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We present the results of a numerical investigation of droplets walking in a harmonic

potential on a vibrating fluid bath. The droplet’s trajectory is described by an

integro-differential equation, which is simulated numerically in various parameter

regimes. We produce a regime diagram that summarizes the dependence of the

walker’s behavior on the system parameters for a droplet of fixed size. At relatively

low vibrational forcing, a number of periodic and quasiperiodic trajectories emerge.

In the limit of large vibrational forcing, the walker’s trajectory becomes chaotic, but

the resulting trajectories can be decomposed into portions of unstable quasiperiodic

states.
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I. INTRODUCTION

A droplet can bounce indefinitely on the surface of a fluid bath that is vibrating vertically

with acceleration γ cos(2πft).5 We denote by γF the Faraday threshold, or the forcing ac-

celeration required to excite standing Faraday waves on the surface of the bath.1 Below this

threshold (γ < γF ), the surface of the bath remains undisturbed in the absence of the drop.

Beyond the bouncing threshold γB, specifically for γB < γ < γF , a thin air layer sustained

between the drop and the bath during impact prevents coalescence. The impact imparts

vertical momentum to the descending drop, reversing its direction. In the bouncing regime,

the drop lands on the crest of the wave generated from its previous bounces and experiences

a purely vertical force from the bath. Beyond the walking threshold γW , specifically for

γB < γW < γ < γF , the static bouncing state gives way to a walking state.6,7 When the

droplet lands, it experiences a force with a horizontal component proportional to the slope

of the surface. Consequently, the droplet walks horizontally across the surface of the bath,

propelled by its own wave field.

For a bouncer to become a “walker,” the droplet must bounce at twice the driving fre-

quency of the bath, commensurate with the frequency of the most unstable (subharmonic)

mode of the Faraday instability.7 The walker then moves in resonance with its guiding or

‘pilot’ wave field. Each impact locally excites Faraday waves, with wavelength λF prescribed

by the standard water-wave dispersion relation, which then affect the walker’s subsequent

trajectory. The lifetime of these waves increases as γ approaches γF and is prescribed by

the memory parameter Me = Td/[TF (1 − γ/γF )], where Td is the decay time of the waves

in the absence of forcing and TF is the Faraday period. Thus, the walker has an associated

“path-memory” that increases as γ approaches γF .12

The walkers are notable in that they exhibit several phenomena reminiscent of quan-

tum mechanical systems. While claims of single-particle diffraction and interference8 have

been contested28, tunneling10,40, orbital quantization in both a rotating frame11,25,26 and

harmonic potential24,35, and wave-like statistics in confined geometries13,27,34 are all robust

quantum-like phenomena. This hydrodynamic pilot-wave system and its relation to real-

ist quantum theories, specifically, de Broglie’s double-solution pilot-wave theory4 and its

modern extensions29, were recently reviewed by Bush.30,31

Fort et al.11 demonstrated that when a droplet walks in a rotating frame, its inertial orbits
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become approximately quantized owing to the droplet’s interaction with its own wave field.

Oza et al.25 and Harris and Bush16 revisited this system theoretically and experimentally,

respectively. Linear stability analysis of the orbital pilot-wave solutions provided rationale

for the emergence of orbital quantization, as was manifest in bands of accessible orbital

radii.35 When the circular orbits destabilized, a variety of periodic, quasiperiodic, and chaotic

trajectories emerged.21 In the chaotic regime, it was found that coherent statistical structure

emerged in a trajectory’s local loop radius. In both numerical simulations and experiments,

the histograms of the loop radius had maxima corresponding to the zeros of the Bessel

function J0(kF r), where kF = 2π/λF is the Faraday wavenumber. This suggests that walkers

in the chaotic regime tend to make loops roughly quantized on half the Faraday wavelength

roughly, corresponding to the radii of the unstable circular orbits.25 Thus, the statistics

of a walker in the chaotic regime are dictated by the relative instability of the underlying

unstable orbital states.

We here present the results of a numerical investigation of droplets walking in the presence

of a central force. This work was inspired by the ingenious experiments of Perrard et al.24

and Labousse et al.20, in which a walking droplet containing ferrofluid was subjected to an

applied central force F = −kx, where k is the spring constant and x is the displacement

from the symmetry axis. In their experiments, Perrard et al.24 demonstrated that the walker

dynamics is highly dependent on the memory parameter Me. As memory was increased

progressively, predominantly stable circular orbits gave way to periodic and quasiperiodic

trajectories, many of which exhibited a double quantization of mean angular momentum and

mean radius. At high forcing acceleration, chaotic trajectories emerged and dominated the

dynamics. The authors showed that these chaotic trajectories could be decomposed into the

various unstable periodic states apparent at lower Me with intermediate transients.24 This

decomposition suggests that, in the chaotic regime, the walker switches between unstable

periodic orbits, the result being the emergence of a coherent statistical behavior. Perrard et

al.23 showed that chaotic trajectories found in experiments are characterized by transitions

between unstable periodic orbits. At high memory, the number of possible states increased.

A map of first return between successive maxima in radial extent revealed that the chaotic

trajectories essentially switch between circular orbits and lemniscates.23 Labousse et al.20

identify a separation in time scales to theoretically rationalize the self-organization of walkers

and the appearance of coherent structures within the dynamics. We here explore the walker’s
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chaotic dynamics in our numerical simulations and adopt the methodology of Durey and

Milewski (2017)38 in seeking evidence of double quantization in the chaotic regime.38

Labousse et al.35 investigated the linear stability of circular orbits executed by a walker

subject to a harmonic force. At low values of Me, circular orbits were found to be linearly

stable for all values of the initial radius35, which is consistent with the experimental results of

Perrard et al..24 As Me was progressively increased, discrete bands of accessible stable radii

emerged, separated by linearly unstable regions. These unstable regions represent solutions

that can destabilize via non-oscillatory or oscillatory instabilities.35 While the linear theory

agreed well with experiments in the stable regions, it often incorrectly predicted oscillatory

instabilities. This discrepancy may be rationalized in terms of stabilizing effects present in

experiments that were not captured by the theory.35 Specifically, the stabilizing influence of

variable bouncing phase has recently been demonstrated for orbiting walker pairs.39

The transitions to chaos for walkers in the presence of Coriolis, linear spring, and Coulomb

forces were characterized theoretically by Tambasco et al..36 It was shown that walking

droplets subject to either a Coriolis or Coulomb force transition to chaotic trajectories via

a standard period-doubling cascade, while walking droplets in a simple harmonic potential

transition in a manner akin to the Ruelle-Takens-Newhouse route to chaos.36 In our work,

we will focus on walkers in the presence of a linear spring force and explore further the

dynamics in both the periodic and chaotic regimes.

Our simulations are based on the stroboscopic model of horizontal walker dynamics de-

veloped by Oza et al.19, which is rooted in the theoretical framework of pilot-wave hydro-

dynamics developed by Molác̆ek and Bush.14,15 The stroboscopic model was developed by

time-averaging the force balance over the bouncing period, resulting in an integro-differential

equation. Milewski et al.32 and Blanchette33 developed models for pilot-wave dynamics based

on weakly viscous quasi-potential wave generation and evolution. Direct comparison with

measurements of surface wave profiles emphasized the importance of spatial damping in re-

covering the wave field far from impact.37 The effects of spatial damping were incorporated

into the stroboscopic model and shown to be important in the stability of orbiting walker

pairs.39 We proceed by implementing numerical simulations using the stroboscopic model

with spatial damping in order to explore the dynamics of a walker in a harmonic potential.

Durey and Milewski38 developed a model to analyze a variety of walking droplet systems,

including a walker in a harmonic potential. To analyze the chaotic high-memory regime, the
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authors introduced a K-means clustering approach. Specifically, a chaotic trajectory was

divided into subtrajectories corresponding to segments between successive local maxima in

the trajectory’s radius. The mean radius R and mean angular momentum Lz were calculated

along each subtrajectory and transposed to a single point in the (Lz, R) plane. Well-

separated clusters formed for each chaotic trajectory, which motivated the application of

K-means clustering.38 The centroids of each cluster were then combined on a separate plot

for varying spring constant k and showed an approximate double quantization in Lz and

R.38 Their study raised the intriguing possibility that the double quantization reported

by Perrard et al.24 is more pronounced in the chaotic than the periodic regime. We here

implement the K-means clustering technique in order to explore the statistical structure

underlying the chaotic regime.

In section II, we briefly summarize our theoretical model. In section III, we provide a

broad overview of the parameter space explored, indicating the regimes in which a variety

of periodic, quasiperiodic, and chaotic trajectories are observed. In section IV, we detail

several of the periodic and quasiperiodic trajectories, and their associated speed, radial

extent, and angular momentum. Section V focuses on a discussion of double quantization

in both the periodic and chaotic regimes. We conclude with a discussion of our results and

future directions.

II. MODEL

The numerical investigation presented herein is based on the stroboscopic model for

walker dynamics introduced by Oza et al.19 combined with an improved wave field model

that incorporates spatial damping39. A summary of the model is presented here, while the

details of its derivation are presented by Molác̆ek et al.15,36 and Oza et al.19 We consider a

droplet of mass m and radius Rd walking on the surface of a vertically vibrating fluid bath.

The bath is vibrated with forcing acceleration, γ cos(2πft), and the droplet is assumed to

bounce in resonance with the subharmonic frequency f/2. The droplet is subjected to the

external harmonic potential associated with the force F = −kxp, where xp = (xp(t), yp(t))

is the position of the droplet at time t and k is the spring constant. The horizontal motion

of the drop can be described by averaging the vertical dynamics over the bouncing period
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TF . The resulting trajectory equation describes the horizontal dynamics:

mẍp +Dẋp = −mg∇h(xp, t)− kxp, (1)

where D is the time-averaged drag coefficient and g is the gravitational acceleration. The

wave field is prescribed by the deflection of the bath’s free surface,

h(x, t) =
A

TF

∫ t

−∞
J0(kF |x− xp(s)|)e−α|x−xp(s)|2/(t−s)e−(t−s)/(TFMe) ds, (2)

Here, kF = 2π/λF is the wavenumber of the most unstable Faraday wave and can be cal-

culated numerically or approximated by the solution to the standard water-wave dispersion

relation (πf)2 = (gk + σk3F/ρ) tanh kFH.14,19 The parameter A is the peak wave amplitude

after a single impact, and α is the spatial damping coefficient.39 All relevant variables are

listed in Table I, and additional details may be found in Molác̆ek and Bush.15

The key control parameter in our simulations is the memory parameter Me = Td/[TF (1−

γ/γF )], which prescribes the longevity of the wave field. Effectively, we vary γ/γF to explore

a range of Me, since Td and TF are constant for a given bath of silicone oil driven at

a frequency f . Physical parameters are chosen to correspond to walkers of radius Rd =

0.37 mm and silicone oil of viscosity 20 cS, roughly consistent with the experiments of

Perrard et al..24 The dimensionless trajectory equation is solved numerically using a fourth-

order Adams-Bashforth time-stepping for (1) method combined with Simpson’s rule for the

integration in (2).21 Each trajectory is initialized as a bouncer at the origin xp(t) = 0 for

t < 0. This system is sensitive to initial conditions, as the walker selects an orbit based on

its history. For example, if initializing the walker in a circle, circular trajectories become

more common. Throughout this presentation, we maintain the choice of initializing as a

bouncer at the center.

The trajectory depends on the spring constant k and the forcing acceleration γ/γF , which

prescribes the walker’s path-memory. Varying both k and γ/γF gives rise to a variety of

periodic, quasiperiodic, and chaotic orbits that will be detailed in the following sections.

We give particular attention to characterizing the dependence on k and γ/γF of the mean

nondimensional radius defined by

R =

〈
|xp(t)|
λF

〉
, (3)

and mean non-dimensional angular momentum defined by

Lz =

〈
L

mλFV

〉
=

〈
xp
λF
× ẋp
V

〉
(4)

6



Simulations of pilot-wave dynamics in a simple harmonic potential

Variables Definition

xp(t) = (xp(t), yp(t)) drop position

u(t) = |ẋp(t)| speed of walker along trajectory

u0 free rectilinear walking speed

m, Rd drop mass, drop radius

(νe) ν (Effective15) fluid kinematic viscosity

σ fluid surface tension

ρ, ρa fluid density, air density

µa air dynamic viscosity

g gravitational acceleration

γ forcing acceleration

γF Faraday instability threshold

f forcing frequency

TF = 2/f Faraday period

Td ≈
λ2F
8π2ν

decay time of waves in absence of vibration

λF , kF Faraday wavelength, wavenumber

Φ mean phase of wave during contact

k, Ts =
√
m/k spring constant, spring time

D = 0.17mg
√

ρRd
σ + 6πµaRd

(
1 + ρagRd

12µaf

)
drag coefficient

Bw = ρg
k2F σ

Bond number

A =
√
8πνeTF

3
(kFR)3

3B−1
w +1

wave amplitude

F =
√

1.5795ν
2πTF

mgk4F
3k2F σ+ρg

mgTF sin Φ wave force coefficient

α = ε2

2νe(1+2ε2)
where ε = 2πfkF νe

g(3B−1
w +1)

wave spatial damping coefficient

Me = Td
TF (1−γ/γF ) , TM = TFMe memory parameter, memory time

κ = m
DTFMe

nondimensional mass

β = FkFTFM
2
e

D nondimensional wave force coefficient

χ = TFMek
D nondimensional spring constant

TABLE I. Variables present in trajectory equation (1)-(2) and quantities of interest (3)-(4).
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where 〈q〉 denotes the time-average of q over the entire trajectory and V = 〈|ẋp|〉 is the

mean speed.

III. REGIME DIAGRAM

We here explore the dependence of walker trajectories on the system parameters, namely

forcing acceleration γ/γF and dimensional spring constant k. In the absence of the wave

field, balancing the centripetal acceleration
(
mV 2/R

)
and the spring force (∼ kR) gives the

dimensionless width of the potential well Λ = (V
√
m/k)/λF ) ∼ R/λF . As the linear stabil-

ity of circular orbits in a harmonic potential was examined by Labousse et al.35, the focus

of this paper is on the nonlinear regime characterized by complex periodic, quasiperiodic,

and chaotic dynamics.

Our numerical exploration is summarized in Figure 1. Each color in parameter space cor-

responds to a particular type of trajectory. Open circles denote stable circular orbits. Green

dots correspond to wobbling trajectories characterized by a periodic oscillation in orbital

radius |xp|. Orange dots correspond to the stadium-like ellipses reported in the experiments

of Perrard et al..24 Blue and red dots represent trefoils and lemniscates, respectively, as were

also highlighted in the experiments.24 Yellow, purple, cyan, and gray dots correspond to

more complex periodic and quasiperiodic trajectories that were not reported by Perrard et.

al.24 We note that these trajectories reside in relatively narrow regions of parameter space

that may be difficult to access in a laboratory setting. Black dots denote chaotic dynamics

in which no coherent periodic structure is apparent. We note that the majority of the peri-

odic and quasiperiodic trajectories may be characterized in terms of either wobbling circular

orbits or wobbling and precessing periodic rectilinear motion.

We consider a range of forcing accelerations 0.93 ≤ γ/γF ≤ 0.98 consistent with that

considered by Perrard et al..24 For spring constant 0.1 < k < 5.8 µN/m, all circular orbits

are stable for γ/γF < 0.932. At moderate spring constant 1 < k < 3 µN/m and moderate

forcing acceleration 0.94 < γ/γF < 0.97, various periodic and quasiperiodic trajectories

arise prior to the transition to chaos. For larger k > 3 µN/m, the transition from circular

to chaotic trajectories is relatively abrupt. The range 0.1 ≤ k ≤ 5.8 µN/m was sufficient to

capture a variety of quasiperiodic and chaotic trajectories.

The dashed curve in Figure 1 corresponds to
√
m/k = Td/(1 − γ/γF ). Above this
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FIG. 1. (a) Dependence of simulated trajectories on vibrational forcing γ/γF and dimensional

spring constant k over the range 0.93 ≤ γ/γF ≤ 0.98 and 0.1 ≤ k ≤ 5.8 µN/m with resolution

∆(γ/γF ) = 0.0016 and ∆k = 0.3 µN/m. Open circles correspond to stable circular orbits and

black dots to chaotic trajectories. Colored dots denote the various periodic and quasiperiodic

orbits categorized in (b). The numbers in (a) correspond to the specific trajectories in (b). The

dashed line denotes the locus of the curve
√
m/k = Td/(1− γ/γF ), above which the memory time

exceeds the characteristic crossing or orbital time, TM > Ts.

curve the characteristic crossing or orbital time Ts =
√
m/k is less than the memory time

TM = Td/(1 − γ/γF ), so the drop is influenced by waves generated along the entirety of

its last crossing or orbit. We note also that for k & 4mu20/λ
2
F ≈ 3.6 µN/m, the range of

the drop R = u0
√
m/k is generally less than the characteristic structure of the wave field

λF/2, eliminating the possibility of the orbital structure required for double quantization.

We proceed by presenting a detailed account of the various trajectories observed numerically

in Figure 1.

IV. PERIODIC AND QUASIPERIODIC TRAJECTORIES

The most prevalent trajectories reported in the experiments corresponded to circles, tre-

foils, and lemniscates.24 The parameter regimes in which these trajectories were observed in
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(a) (b)

FIG. 2. (a) An example of one period of a quasiperiodic trefoil trajectory for γ/γF = 0.9448 under

the influence of a harmonic potential with k = 2.5 µN/m, corresponding to Λ = 0.5459. (b) An

example of a purely periodic lemniscate trajectory arising for γ/γF = 0.9516 and k = 2.2 µN/m,

corresponding to Λ = 0.5893. Accompanying panels show the time evolution of the dimensionless

distance from the origin R and the dimensionless angular momentum Lz, as defined in (3)-(4).

Average values are indicated by red lines, and u0 denotes the free-walking speed. Here, T is one

orbital period and V is the mean speed. Trajectories are color-coded according to walker speed

nondimensionalized by the free speed, u/u0. Arrows indicate direction of motion.

our numerical simulations are indicated in Figure 1. We define quasiperiodic trajectories as

those whose structure rotates about the center, corresponding to a periodic motion with a

precessional component, an example being the trefoil evident in Figure 2. We define chaotic

trajectories as those arising following the Ruelle-Takens-Newhouse-type transition to chaos

characterized by Tambasco et al.36 Figure 2 shows examples of trefoil and lemniscate trajec-

tories along with the time-evolution of the corresponding nondimensional radius R/λF and

nondimensional angular momentum Lz = (xp × ẋp)/(V λF ) over several orbital periods T ,

as well as their mean values, R and Lz.

Figure 3 shows several examples of periodic and quasiperiodic trajectories found numer-

ically. The trajectory in Figure 3(a) is an elliptic orbit corresponding to the orange dots

in Figure 1. Trajectories shown in Figures 3(b), (c), and (d) were not reported in the

experiments24 and exist only in very limited regions of parameter space (see Figure 1). We

note that the trajectory in Figure 3(b) can be thought of as a period-doubled realization of

a lemniscate (Figure 1 (red)), that in Figure 3(c) as a period-doubled realization of Figure

3(b). The droplet speed is seen to vary by approximately 60% along the trajectories, sug-

gesting that the assumption of constant speed in the calculations of Perrard et al.24 may not
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(d)

(c)

 -0.8

0.5

1

FIG. 3. Periodic and quasiperiodic trajectories found numerically. Trajectories are color-coded

according to the walker speed u(t). Accompanying panels show the evolution of the dimensionless

orbital radius R and angular momentum Lz of each trajectory. T is the orbital period for each

trajectory and V is the mean speed. The horizontal red lines denote mean values of each quantity,

and u0 denotes the free-walking speed of a straight-line walker. The relevant parameter values for

each trajectory are as follows: (a) γ/γF = 0.9618, k = 1.9 µN/m, Λ = 0.6962; (b) γ/γF = 0.9595,

k = 2.2 µN/m, Λ = 0.6227; (c) γ/γF = 0.9664, k = 2.2 µN/m, Λ = 0.6413; (d) γ/γF = 0.9459,

k = 2.8 µN/m, Λ = 0.4983. Arrows indicate direction of motion.

have been entirely justified. Generally, the walker slows down as it approaches an extremity

in radius and then accelerates towards the center as its potential energy is converted into

kinetic energy. We next explore the nature of the quantization in mean radial extent and

mean angular momentum for these periodic trajectories.

V. QUANTIZATION OF MEAN RADIUS AND ANGULAR MOMENTUM

We first explore the extent to which quantization of the mean radius and angular mo-

mentum of periodic and quasiperiodic trajectories is recovered by our numerical model. We

then apply the methodology introduced by Durey and Milewski38 to elucidate the statistical

structure emerging in the chaotic regime.

Using the same color scheme as in the regime diagram, Figure 4 shows the relationship

between mean radius and mean angular momentum (defined, respectively, in (3) and (4)) for
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FIG. 4. The dimensionless mean radius R and mean angular momentum Lz for the periodic and

quasiperiodic trajectories observed for γ/γF > 0.95. The linear stability analysis of Labousse et

al.35 demonstrates that quantization is largely absent for lower values of γ/γF . Data has been

symmetrized about Lz = 0.

all periodic and quasiperiodic orbital trajectories observed in the region of parameter space

with γ/γF > 0.95. We choose this range of γ/γF as quantization of circular orbits is not

present for lower values of memory.35 The horizontal grid lines correspond to the successive

zeros of J0(kF r) which roughly correspond to the radii of stable circular orbits.35 In the

approximation |ẋp| ∼ V , which is valid for circular orbits, equation (4) implies that Lz ∼ R;

consequently, we also choose the vertical grid lines corresponding to the successive zeros of

J0(kF r).

Note that circular orbits, depicted on the diagram by black open circles, are quantized

in both mean radius and angular momentum, which is consistent with the linear stability

analysis of circular orbits.35 By symmetry, lemniscate trajectories (red) have approximately

zero mean angular momentum, which is also evident in Figure 2(b). Lemniscates appear in

two main groups, though they are less sharply quantized in R than circular orbits. As in the

laboratory experiments24, trefoil trajectories are confined to a limited region in the (Lz, R)

plane. The data for trefoils explores a narrow range of values in Lz but is spread out in R,
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(a) (b)

FIG. 5. Decomposition of chaotic trajectories into quasiperiodic components. The trajectories

arise for (a) γ/γF = 0.9470, k = 3 µN/m, Λ = 0.4717 and (b) γ/γF = 0.9675, k = 3 µN/m,

Λ = 0.5733. In (a), a lemniscate (red) and period-doubled lemniscate (blue) are apparent, while a

drifting loop (green) is apparent in (b).

suggesting a sharper quantization in mean angular momentum than in mean radial extent.

The groupings of data for the other trajectories show similar behavior with the exception of

wobbling trajectories (green) which exhibit considerable scatter in both quantities.

For high forcing acceleration (γ/γF > 0.975), predominantly chaotic trajectories are

observed for a wide range of spring constants k. As in the experiments24, unstable periodic

and quasiperiodic orbits could be identified within chaotic trajectories (Figure 5), suggesting

the presence of some coherent underlying statistical behavior. Specifically, in Figure 5(a),

we identify a lemniscate (red) and period-doubled lemniscate (blue), while in Figure 5(b),

a drifting precessing loop is apparent within the chaotic trajectory. Figure 6(a) shows the

time series of the orbital radius from the trajectory shown in Figure 5(a), while Figure

6(b) shows the corresponding angular momentum. Figure 6(a) shows the rapid variations

in radius while Figure 6(b) highlights the trajectory’s chaotic switching between clockwise

(Lz < 0) and counterclockwise (Lz < 0) paths. A similar set of time series shown in Figure

7 corresponds to the trajectory in Figure 5(b).

For a given chaotic path, we follow Durey and Milewski38 in defining subtrajectories as
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FIG. 6. Time series of (a) the dimensionless orbital radius R and (b) dimensionless angular mo-

mentum Lz for the chaotic trajectory in Figure 5(a) with γ/γF = 0.9470, k = 3 µN/m, Λ = 0.4717.

The red and blue portions in each panel correspond to the red and blue path segments highlighted

in Figure 5(a). The yellow boxes are expanded below.
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FIG. 7. Time series of (a) the dimensionless orbital radius R and (b) dimensionless angular mo-

mentum Lz for the chaotic trajectory in Figure 5(b) with γ/γF = 0.9675, k = 3 µN/m, Λ = 0.5733

The green portion in each panel corresponds to the green section highlighted in Figure 5(b). The

yellow boxes are expanded below.

segments of the total trajectory arising between successive local maxima in radius |xp(t)| and

weight each subtrajectory by its number of time steps. We note that such subtrajectories

are generally different for each type of periodic or quasiperiodic trajectory. For example,

between successive maxima of a stable lemniscate, one obtains two segments, each with zero
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(a) (b)
F

FIG. 8. (a) A chaotic trajectory is sliced into successive red and green subtrajectories. The color

along the trajectory changes from red to green or vice versa whenever a local maximum in radial

extent |xp(t)| is achieved. Here γ/γF = 0.971, k = 0.74 µN/m, and Λ = 1.132. (b) Example of

clustered data from subtrajectories along the chaotic trajectory in (a). Each blue circle, (Lz, R)

pair, corresponds to a particular subtrajectory. Each red circle denotes the centroid of a cluster

determined using the K-means algorithm. The overlying trajectories in black correspond to the

periodic and quasiperiodic states shown in Figure 4. The grid lines are the same as those used in

Figure 4.

average angular momentum. Conversely, subtrajectories of a stable trefoil correspond to

three identical segments of nonzero average angular momentum.38 This classification allows

us to decompose the chaotic trajectories into subtrajectories associated with the periodic and

quasiperiodic trajectories of Figure 4. A visual description of our methodology for defining

subtrajectories is given in Figure 8. The complete trajectory is plotted in gray, while several

subtrajectories are plotted in an alternating pattern of red and green. The color along the

trajectory changes whenever a local maximum in radial extent |x(t)| is achieved. Along

each such segment, the mean radius R and mean angular momentum Lz are calculated.

Each subtrajectory then corresponds to a single data point in the (Lz, R) plane, denoted

by blue circles in Figure 8(b). The red data points in Figure 8(b) denote the centroids of

the resulting clusters deduced using the K-means clustering algorithm,38 which minimizes
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the Euclidean distance between points in each cluster given a prescribed number of clusters

K.2,3

With a view to quantifying the effect shown in Figure 5, we follow Durey and Milewski38

in applying the K-means clustering algorithm to subtrajectories within the chaotic regime.

The appropriate value for K can typically be determined by direct observation as in Figure

8(b). To do this rigorously, several statistical techniques are available to identify an optimal

K-value, of which we use the silhouette method.3,17 This method introduces the silhouette

width, which quantifies both the tightness of each cluster and their separation from other

clusters.17 To identify the best number of clusters K to use for a given data set, we use the

value of K in the interval 1 ≤ K ≤ 6 that maximizes the average silhouette width. Figure 8

shows an example of K-means clustering where K = 3 yielded the largest average silhouette

width.

Figure 9 is a collection of such centroids from chaotic trajectories arising at fixed forcing

acceleration γ/γF = 0.971 and with spring constant varying over the range 0.1 ≤ k ≤ 5.8

µN/m, corresponding to the range explored in the regime diagram. The trajectories that

produced centroids with largest average radii correspond to small spring constants: as the

spring constant is increased progressively, the central force prohibits the droplet from walking

far from the origin. Specifically, the blue, red, and green markers denote spring constants

in the range k < 0.57 µN/m, 0.57 ≤ k < 1.36 µN/m, and k ≥ 1.36 µN/m, respectively.

Note that the centroids cluster in distinct groups. This grouping suggests that, while the

individual trajectories exhibit chaotic behavior, an underlying statistical structure is present,

reflecting the dynamic constraint imposed on the droplet by its pilot-wave field. The black

trajectories identify the periodic base states within the chaotic trajectories and roughly

correspond to the locations of those in Figure 4.

For smaller spring constants than considered here, one might assume that the vertical axis

in Figure 9 could be extended to larger values of R to reveal more clusters; however, such is

not the case. The double quantization emerges as a result of the competition between the

the spring force and the wave force. When the spring constant becomes small, the range of

drop motion or orbital radius R ∼ u0
√
m/k becomes large. The characteristic time scale of

the walker’s trajectory Ts =
√
m/k may then exceed the memory time TM = Td/(1−γ/γF ).

The dashed line in Figure 1 denotes the locus of the curve Ts = TM above which the drop

is influenced by waves generated along the entirety of its last crossing or orbit. We note
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FIG. 9. (Red) Centroids of clusters for chaotic trajectories at γ/γF = 0.971, for spring constants

in the range 0.1 ≤ k ≤ 5.8 µN/m, with corresponding Λ in the range 0.3986 ≤ Λ ≤ 3.254. The

blue, red, and green markers denote spring constants in the range k < 0.57 µN/m, 0.57 ≤ k < 1.36

µN/m, and k ≥ 1.36 µN/m, respectively.

that the orbital structure associated with the double quantization is also precluded at large

k, when the range R becomes less than the characteristic scale of the wave field λF/2.

Specifically, k & 4mu20/λ
2
F ≈ 3.6 µN/m in Figure 1.

VI. DISCUSSION

We have numerically simulated an integro-differential trajectory equation that describes

the horizontal motion of a walker in a harmonic potential. While we have reported here the

results for a single drop size, we numerically simulated walkers of several other drop sizes

and found that the qualitative behavior is the same. Our results are summarized in a regime

diagram (Figure 1) that illustrates the dependence of the form of the walker’s trajectory

on system parameters. We obtain trajectories similar to those reported in the laboratory

experiments of Perrard et al.24, including circles, trefoils, lemniscates, and ellipses. We also
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find trajectories that were not reported, such as those shown in Figure 3. We note that these

trajectories were found in relatively narrow regions of parameter space and can be viewed

as period-doubled versions of experimentally observed trajectories.

While the numerical simulations recovered qualitative features of the experiments, quan-

titative discrepancies still remain. These may arise from model failings in the high-memory

regime where chaotic bouncing states may arise, so the assumption of a period-doubled walk-

ing state may be invalid and phase changes in the walker’s vertical dynamics may become

dynamically significant.15,18 Another possible source of discrepancy with the experimental

results is the experimental variability in drop size. The drop size used in experiments was

not reported, which may have introduced errors in the reported values of Lz. In addition,

the potential used in the experiments was approximated to be harmonic up to ∼ 3λF ,

whereas we impose a harmonic potential everywhere in the simulations. This may lead to

discrepancies in the form of the far-field potential and hence the droplet dynamics.

We also conducted a series of simulations aimed at characterizing the sensitivity of our

system to both the assumed form of the wave field and the system parameters. First, we

examined the influence of spatial damping on the system behavior by running simulations

for a wave field (2) without the spatial damping term. While quantitative differences in

the resulting regime diagram relative to Figure 1 arose, the general behavior was similar,

with analogous periodic and quasiperiodic trajectories emerging at low memory and double

quantization in the high memory, chaotic regime. Similarly, running simulations for a dif-

ferent drop size (Rd = 0.4 mm) yielded qualitatively similar results. We thus conclude that

the gross features elucidated herein, particularly the double quantization emerging in the

chaotic regime, are not peculiar to the specific parameter regime or wave model considered,

but are rather a robust feature of pilot-wave hydrodynamics in a simple harmonic potential.

We note that the two-dimensional quantum harmonic oscillator exhibits a particular

double quantization in energy E and angular momentum Lz. Specifically, for a given spring

constant k and associated vibrational frequency ω =
√
k/m, the stationary states have E =

(n+ 1)~ω and Lz = j~, where n is a non-negative integer and j = −n,−n+ 2, . . . , n− 2, n.

That is, different quantized energy levels may be accessed for a fixed value of the spring

constant, and the corresponding angular momenta |Lz| ≤ E/ω are quantized in steps of

2~. The quantization of mean radial extent and mean angular momentum in our system is

different, owing to the fact that a walker has a prescribed free walking speed u0. A walker’s
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radial extent is roughly prescribed by the balance of centripetal acceleration mu20/R and

restoring force kR, so R ∼ ωu0 in the walker system; consequently, it is necessary to vary

the spring constant k in order to realize different values of R.

The double quantization arises for periodic orbits when the memory time exceeds the

characteristic orbital period and when the orbital range exceeds the characteristic scale of

the wave field. Similarly, in the chaotic regime, the memory time must exceed the charac-

teristic crossing time. The trajectories can then be decomposed into unstable quasiperiodic

trajectories along with intermittent transients. Our study provides further evidence for the

manner in which a coherent statistics may emerge from chaotic pilot-wave dynamics in a

central force, as was suggested in the original studies20,24 and by the recent work of Durey

and Milewski.38

The chaotic trajectories on our system seem to be approximately quantized according to

the rule (Lz, R) = (j, n) where j = −1, 0, 1 and n = 1, 2, 3, which is different from the double

quantization of energy and angular momentum in the two-dimensional quantum harmonic

oscillator. Durey and Milewski38 (Fig 12) observed similar clusters to ours for n = 1 and

2, but not for n = 3. They also observed clusters for R = Lz = 1.5 and R = Lz = 2.5,

corresponding to circular arcs which were not observed in our simulations. However, they

failed to observe clusters at other half-integer values of R and Lz. While the gross features of

the double quantization reported in the experiments of Perrard et al.24 have been captured

by the results of both Durey and Milewski38 and our study, these theoretical studies suggest

that the details of the double quantization observed in this hydrodynamic pilot-wave system

are sensitive to the specifics of the wave model. The possibility remains that a sharper, more

quantum-like quantization may emerge in a different pilot-wave system.

In future work, we plan to apply the methodology of Durey and Milewski38 to the chaotic

trajectories of walkers under the influence of a Coriolis force9,21,22 with a view to seeking a

similar double quantization in that system. We will also apply this technique more broadly

to pilot-wave systems with different external forces and geometries, with a view to better

understanding the emergent statistics of chaotic pilot-wave dynamics.
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