v1 = ∇·
−→−→
T1. ∇·−→v1 = 0 (72)

Then dotting this with −→v1
∗, the complex conjugate of −→v1, and integrating over the

domain we obtain

ρσ

∫

V0

−→v1·
−→v1
∗ dV0 = −

∫

S0

dA0
−→n0·

−→−→
T1·

−→v1
∗− 2µ

∫

V0

−→−→
D1 :

−→−→
D1
∗ dV0

where −→n0 is inward and where S0 denotes the surface of the reference drop.

Along S0, −→v1 defines its own tangent and we write

−→v1 =
−→n0 (

−→n0·
−→v1) +

−→
t 0

(−→
t 0·

−→v1

)
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whereupon we obtain

ρσ

∫

V0

−→v1·
−→v1
∗ dV0 =

∫

S0

dA0 (γ2H1 + ρgZ1)
σ∗Z1

∗

(1 +∇Z0·∇Z0)
1/2

− 2µ

∫

V0

−→−→
D1 :

−→−→
D1
∗ dV0

Likewise we have

ρσ∗
∫

V0

−→v1
∗·−→v1 dV0 =

∫

S0

dA0

(

γ2H1
∗+ ρgZ1

∗
) σ Z1

(1 +∇Z0·∇Z0)
1/2

− 2µ

∫

V0

−→−→
D1
∗ :

−→−→
D1 dV0

where
∫

S0

dA0
1

(1 +∇Z0·∇Z0)
1/2

[

(γ2H1 + ρgZ1)σ∗Z1
∗
]

=

∫

A

dxdy
[

(γ2H1 + ρgZ1)σ∗Z1
∗
]

What we wish to know is: if Re σ = 0 = Reσ∗, is | −→v1| = 0? Now we have

Eq. (4), viz.,

2H1 = LZ1

whereupon we can write

ρRe (σ)

∫

V0

| −→v1|
2
dV0 =

∫

A

dxdy (γLZ1 + ρgZ1) Re (σ)Z1
∗−2µ

∫

V0

dV0
−→−→
D1 :

−→−→
D1
∗

where Z1
∗LZ1 is positive. Hence Re (σ) = 0 implies −→v1 =

−→
0 whereupon σ = 0

due to Eq. (70).
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Appendix 2: Potential Energy (not scaled)

Our aim is to derive the equation for a neutral displacement of a drop by taking

account of potential energy changes.

The potential energy of a drop of shape z = Z (x, y), where (x, y) is a point

on a domain A in the x, y plane bounded by a curve c, is

PE (Z) =

∫

A

{

γ (1 +∇Z·∇Z)1/2 −
1

2
ρgZ2

}

dxdy (73)

and its volume is

V = −

∫

A

Z dxdy

Now we denote by Z0 (x, y) a solution to our drop-shape problem, viz., Eqs.

(1), (2) and (3), corresponding to an input volume V0. And we subject Z0 to a

displacement εZ1, holding the volume of the drop constant, where Z1 = 0 on c
and

∫

A

Z1 dxdy = 0

Hence we find

PE (Z0 + εZ1)− PE (Z0) = ε

∫

A

{

γ
∇Z0

(1 +∇Z0·∇Z0)
1/2

·∇Z1 − ρgZ0Z1

}

dxdy

+
1

2
ε2
∫

A

{

γ
∇Z1·∇Z1 (1 +∇Z0·∇Z0)−∇Z0·∇Z1∇Z0·∇Z1

(1 +∇Z0·∇Z0)
3/2

−
1

2
ρgZ2

1

}

dxdy + · · · (74)

The first term on the right hand side, due to Z1 = 0 on c, is

ε

∫

A

{

−γ∇·
∇Z0

(1 +∇Z0·∇Z0)
− ρgZ0

}

Z1 dxdy

and this is zero in view of Eqs. (1) and (3).
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The second term is

1

2
ε2
∫

A

{

γ
∇Z1·∇Z1 +∇Z1·∇Z1 ∇Z0·∇Z0 − (∇Z1·∇Z0)

2

(1 +∇Z0·∇Z0)
3/2

− ρgZ2
1

}

dxdy

and it is made up of a stabilizing positive part due to the increase in surface po-

tential energy and a destabilizing negative part due to the decrease in gravitational

potential energy. Thus, if g = 0, Z0 is always stable. If γ = 0, Z0 is always

unstable.

Now if Z1 is a neutral displacement of Z0, the second term must be zero and

to see what this requires of Z1, we write the second term

1

2
ε2
∫

A

[

γ

{

∇Z1 (1 +∇Z0·∇Z0)−∇Z0·∇Z1∇Z0

(1 +∇Z0·∇Z0)
3/2

}

·∇Z1 − ρgZ2
1

]

dxdy

=
1

2
ε2
∫

A

[

−γ∇·

{

∇Z1 −∇Z0·∇Z1∇Z0

(1 +∇Z0·∇Z0)
3/2

}

Z1 − ρgZ2
1

]

dxdy

=
1

2
ε2
∫

A



−γ∇·







−→−→
I (1 +∇Z0·∇Z0)−∇Z0 ∇Z0

(1 +∇Z0·∇Z0)
3/2







·∇Z1 − ρgZ2
1



Z1 dxdy

=
1

2
ε2
∫

A

(−γLZ1 − ρgZ1)Z1 dxdy

And for this to be zero, no matter Z0, we see that Z1 must satisfy Eq. (4).

The potential energy calculation applies to Experiment I. It is the starting point

for, eg., Maddock’s [5] and Lowry and Steen [4], and others.

Experiment II is little different. Due to the effect of gravity, it can not be

obtained from Experiment I by switching the roles of P and V .
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Appendix 3: Upward Force

We have a drop pinned along a curve C bounding a region A in the x, y plane. Its

surface is denoted S. The outward normal to C in the x, y plane is
∇Z

(∇Z·∇Z)1/2
.

We have a solution Z (x, y, B, V ) to our drop-shape problem and integrating Eq.

(1) over A gives us

PA+BV =

∫

c
ds

−→n ·∇Z

(1 +∇Z·∇Z)1/2
=

∫

c
ds

(∇Z·∇Z)1/2

(1 +∇Z·∇Z)1/2

Along c we have

−→
k −∇Z

(1 +∇Z·∇Z)1/2
: normal to S at C

∇Z

(∇Z·∇Z)1/2
: normal to C in the x-y plane

∇Z ×
−→
k

∇Z·∇Z
: tangent to C in the x-y plane

and we need the tangent to S at C perpendicular to C. It is

∇Z +
−→
k (∇Z·∇Z)

(∇Z·∇Z)1/2 (1 +∇Z·∇Z)1/2

Hence the upward force of c on the surface of the drop is

∫

c
ds

(∇Z·∇Z)1/2

(1 +∇Z·∇Z)1/2

and we see that the upward force of the curve C, along which the drop is pinned,

on the drop vanishes if and only if ∇Z is pointwise zero.
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Appendix 4: Many Ways to Run a Pressure Con-

trolled Drop Experiment

The picture below is a sketch of a pressure controlled drop experiment

P+Patm Patm

ρ
1

A1

ρ
2

A2

z = h1
z = h2

z = 0

more dense less dense

ρ
1
>ρ

2

P1

P2 z = Z(x, y)

z = 0

A

Figure A. Sketch of a Pressure Controlled Drop Experiment.

The tube is assumed always to be full of more dense fluid and the volumes, V1
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and V2, are the volumes above z = 0.

The drop experiment is hydrostatic and P is the input, Z (x, y) is the output.

The pressures P1 and P2, are

P1 = P + Patm + ρ1gh1 − ρ1gZ (75)

and

P2 = Patm + ρ2gh2 − ρ2gZ (76)

whereupon Z, the drop shape, i.e., base shape is obtained by solving

γ 2H (Z) = P1 − P2 = P + ρ1gh1 − ρ2gh2 − (ρ1 − ρ2) gZ (77)

Now h1 and h2 depend on the pressure and can be eliminated by observing:

(1) at Z = 0 we have P = P0, h1 = h10, and h2 = h20 where P0 + ρ1gh10 −
ρ2gh20 = 0

(2) thus we have

γ 2H = P − P0 + ρ1g (h1 − h10)− ρ2g (h2 − h20)− (ρ1 − ρ2) gZ (78)

and

(3)

A1h1 −

∫∫

Z dxdy = A1h10 (79)

and

A2h2 +

∫∫

Z dxdy = A2h20 (80)

Whereupon Z satisfies

γ 2H (Z) = P+ρ1 g
1

A1

∫∫

Z dxdy+ρ2 g
1

A2

∫∫

Z dxdy−(ρ1 − ρ2) gZ (81)

and P is now P − P0.

If A1 and A2 are very large we have

γ 2H (Z) = P − (ρ1 − ρ2) gZ (82)
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and the corresponding eigenvalue problem is our diffusion eigenvalue problem.

This is Wente’s statement of the static drop problem wherein critical points are

always turning points [16].

Now if A1 = A, i.e., the left hand tank is simply a pipe, we have

γ 2H (Z) = P+ρ1 g
1

A

∫∫

A

Z dxdy+ρ2 g
1

A2

∫∫

A

Z dxdy−(ρ1 − ρ2) gZ (83)

And thus if A2 is very large we have

γ 2H (Z) = P + ρ1 g
1

A

∫∫

A

Z dxdy − (ρ1 − ρ2) gZ (84)

This is our statement of experiment II in unscaled variables.

Hence the diffusion eigenvalue problem has a definite physical connection to

all drop experiments, but even if it had not, nothing would have been lost. The

diffusion eigenvalues are based on drop shapes found in experiments I and II, not

on shapes found in Wente’s thought-experiment.
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Appendix 5: Derivation of the Base Equations

Experiment I

We have

−→g = −g
−→
k (85)

and

dP

dz
= −ρ g (86)

whereupon

P = −ρgz + C (87)

P∗ = −ρ∗gz + C∗ (88)

P (h) = −ρgh+ C (89)

and

P (−h∗) = ρgh∗+ C∗ (90)

At z = Z we have

P∗+ γ 2H = P (91)

whereupon

γ 2H = − (ρ− ρ∗) gZ + C − C∗ (92)

where

C − C∗ = P (h) + ρgh−
(

P (−h∗)− ρgh∗
)

(93)

and scaling produces Eq. (1).
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Experiment II

Unlike experiment I, it is not the volume of the drop that remains constant on

perturbation. This is important in the presence of gravity. Again we have at z = Z

P + ρgh− ρgZ − (Patm + ρ∗gh∗− ρ∗gZ) = γ 2H (94)

Denoting h and P by h0 and P0 when Z = 0, we have

P0 − ρgh0 − (Patm + ρgh∗) = 0 (95)

whereupon, eliminating Patm + ρgh∗, using

(h0 − h)A = −

∫∫

a
Z dx dy (96)

and scaling we have Eq. (11).
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