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Viscous fingering–the fluid-mechanical instability that takes place when a low-7

viscosity fluid displaces a high-viscosity fluid–has traditionally been studied under8

either fully miscible or fully immiscible fluid systems. Here we study the impact9

of partial miscibility (a common occurrence in practice) on the fingering dynamics.10

Through a careful design of the thermodynamic free energy of a binary mixture,11

we develop a phase-field model of fluid-fluid displacements in a Hele-Shaw cell for12

the general case in which the two fluids have limited (but nonzero) solubility into13

one another. We show, by means of high-resolution numerical simulations, that14

partial miscibility exerts a powerful control on the degree of fingering: fluid dissolu-15

tion hinders fingering while fluid exsolution enhances fingering. We also show that,16

as a result of the interplay between compositional exchange and the hydrodynamic17

pattern-forming process, stronger fingering promotes that the system approach ther-18

modynamic equilibrium faster.19
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I. INTRODUCTION20

When a less viscous fluid displaces a more viscous fluid, the contrast in viscosity desta-21

bilizes the fluid-fluid interface, leading to the formation of viscous fingers [1–3]. Fluid-fluid22

miscibility plays an important role in the fingering dynamics, and the fingering pattern can23

change appreciably based on the miscibility of two fluids. Thus, the subject is traditionally24

divided into immiscible and miscible viscous fingering. In both cases, it is viscous forces25

that drive the hydrodynamic instability. When two fluids are immiscible, surface tension26

stabilizes short-wavelength perturbations at the interface, allowing some proto-protrusions27

to spread readily, resulting in less ramified patterns [3–5]. When the two fluids are fully28

miscible, the absence of surface tension suggests a more intense fingering pattern, as demon-29

strated by experiments [3, 5–7] and simulations [8–12]. Nevertheless, without surface tension,30

complete suppression of the onset of miscible viscous fingering is possible under certain un-31

favorable viscosity contrast [6, 13] due to 3D effects. Beyond the onset regime, [7] has shown32

that molecular diffusion along the interface leads to shutdown of instability at late times33

during radial injections. Further, it has been suggested that Korteweg stresses and other34

non-equilibrium surface tension effects can act to stabilize miscible displacement [14–17].35

Despite the conventional categorization into fully immiscible and fully miscible, the mis-36

cibility of two fluids can vary based on local conditions such as pressure and temperature37

[18]. Between the two extremes lie fluid pairs that are partially miscible, exhibiting lim-38

ited, but nonzero, solubility into each other. For such fluid pairs, compositional effects are39

introduced to two-phase problems where component exchange between phases occurs even40

in the presence of surface tension. This effect is relevant, for instance, during immiscible41

gas-in-oil injection for oil recovery where the gas and oil can become partially miscible under42

high pressure reservoir conditions, leading to swelling of the oil phase and enhanced recovery43

[19]. Under this context, the coupling of viscous fingering with thermodynamic effects could44

provide new insights to controlling of the viscous instability, which has received increased45

attention in recent studies [12, 20–24]. Additionally, addressing the role of compositional46

effects in low Reynolds number two-phase flows is also essential to our understanding of47

mixing in multiphase mixtures [25], biological cell assembly [26] and geologic sequestration48

of CO2 [27].49

Our current understanding of viscous fingering with partially miscible fluids is very lim-50
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ited. In an effort to address this gap, an experimental study on viscous fingering with51

partially miscible fluids is performed recently [28]. The experiments use a ternary system52

made of water, PEG and Na2SO4 to produce viscously-contrasting fluid pairs that are fully53

miscible, immiscible or partially miscible. The experiments provide an excellent illustration54

on how thermodynamic effects can exert a powerful control on hydrodynamic instabilities:55

as the fluid pairs transition from being immiscible to partially miscible, the authors observe56

that formation of droplets become more common than formation of fingers. The detailed57

mechanisms behind the droplets formation remain to be understood. On the modeling front,58

a recent study [29] investigated radial injection under different fluid miscibility conditions59

using a Darcy-Cahn-Hilliard model, where the fluid miscibility is prescribed through the60

design of a Cahn-Hilliard type free energy [30]. Though the model is limited in its ability61

to explore the truly partially miscible regime, where one would expect to see effects such as62

finger swelling due to supersaturation, the study provides a consistent comparison between63

immiscible and miscible viscous fingering to demonstrate the role of compositional effects64

in controlling the vigor of the instability. As presented in earlier work [7, 14], the study65

confirms that the degree of fingering instability, as measured by interface length, peaks at a66

transition time followed by a decay due to diffusive mixing at the interface for miscible sys-67

tems; in immiscible simulations, however, where surface tension is present and component68

diffusion is negligible, a decay in interfacial length is not observed [29].69

In this work, we study the interplay between hydrodynamics and nonequilibrium com-70

positional effects in partially miscible systems. To develop new insights into the physics of71

a nonlinear hydrodynamic instability out of thermodynamic equilibrium, here we develop72

a 2D gap-averaged model, in the spirit of a large body of literature on Hele-Shaw flows73

for both miscible and immiscible fluids [8, 11, 12, 20, 22, 23, 31–36]. While a full 3D flow74

model might be desirable to eventually provide a more detailed description of the flow (as75

is the case for fully miscible [6, 13, 37–42] and fully immiscible systems [35, 36, 43–45]), it76

should build on the insights of the nonlinear analysis in 2D. We adopt a phase-field modeling77

approach, which has been successful at describing immiscible two-phase flow in Hele-Shaw78

geometry [35, 36, 46–52] and in porous media [53] and, more recently, the coarsening dynam-79

ics of partially miscible binary mixtures under viscous fingering [54]. Under the phase-field80

framework, the design of thermodynamic free energy allows us to readily incorporate partial81

miscibility into multiphase flow. In its minimal description, the free energy of a two-phase82
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two-component mixture follows the Cahn-Hilliard form [30], formulated as a functional of83

component concentration and its gradients. Under the Cahn-Hilliard framework, fluid phase84

is inferred from component concentration, and not independently described. This approach85

is successful in capturing the dynamics of binary mixtures with fast phase-transition time86

scale (e.g. immiscible fluids) [29, 55–60]. In contrast, our proposed model [54] allows fluid87

concentrations to evolve independently from the phase variable, in order to capture the88

essence of partially miscible systems, where components can exchange between the two89

phases at time scales comparable to that of flow. During injection, the evolution of the90

invading phase variable (e.g. volume fraction of the invading phase) is driven by viscous91

instability, accompanied by redistribution of composition between phases and phase trans-92

formations that are driven by chemical potentials. Capturing the duality of the dynamics93

requires having separate evolution equations for phase and concentration, and defining a94

free energy that is a function of both variables. Similar two-field formulations have been95

extensively adopted for the simulation of binary alloys solidification [61], but, thus far, not96

for interfacial flows with compositional effects. With this more general framework, we are97

able to investigate the two-way coupling between hydrodynamics (viscous fingering) and98

thermodynamics (compositional exchange between phases and phase transformation). We99

apply our model to the viscous fingering problem in a rectangular Hele-Shaw cell, where100

initially a gas band is surrounded by a liquid (Fig. 1, left). Gas fingers are then created101

by pushing the gas band leftwards with an imposed constant flux of the liquid phase of the102

same initial composition (Fig. 1, right).103
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FIG. 1. Displacement of a gas band through liquid phase in a Hele-Shaw cell: (a) initial set up (b)105

the displacement leads to viscous fingering due to viscosity contrast. Meanwhile, compositional106

exchange occurs along the fingering interface if the two fluids are out of thermodynamic equilibrium.107

For example, in this sample image, the liquid phase is initially supersaturated with respect to gas108

and will swell the gas fingers as they evolve (see Sec. IV A). The blue dashed box indicates the109

area of study in our discussions.110
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II. MATHEMATICAL MODEL111

In our recent work [54], we propose a phase-field model of two-phase Darcy flow with two-112

component transport. Here we provide an extended and detailed description of the model113

and use it to study the problem described in Fig. 1. Without loss of generality, we focus on114

a binary mixture that is an analogy for a CO2(g)-water(l) system. The two fluids, denoted115

gas (g) and liquid (l), have different viscosities with µl > µg. Upon contact, they seek to116

reach compositional equilibrium through mutual component exchange. The result should be117

a gas phase that is rich in the primary component (e.g. CO2) and a liquid that is rich in the118

secondary component (e.g. H2O). We introduce two variables, defined pointwise, to describe119

the state of the binary mixture: the gas volume fraction, φ, is a nonconserved quantity due120

to dissolution/expansion of the gas phase; the molar fraction of CO2, c, is conservative in121

the entire domain. The model describes the evolution of φ and c when the binary mixture122

is subjected to hydrodynamic instabilities.123

A. Phase-field modeling of two-phase Darcy flow with compositional effects124

We introduce the following dimensional governing equations to describe incompressible,125

isothermal, two-phase flow with two-component transport in a Hele-Shaw cell, with a uniform126

gap thickness b:127

∇ · u = 0, u = − k

µ(φ)
∇P, (1)

∂φ

∂t
+∇ · (uφ) + λφΨφ = 0; (2)

∂c

∂t
+∇ · (uc)−∇ · (λc∇Ψc) = 0. (3)

Equations (1) are the continuity equation for an incompressible mixture and Darcy’s law,128

where u is the mixture velocity, P is a kinematic pressure, k is a constant permeability and129

µ is the mixture viscosity, assumed to follow an exponential dependence on phase fraction,130

µ(φ) = µgexp(R(1− φ)), where R = log(µl/µg) is the viscosity contrast.131

In the context of phase-field modeling, we understand φ also as a phase variable, which132

takes a value of 1 in the gas and 0 in the liquid, and interpolates smoothly between the two133
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bulk phases over a well-resolved, diffuse numerical interface. Time evolution of φ simulates134

gas dissolution/exsolution [Eq. (2)], and can be considered a relaxation process towards a135

minimum of the free energy function of the system F [62]. The gradient towards minimiza-136

tion, obtained by taking the variational derivative of F with respect to φ, can be understood137

as a phase potential that drives phase-transformations:138

Ψφ ≡ δF/δφ = ∂F/∂φ−∇ · [∂F/∂(∇φ)]. (4)

The dynamics of phase transformation [Eq. (2)] are formulated using Allen–Cahn dynam-139

ics [63]. The evolution of c is described by a nonlinear advection–diffusion equation [Eq. (13)],140

where the component diffusion is driven by gradients in chemical potentials, defined similarly141

to Eq. 4:142

Ψc ≡ δF/δc = ∂F/∂c−∇ · [∂F/∂(∇c)]. (5)

In Eqs. (2) and (3), λφ and λc are mobilities for φ and c respectively. Here we assume that143

both mobilities are only a function of c:144

λφb2 = λc =
D/ν

RidealT
(c(1− c) + 0.01), (6)

where D is the diffusion coefficient, ν is the molar density, Rideal is the ideal gas constant145

and T is temperature (assumed constant here). We define the characteristic composition146

mobility as:147

λc =
D/ν

RidealT
, (7)

and the characteristic phase mobility as:148

λφc =
D/ν

b2RidealT
. (8)

B. Design of free energy149

The free energy functional F (φ, c) plays a central role in the thermodynamic behavior150

of our binary mixture. Following the classical Cahn–Hilliard formulation for a binary sys-151
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tem [30], our F subsumes interfacial and bulk energy contributions:152

F (φ, c) =

∫
V

{
1

2
ε2φT (∇φ)2 +

1

2
ε2cT (∇c)2 + ωTW (φ)

+ ωmixT [fl(c)(1− g(φ)) + fg(c)g(φ)]

}
dV.

(9)

The first two terms in Eq. (9) capture the interfacial energy associated with phase and

compositional boundaries. The characteristic interfacial energy per unit volume associated

with φ and c are ε2φT and ε2cT respectively. The third term is the part of the bulk free

energy responsible for phase separation, where W (φ) = 1
4
φ2(1 − φ)2 adopts the shape of

a double-well, determining the two stable states of F : φ = 0 or φ = 1. Here, ω is the

energy (per unit volume) associated with the double-well energy. The last term, known as

the bulk mixing energy, is the part of the bulk free energy responsible for partially miscible

behavior. We adopt a form for mixing energy that is commonly used in the field of binary

alloy solidification [64], where the energy is an interpolation in φ between liquid and gas

excess energies (fl and fg), which are functions of c only. Here, ωmixT is the energy (per

unit volume) associated with mixing. The interpolation function g(φ) = −φ2(2φ−3) satisfies

that the system approaches the stable states φ = 0, 1 with zero slope, which ensures positivity

of the phase variable [64]. The excess free energy of each phase are due to compositional

effects; here we adopt the Wilson model [65]:

fl(c) =c log c+ (1− c) log(1− c)

− c log(c+ αl(1− c))− (1− c) log(1− c+ βlc),

fg(c) =c log c+ (1− c) log(1− c)

− c log(c+ αg(1− c))− (1− c) log(1− c+ βgc), (10)

where αl, αg, βl and βg are assigned parameters. The equilibrium concentrations within153

each phase are then obtained by the common tangent construction of fl and fg [66, 67]154

(Fig. 2). Note here that both fl(c) and fg(c) are dimensionless.155156
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FIG. 2. Common tangent construction: here we assign the parameters in Eq. (10) as αl = 2×10−7,

βl = 2×104, αg = 200, βg = 2×10−4 so that the common tangent construction yields the equilibrium

composition of the two fluids : ceqg ≈ 0.89, ceql ≈ 0.33

C. Scaling analysis157

We identify the following characteristic scales in our system: ε2φT/b
2 is the characteristic158

energy, b is the length scale, tc = b/uc is the characteristic time with uc = (kc∆pc)/(µgb),159

where kc, ∆pc are the characteristic permeability and pressure drop respectively. Addi-160

tionally, we introduce λc as the characteristic composition mobility [Eq. (7)] and λφc as the161

characteristic phase mobility [Eq. (8)]. In its dimensionless form, the system of equations162

reads:163

∇ · u = 0, u = − 1

µ(φ)
∇P, (11)

∂φ

∂t
+∇ · (uφ) +

1

Ca
λΨφ = 0, (12)

∂c

∂t
+∇ · (uc)− 1

Pe
∇ · (λ∇Ψc) = 0. (13)

where µ(φ) = eR(1−φ) and λ = 0.01 + c(1 − c). The first dimensionless group, the capillary164

number Ca, sets the ratio between time scales associated with phase change and advection:165

Ca = (ucb)/(λ
φ
c ε

2
φT ), (14)

where ε2φT/b is the interfacial tension. We expect that Ca controls the characteristic length166

scale of the instability pattern, such that the characteristic length decreases with increasing167
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Ca [54]. The second dimensionless group, the Péclet number, sets the ratio between rate of168

advection and diffusion:169

Pe = (ucb)/(λcε
2
φT ). (15)

Pe controls the rate of diffusion within a single phase, and therefore directly affects the rate of170

gas dissolution/exsolution. We expect that for large values of Pe, the finger morphology will171

approach that of an immiscible system. In dimensionless form, the free energy is described172

with three additional dimensionless groups:173

F (φ, c) =

∫
V

{
1

2
(∇φ)2 + ε

1

2
(∇c)2 +

1

Ch
W (φ)

+
1

Ma
[fl(c)(1− g(φ)) + fg(c)g(φ)]

}
dV.

(16)

We introduce the third dimensionless group as the ratio between the two energy scales174

associated with compositional and phase boundaries:175

ε = ε2c/ε
2
φ. (17)

An increase in ε would mean that the numerical profile of concentration (c) becomes sharper176

and the numerical profile of phases (φ) becomes smoother. The fourth group is the Cahn177

number, which controls the thickness of the numerical interface:178

Ch = (ε2φ/b
2)/ω. (18)

A larger Ch would require more grid points to resolve the fluid-fluid interface. Phenomeno-179

logically, a larger Ch also corresponds to a system with larger surface tension. Finally,180

we define a solutal Marangoni number, which sets the ratio between interfacial energy and181

mixing energy:182

Ma = (ε2φ/b
2)/ωmix. (19)

As Ma increases, the system becomes dominated by interfacial effects and we expect non-183

equilibrium thermodynamics to play a weaker role in the pattern forming process.184
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III. PROBLEM SETUP AND NUMERICAL METHODS185

We conduct high-resolution numerical simulations of our model for the problem described186

in Fig. 1, in which we displace a band of less viscous gas through the more viscous ambi-187

ent liquid under a constant flux of liquid of the same initial composition. Our simulations188

are on a domain of size 200×80 (Lx × Ly) and parameter values Ch=1/2000, Ma=1/200189

and ε=200 (and parameters of the Wilson model given in Fig. 2). We perform a straight-190

forward calculation of Ca and Pe in order to mimic an experimental fluid pairs analogous191

to water and methane gas (weakly soluble in water). We approximate the typical injection192

rate in a rectilinear geometry to be U = 1.9 × 10−3cm/s, based on the values reported in193

[44]. The surface tension is take as that of water and air at room temperature: ε2φT/b = 72194

dyn/cm. The diffusion coefficient of gas in water at 25◦C is taken from [68] as D = 2×10−5195

cm2/s. The molar density of pure water is about 0.056 mol/cm3, and that of gas is about196

0.00005 mol/cm3. Here we take an intermediate value of 0.01 mol/cm3 for ν. Based on197

these values, we calculate that λφc = 1.29× 10−5cm3/(J · s) and λc = 8.1× 10−7cm5/(J · s).198

The key dimensionless parameters in our system are computed as: Ca = U/(λφc γ) ≈ 2 and199

Pe = U/λcγ ≈ 32.200

We are interested in exploring the coupling between hydrodynamic instabilities and ther-201

modynamic effects. Consequentially, we focus on two parameters, each of which controls one202

aspect of the coupling: (a) the viscosity contrast R between the two fluids and (b) the initial203

composition of the liquid phase c0l . The parameter R is chosen here to be R = 0, 1, 2, 3, 4204

and 5, where the gas phase is always less (or equally) viscous than the liquid. The value205

of c0l determines the thermodynamic response of the two fluids when interacting, where206

three scenarios may occur: (i) the gas dissolves, transferring CO2 into the liquid; (i) the207

gas and liquid are at equilibrium, no component exchange occurs; or (iii) the gas expands208

in volume by exsolving CO2 from the liquid. As shown in Fig. 2, the common tangent con-209

struction of the bulk free energies yields the equilibrium composition of the two fluids as:210

ceqg ≈ 0.89, ceql ≈ 0.33. Instructed by this calculation, we can re-create the three scenarios211

by setting the defending liquid to be initially (at t = 0):212

(a) undersaturated with respect to the gas phase: c0l = 0.05 < ceql ;213

(b) near-saturated with respect to the gas phase: c0l = 0.33 ≈ ceql ;214
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(c) supersaturated with respect to the gas phase: c0l = 0.5 > ceql .215

In all the simulations performed, we only vary R and c0l while all other parameters are216

unchanged. We initialize the gas phase with a composition that is close to equilibrium217

values: c0g = 0.89 ≈ ceqg . Further, all simulations start with the same initial configuration in218

φ (as shown in Fig. 1 left):219

φ0 =

1, if 0.05Lx ≤ x ≤ 0.4Lx

0, otherwise
(20)

The initial concentration field c0 is computed as an affine mapping from φ0:220

c0 = (c0l − c0g)(1− φ0) + c0g. (21)

We solve Eqs. (11)–(13) sequentially. We first obtain the pressure and velocity using a221

finite volume method with a two-point flux approximation. Next we update c and φ using a222

Fourier pseudo-spectral discretization and using a biharmonic-modified time stepping [69].223

The domain is discretized with 2560 × 1024 (Nx × Ny) points. The boundary conditions224

are periodic, but we show results only in a window of the simulation domain (80 ≤ Lx ≤225

200, indicated as the blue dashed box in Fig. 1) unaffected by the boundaries during the226

simulation period reported (that is, until the fingers reach the right boundary).227

IV. RESULTS228

A. Fingering pattern under the influence of gas dissolution and exsolution229

We present a summary of the final displacement pattern (in c) in a c0l –R phase diagram230

in Fig. 3. The middle row of the phase diagram corresponds to a displacement scenario231

where the two fluids are near-saturated, analogous to immiscible displacement [4, 70]. In232

this regime, viscosity ratio is understood as the control parameter for large scale structure of233

the pattern [2, 71]. With this series of simulations, we recover the classic features of immis-234

cible viscous fingering: shielding, spreading and tip-splitting [2], as well as side-branching,235

merging, pinchoff of fingers, and entrapment of the defending phase towards the injection236
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side [72, 73]. The rest of the phase diagram (top and bottom rows) illustrates the effects of237

gas dissolution/exsolution on the displacement patterns.238
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FIG. 3. The coupling between different viscosity contrast and compositional effects lead to a rich240

set of viscous fingering patterns. Here we show snapshots of c at t = 50 for six different R values241

(across each row). Each of the three rows correspond to different c0l values: defending liquid is (a)242

undersaturated (c0l = 0.05); (b) near-saturated (c0l = 0.33) and (c) oversaturated (c0l = 0.5). Note243

that the colormap differs between each row to reveal the detailed structures in the concentration244

field.245

In the top row, the defending liquid is undersaturated with respect to the gas. Upon246

contact, the gas volume dissolves locally to replenish the CO2 concentration level in the247

ambient liquid. This dissolution process hinders the growth of young fingers, or proto-248

protrusions, that form along the sides of dominant fingers. By immediately stripping away249

any gas accumulation that fuels the growth of instability, the dissolution process inhibits250

proto-protrusions developing into mature fingers. As a result, it has significantly weakened251

development of side branches as well as the shielding and merging processes. The dissolution252

effect is most active towards the front of the invasion, where the gas phase is persistently253
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met with undersaturated liquid. Under this effect, the un-bifurcated fingers appear slimmer254

(R = 1), and we observe disconnected droplets that become rounded due to dissolution for255

intermediate viscosity contrast (R = 2, 3); for larger viscosity contrast (R = 4, 5), we256

observe “bald” dominant fingers that lack active side branches.257

An important distinction between partially and fully miscible fluids pair is the direction258

of component diffusion. In a fully miscible system, molecular diffusion of the components259

follow the direction of positive concentration gradient. In the case of partially miscible fluids,260

however, component diffusion is directed in the direction of chemical potential gradient,261

which can sometimes be the reverse of the concentration gradient. Such is the case when262

the gas phase is exposed to an oversaturated liquid (bottom row of the phase diagram),263

where the invading fingers swell by exsolving the excess CO2 from the liquid, against the264

direction of concentration gradient. Exsolution into the gas phase increases the volume of265

gas (φ) and thus promotes instability in the system as it expands the radius of invading266

front for tip-splitting [4]. This results in an enhanced shielding and merging effect and more267

prominent side branches. Such promotion of instability is observed across all values of R268

where fingering occurs, and the effect is most apparent for R = 4, 5. In addition, the fingers269

also appear larger overall in comparison to the middle row.270

B. The coupling between φ and c271

We illustrate the fingering pattern using the c-field in Fig. 3; however, it is important to272

note that both φ and c are independently solved using separate evolution equations in our273

model. To demonstrate this, Fig. 4 shows snapshots of 1D cross section profiles of both φ and274

c side-by-side for R = 5 with unsaturated (left) and oversaturated (right) defending fluid.275

From this we observe that both φ and c, although independently solved, follow each other276

closely. The pattern in c emulates that of φ, although c provides more details on component277

distribution within each phase. There are, however, fundamental differences in how these278

two variables behave under their own evolution equation. The 1D profile of φ (Fig. 4 bottom,279

dashed blue line) is continuous but compact—a feature of immiscible invasion under diffuse-280

interface descriptions. Meanwhile the 1D profile of c (Fig. 4 bottom, solid red line) exhibits281

a diffuse profile that is inherent to diffusive component transport. The coupling between φ282

and c is not merely a modeling construct: rather, it provides compositional details of the283
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two-phase system that either variable alone would not be able to reveal. This is further284

discussed in Sec. IV E.285

increasing R

φ
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FIG. 4. Defending fluid is (a) undersaturated or (b) supersaturated. Top: snapshots of φ at t = 46.287

Middle: snapshots of c at t = 46. Bottom: horizontal transects of φ (dashed) and c (solid) at t = 46288

along the dashed lines indicated in the 2D plots in the top and middle rows. Note that regions289

where c ≈ 0.33 indicate area in which local thermodynamic equilibrium is in place.290

C. Thermodynamic control on the degree of fingering291

Thermodynamic effects such as chemical reactions can lead to a myriad of interesting be-292

haviors when coupled with hydrodynamic instabilities [24, 74–77]. In this work, we explore293

such coupling in the form of thermodynamics-driven phase transformation that leads to fin-294

ger dissolution and exsolution during viscous fingering. The coupling can be of particular295

interest in the context of controlling of the viscous instability, which has received increased296

attention in recent studies [12, 20–24]. Proposed mechanisms include use of chemical reac-297

tions [24], alternating injections [12], control of injection rate [20, 78], imposing a gradient298

in flow pathway [22, 79], or confining the flow by elastic membranes [23].299

In Section IV A, we demonstrate qualitatively that thermodynamic-driven phase transfor-300

mations, resulting in fluid dissolution or exsolution, can hinder or enhance viscous fingering301

instabilities beyond onset regime. Here we quantify such effect by inferring the degree of302

fingering with direct measurement of the total interfacial length generated by the instabil-303

ity, using image segmentation (see examples in Fig. 5 insets). The interfacial length of the304

fingering front, L, is scaled by the transversal domain length, Ly = 80, so that initially305

L/Ly = 1 and will increase as fingers form and grow (Fig. 5). When R = 0, L/Ly = 1306
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FIG. 5. Normalized interfacial length, L/Ly, as a function of time for three compositional scenarios

with (a) R = 5 and (b) R = 1. In both plots, colored insets show the traced outline of the fingering

front at t = 50 for oversaturated, near-saturated and unsaturated defending liquid (left to right).

for the entirety of the simulation. In Fig. 5, we show the evolution of L/Ly under R = 1307

(bottom) and R = 5 (top) for all three compositional scenarios. The degree of fingering308

persistently increases under all scenarios; the instability is not suppressed due to gas dis-309

solution. However, compared to the second scenario (the immiscible analog, solid lines),310

the interfacial growth is slowed down under gas dissolution (short dashed line), indicating311

weakening of the instability; on the other hand, the growth is significant enhanced under312

finger swelling (long dashed line), indicating promotion of the instability.313

The insets in Fig. 5(b) also illustrates a greater finger competition for the oversaturated314

case. This is due to the fact that under an oversaturated scenario, gas exsolution leads to315

finger swelling and a space-fling competition that promotes of some fingers while suppressing316

some others. This enhanced competition is not observed for the unsaturated cases at R = 1.317

D. Impact of viscous fingering on the rate of gas dissolution/exsolution318

The total gas volume fraction in the system should decrease due to gas dissolution or319

increase due to gas exsolution. In other words, the amount of gas volume change in the320

domain is a global measure that reflects how much the system has progressed towards321

thermodynamic equilibrium.322
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FIG. 6. ∆φg(t) for R = 0, 1, 2, 3, 4, 5 (arrows indicating increasing order) when the defending phase

is undersaturated (left) and supersaturated (right). The insets in both plots show snapshots of φ

at t = 50 for the different values of R.

Locally, the reduction or increase in gas volume is a direct consequence of component323

exchange across the phase-phase boundary. We expect that hydrodynamic instability will324

play an important role in this process because phase transformations take place at the325

invasion front where the two fluids are out-of-equilibrium, and viscous fingering deforms and326

lengthens such front.327

Here, we define the change in gas volume fraction across the whole domain over time as:328

∆φg(t) =

∫∫
φ(t)dxdy −

∫∫
φ0dxdy∫∫

φ0dxdy
. (22)

In Fig. 6, we show ∆φg(t) for different values of R when the defending fluid is undersaturated329

(left) and supersaturated (right). When no viscosity contrast is present (R = 0), the invasion330

front remains stable and phase transformation is limited by the rate at which CO2 diffuses331

in the liquid phase in order to be transported away or towards the gas phase. This explains332

|∆φg| ∼ t1/2 for R = 0 in both composition scenarios. In the presence of the hydrodynamic333

instability (R > 0), the invasion-front deformation provides more interfacial area over which334

the two fluids can equilibrate. This mass-transfer enhancement is clearly shown in the scaling335

|∆φg| ∼ t1, observed for R = 2, 3, 4, 5.336
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E. Heterogeneity in phase compositions337

While gas volume fraction is a measure of how the system progresses towards its ther-338

modynamic equilibrium globally, here we show that progress towards equilibrium can be339

very heterogeneous within the domain. To do this, we track the liquid phase concentration,340

computed pointwise as:341

cl(x, y) = (1− φ(x, y))c(x, y). (23)

We introduce cly(x) as the y-averaged liquid phase concentration along the x-axis. If a342

thermodynamic equilibrium is reached locally, cly ≈ ceql at that point; otherwise, cly should343

be larger or smaller than ceql . In Fig. 7 (left column), we plot cly(x) at six different times344

with R = 5 for undersaturated [Fig. 7(a)] and supersaturated [Fig. 7(b)] defending liquid.345

The shaded red region indicates metastability, where the system is close to thermodynamic346

equilibrium (red dashed lines Fig. 7). From this, we observe that the system reaches347

metastability towards the roots of the fingers, where two fluids have more time to equilibrate.348

Towards the fingering front, the fluid-fluid interface is newly created, leaving little time for349

component exchange to occur; therefore, the liquid composition appears to be far away from350

thermodynamic equilibrium at the fingering front. The spatial heterogeneity in the phase351

compositions and consequently in the thermodynamic equilibrium state between the fluids352

has implications on the pattern forming process: towards the roots of the fingers, where the353

system has established a thermodynamic equilibrium earlier, the fingering morphology is no354

longer subject to dissolution/exsolution effects; towards the invasion front, freshly created355

fingers are subject to constant shrinkage/expansion due to gas dissolution/exsolution.356

F. Fingering pattern as controlled by Ch and Ma357

The Cahn number (Ch) controls the effective surface tension between the two fluids. As358

Ch increases, the system experiences increasing surface tension. Here we verify this effect by359

simulating viscous fingering at four different values of Ch at a fixed Ma = 1/200 (all other360

parameters are kept the same as introduced in Sec. III). The results as shown in Fig. 8361

demonstrate that as Ch increases from left to right, an increasing surface tension results in362

more prominent finger pinch-off.363

The solutal Marangoni number (Ma) controls the thermodynamic forcing that leads to364
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FIG. 7. (Left) cly(x) at t = 0, 10, 20, 30, 40 and 50. Blue arrow indicates direction of time.

Red dashed line indicates thermodynamic equilibrium: ceql ≈ 0.33. Red shaded area indicates

metastability. (Right) snapshots of c for the corresponding times. The defending liquid is initially

undersaturated in (a) and supersaturated in (b), and all simulations correspond to R = 5.
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FIG. 8. Impact of Cahn number at Ma = 1/200 and other parameters kept the same as in Sec. III.

We simulate for four values of Ch differing by a factor of two each. Shown here are snapshots of c

at t = 40. The colormap range is [0.05, 0.9] for all figures.

partial miscibility. It appears as a coefficient of the chemical potential, which is defined as:365

Ψc = ε∇2c+
1

Ma

[
f ′l (c)(1− g(φ)) + f ′g(c)g(φ)

]
. (24)

Although Ma does not change the compositional equilibrium, one can treat 1/Ma as a366

kinetic rate coefficient that drives component diffusion within each phase. Such diffusion is367
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proportional to the gradient in Ψc and will diminish as the system approaches equilibrium368

(the expression multiplied by 1/Ma will be zero at equilibrium). As Ma increases, the rate369

of diffusion decreases within each phase and the system takes longer to reach compositional370

equilibrium. This effect is confirmed by Fig. 9, where we see that as Ma increases from371

left to right, the liquid phase composition is more heterogeneous and farther away from372

equilibrium (supersaturated in many regions for Ma = 1/50 and 1/25).373
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0.1

0.3

0.5

0.7

0.9

0

1

0.5

c

φ

374

FIG. 9. Impact of solutal Marangoni number at Ch = 1/2000 and other parameters kept the same375

as in Sec. III. We simulate for five values of Ma differing by a factor of two each. Shown here are376

snapshots of c (top) and φ (bottom) at t = 50.377

It is also important to note that a decrease in 1/Ma also indirectly promotes the strength378

of surface tension in the system. This is due to the structure of the free energy design379

[Eq. (16)]. As a result, an increase in Ma indicates an increase in surface tension, allowing the380

system to favor more pinch-off and tip-splitting events (Fig. 9). Such nonlinear interactions381

between compositional effects and fluid instability lead to interesting dynamics in fluid382

mixing. Here, we use the variance of the concentration field to measure fluid mixing:383

σ2 = 〈c2〉 − 〈c〉2. (25)

In Fig. 10, we study the effect of Ma on fluid mixing by analyzing the temporal dynamics384
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of σ2 from the set of simulations shown in Fig. 9. We conclude that the rate of mixing385

is initially enhanced by smaller Ma (enlarged figure to the left), which is consistent with386

the implication from Eq. (24). However, as a result of nonlinear coupling between fingering387

instability and dissolution effects, a larger Ma (e.g. Ma = 1/25) produces significantly more388

tip-splitting and pinch-off events, which results in the creation of more interfacial area and389

faster mixing at later times (Fig. 10, t > 20).390
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FIG. 10. Concentration variance σ2 as a function of time for different values of Ma. The enlarged392

portion on the left corresponds to the early time regime when the fluid interface has not been393

significantly destabilized. The insets in the main figure correspond to snapshots of c for the394

Ma = 1/25 simulation.395

G. Fingering pattern with decreasing miscibility gap396

The miscibility gap of a fluids pair is defined here as the difference in compositions between397

the two fluids once they reach compositional equilibrium: ceqg −ceql . In our current model, the398

miscibility gap is determined solely by the description of the bulk mixing energy functions399

fl(c) and fg(c). By changing the parameter values in Eq. (10), we explore the ability of our400

model framework to describe fluid pairs with different levels of partial miscibility. We stress401

here that the miscibility gap is determined solely by the shape of the bulk mixing energy402

curves fl(c) and fg(c); tuning the parameters Ma, Ch, ε, Pe and Ca will only change the403

dynamics as the system approaches equilibrium.404

In Fig. 11, we explore the pattern-forming dynamics as we inject fluid pairs with a405
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different miscibility gap. This is done by tuning the parameters (αl, αg, βl and βg) in the406

bulk mixing energy curves of each phase [Eq. (10)]. As we close the miscibility gap (top to407

bottom), we also change the initial condition in concentration so that the liquid phase is408

always undersaturated and the gas phase is at-saturation. Specifically,409

• The top row corresponds to the majority of the simulations discussed in this work,410

where αl = 2×10−7, βl = 2×104, αg = 200, βg = 2×10−4 so that the common tangent411

construction yields the equilibrium composition of the two fluids: ceqg ≈ 0.89, ceql ≈412

0.33;413

• The middle row corresponds to αl = 20, βl = 200, αg = 200, βg = 20 so that the414

common tangent construction yields the equilibrium composition of the two fluids:415

ceqg ≈ 0.65, ceql ≈ 0.35;416

• The bottom row corresponds to αl = 100, βl = 200, αg = 200, βg = 100 so that the417

common tangent construction yields the equilibrium composition of the two fluids:418

ceqg ≈ 0.55, ceql ≈ 0.45.419

We keep all the other parameters the same as introduced in Sec. III. In Fig. 11, we420

observe that even as the miscibility gap narrows (approaching the fully miscible limit), where421

one might expect a transition to a miscible viscous fingering pattern [11], the system always422

exhibits the effect of interfacial tension and the fingering pattern resembles that of immiscible423

displacement. This effect is due to our simplified description of mixture viscosity and surface424

tension. Currently, viscosity in our model is a function of φ only, and the effective surface425

tension is independent of fluid composition. Incorporating a more sophisticated design of426

viscosity as a function of both φ and c and a concentration-dependent surface tension term427

may allow our model to capture more accurately the transitions towards the fully miscible428

limit. Nevertheless, the model is robust in capturing the correct thermodynamics, where the429

fluids arrive at their respective equilibrium compositions as predicted by the bulk mixing430

energy curves in all three cases.431

V. CONCLUSIONS432

In this paper, we study viscous fingering with partially miscible fluids. We introduce a433

phase-field model to describe two-phase two-component flow and transport in a Hele-Shaw434
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FIG. 11. Impact of miscibility gap in the bulk mixing energy curves. (Left): fl(c) and fg(c) and

their common tangent constructions. (Right): snapshots of c from simulations using the bulk

mixing energy described in the left column. Note that the colormap ranges are different and

correspond to the initial composition (slightly wider than miscibility gap).

cell. We present high-resolution numerical simulations of the model applied to the viscous435

fingering problem for various viscosity contrasts and different initial fluid compositions.436

From the perspective of pattern formation, our results demonstrate that fluid dissolution or437

exsolution due to partial miscibility can hinder or enhance viscous fingering, respectively.438

This is shown by both directly visualizing the fingering pattern (Sec. IV A), and also by439

quantifying the degree of fingering through the measure of interfacial length (Sec. IV C).440

Conversely, we also explore how the pattern forming process can impact the rate at which441

the two fluids reach compositional equilibrium. By measuring globally the amount of gas442

dissolution/expansion from component mass transfer, we show that the increase in degree of443

fingering—and associated increase in interfacial length—is directly linked to a faster rate of444

thermodynamic equilibration (Sec. IV D). By measuring locally the degree of equilibrium,445

we show that equilibrium is reached earlier towards the roots of the fingers, where the two446

fluids have more time to exchange components (Sec. IV E). The spatial heterogeneity in the447

degree of thermodynamic equilibrium implies that the gas fingers are subjected to different448



23

levels of dissolution/expansion effects throughout the domain. As a result, the final fingering449

pattern we observe is a result of the complex nonlinear coupling between hydrodynamic450

instabilities and thermodynamic effects. Through additional simulations in Sec. IV F, we451

show that both Ch and Ma can affect the fingering pattern. As Ch increases, the system452

experiences increasing surface tension and more pinch-off events. As Ma increases, the453

system takes longer to reach compositional equilibrium and the liquid composition appears454

more heterogeneous. Further, because a larger Ma also indirectly promotes the strength455

of surface tension, we also observe more tip-splitting and pinch-off events at larger Ma.456

Such nonlinear coupling between fingering instability and dissolution effects results in a457

non-monotonic trend in mixing efficiency as a function of Ma.458

An important assumption we make in this paper is that the thermodynamic-driven com-459

ponent exchange does not change the density or viscosity of either fluid, or the interfacial460

tension between the two phases. This assumption allows us to simplify the parameter space461

for our simulations and thus focus on the effect of viscosity contrast and initial fluid com-462

positions. However, these assumptions may no longer be valid for realistic fluid pairs where463

density, viscosity and interfacial tension can change appreciably due to mass transfer across464

phases. As explained in Sec. IV G, our current model does not reproduce miscible viscous465

fingering pattern as we close the miscibility gap; surface tension plays a significant role in466

the fingering instability for all values of fluid miscibility gap in our model. We attribute467

this to an oversimplified design of viscosity and surface tension, which we plan to extend468

in future work. Further, the effect of component exchange on fluid properties could yield469

interesting displacement dynamics. For instance, while we only explore the displacement dy-470

namics under a viscously unstable configuration (R > 0) in this work, unstable displacement471

could still arise under an initially viscously stable configuration (R < 0). Under constant472

fluid-fluid component exchange, this instability could be caused by, for example, nonuni-473

form changes in local surface tension at the fluid interface (a Marangoni effect) or changes474

in local fluid viscosity that eventually reverse the viscosity contrast. It would be interesting475

to incorporate these effects in our current model in the future to fully understand ongoing476

experimental studies [28].477
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