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Abstract

We study the dynamical regimes of a density-stratified fluid confined between isothermal no-slip

top and bottom boundaries (at temperatures Tt and Tb) via direct numerical simulations. The

thermal expansion coefficient of the fluid is temperature dependent and chosen such that the fluid

density is maximum at the inversion temperature Tb > Ti > Tt. Thus, the lower layer of the fluid

is convectively unstable while the upper layer is stably stratified. We show that the characteristics

of the convection change significantly depending on the degree of stratification of the stable layer.

For strong stable stratification, the convection zone coincides with the fraction of the fluid that

is convectively unstable (i.e. where T > Ti), and convective motions consist of rising and sinking

plumes of large density anomaly, as is the case in canonical Rayleigh-Bénard convection; internal

gravity waves are generated by turbulent fluctuations in the convective layer and propagate in the

upper layer. For weak stable stratification, we demonstrate that a large fraction of the stable fluid

(i.e. with temperature T < Ti) is instead destabilized and entrained by buoyant plumes emitted

from the bottom boundary. The convection thus mixes cold patches of low density anomaly fluid

with hot upward plumes, and the end result is that the Ti isotherm sinks within the bottom

boundary layer and that the convection is entrainment-dominated. We provide a phenomenological

description of the transition between the regimes of plume-dominated and entrainment-dominated

convection through analysis of the differences in the heat transfer mechanisms, kinetic energy

density spectra, and probability density functions for different stratification strengths. Importantly,

we find that the effect of the stable layer on the convection decreases only weakly with increasing

stratification strength, meaning that the dynamics of the stable layer and convection should be

studied self-consistently in a wide range of applications.
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I. INTRODUCTION

Buoyancy-driven convection can result from a number of physical mechanisms leading to

a change of the fluid density, including evaporation, heating, and sedimentation. Convection

occurs naturally in the interior of stars and planets, as well as in oceans and atmospheres,

but is also sometimes used to improve heat transfer properties in buildings and industrial

processes. The transport of mass, momentum and heat are all important aspects of convec-

tive flows.

Because density variations are often small compared to the mean fluid density, buoyancy-

driven convection studies typically neglect density effects other than in the buoyancy force,

an approximation known as the Boussinesq assumption. The Oberbeck-Boussinesq assump-

tion (OB), which additionally assumes constant physical properties (such as viscosity, con-

ductivity, and thermal expansion), is also often considered and has resulted in much of our

fundamental understanding of convective flows, spear-headed by the canonical problem of

(thermally-driven) Rayleigh-Bénard convection (RBC) [1].

While the Boussinesq assumption is applicable in a number of physically-interesting fluid

systems, some dynamics of realistic convective fluids are not attained under the Oberbeck-

Boussinesq approximation. In thermal convection, for instance, symmetric top and bottom

boundary conditions necessarily result in a top/down mid-plane symmetry of the flow un-

der OB assumption. Helium convection experiments have demonstrated asymmetric fluid

motions with respect to the mid-plane due to temperature-dependent viscosity [2]; an effect

discarded within the OB framework. Non-Oberbeck-Boussinesq (NOB) effects are of current

research interest because a number of fluids (e.g. water, helium, ethane) have temperature-

dependent physical properties, in particular close to their critical point [such as in glycerol,

see e.g. 3].

Of all NOB effects, those due to temperature-dependent expansion coefficients may be

most striking [in ethane, see e.g. 4], and at the same time can be readily observed in nature.

This is especially true because the expansion coefficient of water varies significantly close to

its density maximum at temperature T0 = 4◦C, a temperature ubiquitous in oceans and lakes

which can thus routinely experience NOB effects [5, 6]. The density maximum for water

results from the quadratic equation of state (EoS) ρ ∝ ρ0[1−β(T−T0)2], which is a simplified

yet realistic EoS for water at atmospheric pressure [7]. Because of the quadratic temperature
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nonlinearity, the water with a positive vertical temperature gradient reverses from buoyancy

decreasing with height for T ≤ T0 = 4◦C to buoyancy increasing with height for T ≥ T0 =

4◦C. This results in a layer subject to convective instability beneath a stably stratified

layer. The existence of an adjacent stable stratification can have a significant influence on

the convective dynamic, most notably allowing for penetrative convection, as demonstrated

theoretically via stability analysis decades ago [e.g. 8]. More recently, laboratory experiments

[9] and numerical simulations [10] have improved our understanding of such penetrative

convection following the seminal study by [11] and have shown a clear picture of plumes

interacting with a stable layer and generating internal waves, an effect inaccessible within

the OB framework.

NOB convection with a buoyancy reversal is not limited to water but also occurs in a

number of alcohol-glycol–water mixtures used as analogues of gas dissolution in porous media

[12–14], glass-forming liquids such as BeF2 [15], and in the troposphere where an inversion

layer forms atop the cloud-top mixing layer as a result of evaporation [16]. The heterogeneous

convective/wave dynamic is also relevant to many astrophysical and geophysical settings: In

stars such as our Sun, convection only occurs in the relatively cool outer shell, and couples

with an underlying stable region where gravity waves propagate [17–20]; In the Earth,

observations within the convective liquid outer core point to a possible stratified layer near

both the core-mantle boundary and the inner-core boundary [21, 22]. Buoyancy reversal

in astrophysical and geophysical systems is due to changes from super- to sub-adiabatic

mean temperature profiles, related to changes of physical properties with temperature and

pressure.

In addition to the effects of the Rayleigh and Prandtl numbers on thermal convection,

buoyancy reversal dynamics are strongly affected by an additional physical parameter, the

relative strength (S) of the stable stratification compared to the destabilizing buoyancy

difference. A number of questions related to buoyancy reversal effects in thermal convection

are related to the effect of varying S. Such questions, addressed in this paper, include: for

which S is it safe to assume that the convection is not affected by the dynamic of the stable

layer? How is the generation of internal waves affected by S? How does the height of the

convection zone change with S? Is the heat transfer sensitive to S?

The idea of possibly decoupling the convection zone from the stable fluid layer is of par-

ticular interest because the convective and internal gravity wave dynamics can be on vastly
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different time and length scales [9, 10]. In numerical simulations it would be advantageous

to run a turbulent convection-only simulation, and then use the output flow statistics from

this simulation as a source term for generating internal waves in a separate run. This idea

was put forward theoretically by [23]: assuming a Kolmogorov-type spectrum representa-

tive of Reynolds stresses due to sweeping plumes below the unstable/stable interface, they

bypassed the simulation of the convection and were able to directly analyze in details the

generated internal wavefield. Of course this approach requires a careful investigation of

whether a Kolmogorov spectrum is appropriate and whether Reynolds stress is indeed the

main generating mechanism. Ongoing work and recent results on water convection seem

to support that waves are mainly generated by Reynolds stresses, at least for some (high)

values of S [10]. Another simplified approach consists in deriving one-dimensional (along

the vertical) models with turbulence diffusivity parameterization, as done in, for instance,

[24].

Here we address via direct numerical simulations some of the questions pertaining to

the effect of the stable stratification strength on buoyancy reversal convection. Because

our goal is to obtain a clear picture of the various convective dynamics for a wide range of

stratification parameters, we focus in this paper on two-dimensional simulations. Reducing

the system to two dimensions allows us to run a large number of simulations for several

diffusive times, which is necessary to reach a statistically steady state. We describe the

model setup in §II, and in §III we analyze the onset and transition to steady state. The

qualitative features of simulations with high, moderate, and small stratification strengths

are then described in §IV. A detailed analysis is presented in §V and concluding remarks

are offered in §VI.

II. PROBLEM FORMULATION

We consider the Navier-Stokes equations under Boussinesq approximation and in two

dimensions. We take x (z) to be the horizontal (vertical upward) direction, with x̂ and ẑ
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the unit vectors. The dimensionless equations are

∂tu + u ·∇u = −∇p+ Pr∇2u− PrRaρẑ, (1a)

∂tT + u ·∇T = ∇2T, (1b)

∇ · u = 0. (1c)

Length and time scales are non-dimensionalized using the full vertical extent of the domain `

and the thermal diffusion time `2/κ, where κ is the constant thermal diffusivity of the fluid.

T is the temperature, u the velocity vector, and ρ is the density anomaly compared to the

reference density ρ0. We assume isothermal and no-slip boundary conditions on the top and

bottom horizontal plates and periodicity of all fluid variables in the horizontal x direction.

The dimensionless parameter Pr = ν/κ is the Prandtl number, with ν the constant fluid

viscosity. Ra is the Rayleigh number, defined as

Ra =
α∗
cg(T ∗

b − T ∗
i )`3

νκ
, (2)

where g is the constant gravitational acceleration, α∗
c is the (dimensional) constant thermal

expansion coefficient for temperatures T ∗ > T ∗
i , and T ∗

b − T ∗
i > 0 is the (dimensional)

temperature scale obtained from the difference between the temperature on the bottom

plate (T ∗
b ) and inversion temperature (T ∗

i defined below). Using T ∗
i as the absolute reference

temperature then gives the dimensionless temperature T in (1) in terms of the dimensional

one, T ∗, as T = (T ∗ − T ∗
i )/(T ∗

b − T ∗
i ), implying Tb = 1 and Ti = 0.

As in classical RBC, we consider an equation of state for the density anomaly of the

form ρ = −αT . However, we deviate from the OB paradigm as we allow the dimensionless

thermal expansion coefficient α(T ) to vary with temperature, as is the case for e.g. water.

Specifically, as can be seen in figure 1, we consider

ρ = −α(T )T =

 −T, T ≥ 0,

ST, T < 0,
(3)

such that α changes sign at T = 0, and with S > 0 a free parameter of our model. The

change of sign of α results in the density anomaly being non-monotonic and maximum at

T = 0, which we thus refer to as the inversion temperature (at the dimensional temperature

T ∗
i ). The form of α is the simplest model that can reproduce a non-monotonic EoS similar to

water (shown in figure 1), and that allows varying degrees of stratification of the top stable
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layer. While S � 1 is obtained when considering a stronger stratification than is the case

for water, i.e. a steeper effect of varying temperature on the density, S� 1 implies a weaker

stratification. It can be noted that a smoothed piecewise profile for α may have worked

equally well as the discontinuous profile considered in equation (3), though it would have

introduced additional parameters in the problem. Numerically, equation (3) did not pose any

problem, although a relatively high vertical resolution was necessary, because even though

α is discontinuous, relevant terms appearing in the equations (i.e. T and its first-order and

second-order derivatives as well as the buoyancy αT ) are all continuous. The variations of

ρ with T are shown in figure 1 for S = 1, along with the stiffest S = 28 (almost horizontal

line) and most flexible S = 2−8 (almost vertical line) cases considered in this paper. For

S = 28, note that the stratification in density is so strong in the stable layer that the density

anomaly cannot be shown in figure 1 even for a unitary increment in temperature; at the

top of the domain where we will consider Tt = −20, we will have ρ = −5120.

The system described by equations (1) and (3) is completely defined by Pr, Ra, S and

the dimensionless top temperature Tt (recall Tb = 1). We will call S the stiffness parameter

as it is related to the buoyancy resistance of the upper fluid to overshooting convective

plumes. Defining the buoyancy frequency as N =
√
−PrRa∂zρ (based on our notations),

we can see that S is also related to the ratio of the buoyancy frequency in the stable and

unstable fluid through S = (N2/∂zT )|zs/(N2/∂zT )|zc , where ·|zs,zc means evaluated at points

z = zs or z = zc in the stable or convective zone, respectively. The conductive state has a

linear temperature profile T = 1− z(1− Tt). In this state, the fluid is convectively unstable

below z = 1/(1− Tt), and stably stratified above, and the interface separating the unstable

and stable regions corresponds to the T = 0 (inversion temperature) isotherm. We will also

consider the neutral buoyancy level ZNB, the height at which fluid parcels rising adiabatically

and without inertia from the bottom boundary would reach equilibrium.

In the next sections we solve equations (1) with ρ given by (3) using the pseudo-spectral

code Dedalus [25] [see 26, and further details in appendix]. We first briefly discuss the

transient evolution (§III), and then we explore the dynamical regimes and statistical prop-

erties of the coupled convective-stably stratified system at thermal equilibrium (§IV-V) for

different stiffness parameters, S = 2i with i ∈ [−8, 8] an integer, and three different refer-

ence Rayleigh numbers, i.e. Ra = 8× 106, 8× 107, 8× 108 (details of all 51 simulations are

provided in the appendix). For simplicity, the Prandtl number is fixed to Pr = 1, and the
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FIG. 1: Equations of state for the density anomaly ρ as a function of temperature T (T

decreasing upward) for three different stiffness parameters S (solid lines). For comparison

with water, the quadratic equation of state ρ = −T 2 is also shown (dashed line); note that

the S parameter that best represents water depends on the temperature range considered.

top temperature is fixed to Tt = −20 in all simulations. The choice of Tt = −20 is rather

arbitrary but serves the purpose of having stable and convective layers of similar height for

the prototypal case shown in figure 3b (Ra = 8 × 107, S = 1), thus minimizing confine-

ment effects on the convection and on wave propagation in the stably-stratified region. The

box width relative to the height is fixed to 2, such that the effective aspect ratio for the

convection is approximately 4, which limits horizontal confinement effects.

III. TRANSIENT EVOLUTION AND THE HEIGHT OF THE CONVECTION

ZONE

We first show in figure 2 the transient evolution of the temperature and vorticity fields

between t/τc = 2.1 and t/τc = 50.5 starting from the conductive state T = 1 − z(1 − Tt)

with white noise at t = 0 for physical parameters Ra = 8 × 107 and S = 1 (we recall that

we set Pr = 1 and Tt = −20 for all simulations in this paper); τc = 1/fc = 2π/
√

RaPr

is the reference turnover time scale for buoyancy forces, which will be used throughout

(along with the turnover frequency fc) to normalize time variables and vorticity (note that

it can be obtained from equations (1) assuming small perturbations, upon substitution of

ρ by (3), and assuming a unitary temperature gradient). After roughly two turnover times
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(figures 2a,c), the convective instability develops close to the bottom boundary layer; the

convective cells then expand over time upward into the overlaying stable layer (figures 2b,d).

The convective region expands because the convective flux in the convection zone is larger

than the diffuse flux in the stable zone. When the convection expands, the convective flux

stays about constant, but the diffusive heat flux in the stable region increases because the

temperature gradient increases. The depth of the convection zone reaches a constant mean

value when the heat flux through the convection zone is on average equal to the heat flux

through the stable layer, which is known as the state of thermal equilibrium.

The characteristics of the convection vary with the height of the convective region. De-

termining the height of the convective region at thermal equilibrium is thus a major goal of

this paper. The Rayleigh number defined by (2) is a reference Rayleigh number, but is not a

strict analogue of the Rayleigh number in classical RBC because the height of the convective

region is an output of the simulation, not an input. Indeed, in our definition of the Rayleigh

number we use the temperature difference T ∗
b − T ∗

i and thermal expansion coefficient α∗
c re-

lated to the convection, but choose the total domain depth ` as length scale. The inversion

depth `/(1 − Tt) of the conductive state could be used alternatively, but from figure 2 and

previous studies on convection in water close to its density maximum, we know that the

convective layer depth grows with time from the static state, and that it reaches a mean

height at dynamical equilibrium that can substantially vary with the problem parameters

[see e.g. 27, and figure 2]. As a result, neither ` nor `/(1−Tt) can be expected to provide an

accurate measure of the convective height. Providing a prediction for the convective layer

depth including coupling between the two layers is the topic of section §V F.

In a previous analysis of convection in water close to its density maximum, [28] showed

that a prediction of the (dimensionless) convective height h could be made under several

assumptions. Assuming no dynamical coupling between the stratified upper layer and the

convection, the method equates the diffusive heat flux in the upper layer (approximated as

−(Tt−Ti)/(1−h)) with the heat flux in the convection zone of the form CRaβeff (Tb−Ti)/h,

where Raeff is the Rayleigh number based on the effective convective depth. The form of

the convective heat flux is suggested by classical RBC studies which show that for fixed Pr

the Nusselt number, Nu, can be approximated as Nu = CRaβ with C and β two constants.
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Solving for the convective depth h with Raeff = Rah3 then yields (with Ti = 0 and Tb = 1)

1− h = −Tt
h1−3β

CRaβ
, (4)

which, under the assumption that 1 − 3β � 1 (an acceptable approximation since 0.28 <

β < 0.31 for laminar thermal boundary layers, cf. [1, 29]), reduces to

1− h ≈ −Tt
CRaβ

. (5)

The approximate expression (5) for 1− h predicts that the convection height increases with

the reference Rayleigh number Ra but decreases with Tt. Both effects are expected since

as Tt decreases, the stably stratified layer grows and the unstable layer correspondingly

shrinks in the conductive state. The prediction, however, is independent of the stratification

parameter S, as the dynamical coupling between the stably stratified and convective regions

are neglected. We will show that this simplification is appropriate only in the large stiffness

regime (S � 1), and that the convection height cannot be in general inferred from this

model.

IV. DYNAMICS AT THERMAL EQUILIBRIUM FOR DIFFERENT STIFFNESSES

We now turn our attention to the system dynamics at thermal equilibrium, i.e. once

statistical steady-state and depth-invariant heat flux are achieved. Unlike in figure 2, in

order to avoid the thermal equilibration time for the stable layer, we start our simulations

from a temperature profile close to what is expected at thermal equibrium (see appendix).

We show in figure 3a-c three snapshots obtained at thermal equilibrium for (a) high

S = 28, (b) moderate S = 1, and (c) small S = 2−8 stiffness. We select snapshots for

Ra = 8× 107, since this intermediate Rayleigh number case will be the focus of the detailed

analysis in section §V (Pr = 1, Tt = −20). In figures 3a,b, the density anomaly ρ is shown

from the bottom up to the instantaneous neutral buoyancy level (i.e. z = ZNB(x), where

ρ(x, ZNB) = −1, labeled as the interface in figures 3), while the vorticity is shown above it.

The idea of showing both density and vorticity such as in figure 3 is not new [10], and allows

to combine in a single plot the information on buoyancy effects in the convection zone and

waves in the stable layer. In figure 3c, the density anomaly is shown everywhere because

plumes can in theory rise all the way to the top of the domain; the stratification is indeed

so weak that the lightest fluid is within the bottom boundary layer.
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FIG. 2: Transient evolution of (a)-(b) the temperature field, and (c)-(d) the normalized

vorticity field ωτc at times (left) t/τc = 2.1 and (right) t/τc = 50.5. The simulation is

started from the static equilibrium of linear temperature profile, and the physical

parameters are Pr = 1, Ra = 8× 107, S = 1, and Tt = −20. τc is the reference turnover

time scale (see text).

Figure 3a, obtained for a high stiffness parameter, shows two distinct regions above and

below ZNB, which coincides with the Ti isotherm. The bottom layer consists of RB convective

cells made of up-down symmetric plumes rising between the bottom plate and the neutral

buoyancy level. The top layer is stably stratified and supports waves. The interface is almost

perfectly straight and we expect that the waves are excited by Reynolds stress forcing [10].

Global internal gravity modes are present, with approximately three wavelengths fitting

along the vertical direction.

Figure 3b, obtained for stiffness S = 1, exhibits the same features as figure 3a. Plumes are

emitted from the bottom plate and the interface, while internal waves are observed above

ZNB. The aspect ratio of the convective cells is roughly 1, as in figure 3a, but because the

interface lies higher, only 2 cells are obtained, compared to 3 for S = 28. Compared to the

high-stiffness case, however, the instantaneous interface is much more distorted as a result

of upward-going plumes impinging on the relatively weak stable stratification. Rising and

sinking plumes do not have the same symmetry either: down-going heavy plumes look like
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FIG. 3: See caption on next figure.

filaments, entraining chunks of lighter fluid with them. These observations are also reflected

in the difference of location of the Ti isotherm and neutral buoyancy level, which can be seen

as a first approximation of the overshooting length scale of strong penetrative convection.

Note that this overshooting length scale is defined from the mixing of stable fluid into the

convective region (sinking of Ti isotherm within the convection zone), and is therefore not

exactly equivalent to the overshooting length scale based on the mixing of convective fluid

into the stable region considered in penetrative convection studies on top of a background

state. The more chaotic dynamical transition between the convective and stably-stratified
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FIG. 3: (Cont.) Simulation snapshots for Ra = 8× 107 and stiffness (a) S = 28, (b) S = 1,

(c) S = 2−8 representatives of the system’s dynamic at thermal equilibrium, i.e. obtained

after several thousands convective turnover times. The density anomaly is shown in the

convection zone, below the neutral buoyancy height ZNB(x) (i.e. where ρ(x, ZNB) = −1).

Above ZNB, the fluid is stably stratified, and we plot the vorticity. In (a) convective cells

with a top/down symmetry are seen in the lower layer, generating global wave modes in

the upper stably-stratified layer. In (b), the convection zone is larger but significant

coupling between the two layers is obtained as shown by the strong variations of ZNB with

x. In (c) the system changes significantly with rising plumes close to the bottom

interacting with large-scale structures (shown by contour lines) higher in the fluid (note

that ZNB is outside of the domain such that we show the density field everywhere in this

case). We also show the mean temperature and anomaly density profiles by the dashed

and solid lines as later discussed and reported in figure 6. Movies of figures 2 and 3 can be

found online at sites.google.com/site/fludyco in the outreach section.

regions clearly results in a less organized internal gravity wavefield than in the high-stiffness

case of figure 3a.

Figure 3c, obtained for the smallest stiffness parameter S = 2−8 considered, shows a very

different behavior than the previous two cases. In this simulation, the bulk of the fluid is

everywhere heavier than near the bottom plate. A stark difference also comes from the fact

that there are only upward-going plumes. This is because the Ti isotherm is within the
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thermal bottom boundary layer, so convection only occurs near z = 0. The sinking of the Ti

isotherm is an important result that can be explained from the fact that the top stable layer,

which is initially quiescent in the simulations, is so heavy for small S that it can squeeze

the buoyancy-driven convective layer down as soon as it is destabilized by overshooting

convective plumes. Because the stable layer is only marginally stratified for small S, the

entire stable fluid is put into motion and slumps down when the bottom part is destabilized

by the plumes. This explains why entrained fluid motions extend almost everywhere in

the fluid. Note that the cold entrained fluid moves seemingly passively, i.e. slower than the

plumes, but because of its inertia and large temperature anomaly still dominates dynamically

almost everywhere and brings the bulk density anomaly close to zero. Looking at the

temperature field at the same simulation time (cf. figure 4) shows that hot rising plumes still

impact high parts of the fluid as a result of their inertia. Thus, plumes play an essential role

in the dynamics by maintaining the entrained fluid in motion, but not necessarily in the heat

transfer. As they rise further up, plumes broaden (thereby carving the large-scale entrained

fluid visible in figure 3c) and cool down to the point that they can contribute negatively to

the (positive) heat transfer. Nonetheless, as will be demonstrated later, convection is efficient

from z = 0 up to z = 0.9, because the large-scale entrained structures of low density anomaly

(in part visible from contour lines of iso-density in figure 3c) are efficient at transporting cold

fluid down. In the weakly-stratified limit, the overshooting length scale is of the same order

as the entire fluid depth. Note that the top of the fluid layer is stably-stratified, although

weakly.

V. STATISTICAL ANALYSIS AND REGIME PROPERTIES

The simulation snapshots of figure 3 show that the stiffness parameter S plays a key role in

the coupling between the convective and stably-stratified regions. The high-stiffness regime

shows strong top-down symmetry in the convection zone, suggesting negligible feedback

from the waves on the convection. This symmetry is no longer present for moderate stiffness

S ∼ 1, and the dynamics completely change for low stiffness.

We now quantitatively study the effect of the stiffness S on the interaction between the

convective and stably stratified regions and on the heat transfer. The results are obtained

for simulations in thermal equilibrium, i.e. such that the statistics are temporally converged
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FIG. 4: Snapshot of the temperature field corresponding to the density anomaly plot of

figure 3c.

and the total heat flux is depth-invariant. Reaching thermal equilibrium requires running

simulations over several dissipation times, which requires long run times. Use of judicious

initial conditions allows a more rapid convergence to thermal equilibrium (see appendix for

more details). We will make extensive use of the x average operator 〈 · 〉x =
∫
dx/2, (2

is the box width); the volume average operator 〈 · 〉 =
∫
dzdx/2; and the time average

operator, · . Time averages are typically performed over tens to thousands turnover times

depending on S (see appendix for details).

We first present in figure 5 simulation results obtained for 3 different Rayleigh numbers

(Ra = 8× 106, 8× 107, 8× 108) and 17 different stiffness parameters (S from 28 to 2−8; see

table I in appendix). In figure 5a we show the bulk temperature, i.e. Tbulk =
∫
z
dz〈T 〉x,

averaged in z over the convection zone (i.e. where the convective heat transfer qc accounts

for at least 95% of the total heat flux q). For all three Rayleigh numbers we can see that

the bulk temperature increases with the stiffness parameter. In the limit of large stiffness,

Tbulk → 0.5, which is the temperature expected from a convection-only simulation with

top/bottom temperatures of Tt = 0 and Tb = 1. Thus the large-stiffness limit of the bulk

temperature tends to the classical RBC bulk temperature even though the EoS is nonlinear.

This is consistent with figure 3a, where the density anomaly in the bulk is roughly ρ = −0.5,

corresponding to Tbulk = 0.5. In the small-stiffness limit, the bulk temperature decreases

below the Ti = 0 isotherm, suggesting that significant mixing of low-temperature fluid
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FIG. 5: (a) Bulk temperature Tbulk as a function of S (S decreases to the right) averaged

over the convection zone (see text for details). The dash-dot line is a best fit obtained for

all data points and given by equation (6). The dashed line highlights the inversion

temperature Ti = 0 where α changes sign, and the dotted line represents the bulk

temperature expected from classical Rayleigh-Bénard convection. (b) Total heat flux Q as

a function of S. Results are shown for three different reference Rayleigh numbers Ra.

occurs within the convective region. The overlap of the results for all Ra further indicates

that this mixing is relatively independent of the degree of turbulence. As long as the lower

layer is convectively unstable and plumes are emitted, they can destabilize the upper stable

layer entirely, because it is only marginally stratified. For high stiffness, higher Ra tends to

increase the entrainment/mixing and lower the bulk temperature. The data for all Ra are

well approximated in the range S ∈ [2−8, 28] by a best polynomial fit law in terms of log(S),

i.e.

Tbulk(S) = −0.0075 log(S)2 + 0.11 log(S) + 0.1, (6)

shown as the dash-dot line in figure 5a. This empirical law will be used in §V F to provide

an estimate for the depth of the convection zone.

We define the z-dependent convective and diffusive heat fluxes to be

qc = 〈wT 〉x, (7a)

qd = 〈−∂zT 〉x (7b)

and we recall that the total heat flux q = qc + qd can be shown to be independent of z when
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averaged over long time periods (recall that time and therefore w are normalized by the

thermal time, and that Pr = 1). Figure 5b then shows the total heat transfer Q =
∫
qdz as

a function of the stiffness parameter (z-averaging removes the small 2% maximum relative

discrepancy obtained using the infinity norm in our simulations, showing the good statistical

convergence). Because we work with dimensionless variables, we note that Q is normalized

by a diffusive heat flux, and thus may be interpreted as a Nusselt number. We refrain from

interpreting Q as a Nusselt number, however, because the Nusselt number definition requires

a choice of length scale (see section §V E). The heat transfer Q increases with decreasing

stiffness S for all three Rayleigh numbers, which is in agreement with the observation that

the diffusive heat flux in the stable layer should increase as a result of the growing convection

zone (see figure 3). As expected, we also observe that Q increases with Ra for all S. In the

high-stiffness limit, the slope |dQ/dS| → 0, which suggests that the classical RBC regime

might be recovered for large S. This further implies that the depth of the convection zone h

becomes independent of S since the heat flux in the stable layer is dominated by diffusion,

so Q ≈ −Tt/(1−h). However, how large S should be to recover RBC clearly depends on Ra,

since for the highest Ra simulations, Q still changes appreciably for S = 256. For small S,

on the other hand, Q increases continuously with decreasing S. Thus, different mechanisms

occur when varying S, as could be inferred from figures 3 and 4.

A. Vertical profiles of the mean temperature and density

In figure 6, the mean temperature 〈T 〉x and density 〈ρ〉x profiles are shown as a function

of z. Because the convection is steady for Ra = 8× 106 at high S, and vertical confinement

effects may affect the higher Ra = 8 × 108 simulations (due to the higher convective flux

resulting in a larger h, and to overshoot), from here onward we choose to focus on the case

Ra = 8 × 107 (obtaining converged statistics would also require a much longer time for

Ra = 8× 108 than for Ra = 8× 107). The trends regarding the effect of S are, nevertheless,

similar for all three Rayleigh numbers considered. We use colors ranging from blue to red

to represent increasing stiffness. In figure 6a, we plot the temperature between −4 and

1 because the temperature decreases linearly with z for 〈T 〉x ≤ −4 (recall Tt = −20).

The highest-stiffness case (dark red curve) shows a symmetric temperature profile with z for

〈T 〉x ∈ [0, 1], i.e. between the bottom and inversion temperature, similar to what is obtained
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from a purely convection simulation (see unfilled-square symbols). The mean temperature in

the well-mixed region is roughly 0.5, as observed in figure 5a. As the stiffness decreases, the

mean temperature profiles become less symmetric; eventually the bulk temperature drops

below 0. It is relatively surprising that for S ≤ 2−2 the Ti = 0 isotherm is found within the

thermal bottom boundary layer, so the fluid is on average stably-stratified from the outside

of the bottom boundary layer all the way to the top of the domain. Nonetheless, it is in

agreement with the observations made on figure 3c, i.e. that entrained cold fluid motions

squeeze the buoyancy-driven convection zone close to the bottom boundary layer.

The stable stratification of the entire fluid domain, except the bottom boundary layer, for

low stiffness S can be clearly seen in the (blueish) 〈ρ〉x profiles of figure 6b. For S ≤ 2−2 the

density increases rapidly from -1 at z = 0 to 0, and then becomes roughly uniform or slowly

decreasing with z (as observed in figure 3c). For high stiffness, on the other hand, large

positive density gradients are obtained in two distinct regions separated by the bulk region,

such that density increases over a relatively large vertical extent. It should be noted that

because density anomaly gradients vary strongly where the dynamics change from stable to

unstable, the buoyancy frequency N varies strongly there too. However, since we chose a

constant background density and an EoS for which α is constant in the stable layer, N is

mostly constant deep in the stable region. Had we chosen a non-uniform background density

or an EoS for which N would be variable deep in the stable region on length scales large

in comparison to the vertical wavelength of the wave, then wave propagation would follow

WKB ray theory [30].

Unstable (positive) density gradients are only found close to the bottom boundary for

low stiffness S because buoyancy-driven convection is limited to a thin bottom layer when

the stratification is weak. Nonetheless, it is clear from figure 6b that the vertical extent

over which the density is approximately uniform always increases with decreasing stiffness

S, such that there might be a mixed region of non-negligible extent for all values of S

considered. We will confirm that convective motions take place over a volume fraction that

grows monotonously with decreasing stiffness in the next section.
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FIG. 6: (a) Mean temperature 〈T 〉x and (b) mean density anomaly 〈ρ〉x profiles as

functions of z for Ra = 8× 107 and for different stiffness parameters S. For strong

stratification, the density anomaly in the convection zone is constant within a bulk

bounded by two thin layers where the density quickly increases, reminiscent of classical

RBC. For weak stratification, the fluid density only increases within the bottom boundary

layer and is almost uniform or weakly decreasing above. As in figure 5, the vertical dashed

line in (a) highlights the inversion temperature Ti = 0, and the dotted line indicates the

bulk temperature expected from classical Rayleigh-Bénard convection. The unfilled-square

symbols show results from a convection-only simulation with rigid no-slip top/bottom

boundaries and a vertical height h = 0.32, which is an estimate of the depth of the

convection zone for S = 28 (obtained from h = (2Ldb + Lcp + Lce), see (9)).

B. Heat transfer and entrainment

In order to explain the increase of Q with decreasing S from figure 5b, as well as the–first

increase, then decrease–of the layer depth over which buoyancy-driven convection occurs

(figure 6), we split the convective heat transfer qc into two contributions, i.e.

qcp = 〈wTH [+(T − Ti)]〉x, (8a)

qce = 〈wTH [−(T − Ti)]〉x, (8b)

where H is the Heaviside step function (recall Ti = 0). The heat transfer qcp gives the

contribution from convective motions occurring as a result of buoyancy effects, and is equiv-

alent to the convective heat flux in classical Rayleigh-Bénard convection. qce measures the
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FIG. 7: Vertical profiles of the heat transfer due to (a) convective plumes qcp, (b)

entrainment qce, and (c) diffusion qd for Ra = 8× 107. Different curves correspond to

different stiffness S. For high stiffness, we obtain a symmetry in the heat transfer in the

convection zone due to plumes (qcp) in (a), suggesting classical Rayleigh-Bénard

convection. The contribution from entrainment to the total heat transfer can be seen in

(b) to be dominant in the low-stiffness cases and negligible in the high-stiffness regime.

The total heat transfer q = qcp + qce + qd is constant along the z axis up to 2% maximum

relative discrepancy. As in figure 6, the unfilled-square symbols show results from a

convection-only simulation with a vertical height comparable to the convection depth of

the highest-stiffness case.

contribution to the heat flux from fluid that is entrained (hence the superscript e), i.e. from

fluid parcels expected to be in a stable region (T < Ti) and that yet have a net negative

velocity. We recall that the sum qcp + qce + qd = q = Q is constant for all z.

From figure 7a, we find for the high-stiffness cases (S ∈ [22, 28]) a symmetric profile for

qcp in the convection zone, with a rapid increase close to the bottom boundary and a rapid

decrease higher up, where density gradients change sign (see figure 6b). This is a typical

profile of the total convective heat flux in classical RBC (see unfilled-square symbols). As

S decreases from 28 to 22, however, qcp increases in parallel with increasing convective layer

depth (which can be taken approximately as the height at which qcp decreases quickly).

This is qualitatively different from RBC, which exhibits a weak dependence of qcp on h. For

S ≤ 21, qcp loses its symmetry and decreases as the stiffness decreases (gray to dark blue).
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For low stiffness, the buoyancy-driven heat flux reaches a maximum close to the bottom

boundary layer, and decays rapidly with z away from it.

The dominant contribution to convective heat transfers does not come from buoyancy

effects for low stiffness S, but from fluid motions in an overall stably-stratified environment,

as can be seen from figure 7b. The heat transfer qce is almost uniformly 0 for high-stiffness

cases, but is large for low stiffness S; both the maximum of qce and the vertical extent

increase with decreasing stiffness. As S decreases from 28 to approximately 1, qce becomes

non-negligible close to the density inversion height as a result of plumes overshooting in the

stable layer and inducing some entrainment of the stable fluid (T < Ti) [see e.g. 17]. For low

stiffness simulations, the entrained fluid has a density roughly equal to the density of the

fluid just outside of the thermal boundary layer (see figure 6b), so the entrained fluid has

a strong influence on the rising thermal plumes. Buoyancy-driven effects become confined

closer and closer to the bottom boundary as S decreases, but at the same time plumes can

entrain more of the stably-stratified fluid since the stable buoyancy frequency decreases.

This competition results in higher heat transfers for smaller stiffness parameters (as seen in

5b), and a smaller diffusive upper layer close to the top boundary of the fluid (figure 7c). It

should be noted that the efficiency of heat transfers by the entrained fluid depends on the

temperature anomaly carried by the stable fluid. Here, the top temperature is Tt = −20,

which means that the entrained fluid can have temperature anomalies in the range [−20, 0].

This range is broader than the typical temperature anomaly of buoyant plumes of 0.5 to 1

(see e.g. figure 10), hence partly explaining the relative high values of qce compared to qcp

in spite of the relatively slow velocities of the entrained fluid (see section V D).

The respective contributions from plumes, entrained fluid and diffusive effects to the heat

transfer for varying stiffness are summarized in figure 8 for Ra = 8 × 107 (and in figure 15

in appendix for Ra = 8× 108). Each region represents the volume fraction where either qcp,

qce, or qd, dominates over the others, and each region thickness is computed based on the

corresponding heat flux variables as

Lcp =

∫ 1

0

qcp
Q
dz, Lce =

∫ 1

0

qce
Q
dz, Ldb =

∫ z∗

0

qd
Q

dz

z∗
, Lds =

∫ 1

z∗

qd
Q

dz

1− z∗
. (9)

The thicknesses of the two diffusive regions, i.e. of the thermal bottom boundary layer and

the upper stable layer, denoted by Ldb and Lds, are computed from the same diffusive heat

flux qd, but we separate the integral values over the two zones at z = z∗ with z∗ taken
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FIG. 8: Volume fractions occupied by the bottom thermal boundary layer, the plume zone,

the entrainment zone, and the stably-stratified top layer as functions of the stiffness

parameter S and for Ra = 8× 107 (see figure 15 in appendix for Ra = 8× 108). The layer

thicknesses are computed based on the profiles shown in figure 7 and according to

equations (9). For each stiffness parameter, the position where the average temperature in

the simulations is equal to the inversion temperature is shown by a star. It can be clearly

seen that the inversion temperature isotherm is on average close to or within the bottom

thermal boundary layer for S ≤ 2−2. The double-headed arrow on the left-hand side shows

the convection layer thickness h prediction based on equation (4). The filled diamonds

show the empirical prediction of h based on equation (14) presented in section V F.

in the middle of the mixed region (i.e. defined as {z, qd(z) ≤ 5%Q}), in order to avoid

an overlap. The choice of z∗ is rather arbitrary, but results in an appropriate estimate for

the depths of the bottom boundary layer and upper stable layer. Importantly, we have

Lcp + Lce + Ldb + Lds = 1, which is the total domain height.

Figure 8 clearly shows that plumes dominate convective heat transfers for high stiffness

(left-hand-side of figure 8). For low stiffness (right-hand-side), however, it is the entrained

fluid that dominates over most of the mixed region, and plume-driven heat fluxes are confined

near the bottom plate. The vertical extent of the mixed region increases monotonically with

decreasing S, and the stratified upper layer correspondingly shrinks, which is in agreement

with increasing heat transfer (cf. figure 5). The white stars show the position of the Ti

isotherm in our simulations, and it can be seen that this isotherm sinks close to or within
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the thermal bottom boundary layer for S ≤ 2−2. The fact that the change of the Ti position

is much more sudden than the change of the plume region relative to the entrainment region

indicates that plumes carrying heat upward are still somewhat effective despite the low bulk

temperature; this is in agreement with figure 4 in which plumes that are still relatively hot

can be seen as high as z ∼ 0.6. In the high-stiffness regime it is expected that the convective

layer thickness h is well approximated by equation (4). This is verified in figure 8 as the

predicted h (shown by the double-headed arrow), including the plume region as well as two

symmetric thermal boundary layers, is in good agreement with the highest-stiffness S = 28

results (note that we use β = 0.27 and C = 1/5.5 in equation (4) based on convection-only

simulation results that we ran with Dedalus and obtained for Rayleigh numbers in the range

[106, 109]). The fact that the convection height for S = 27 is different than for S = 28,

however, suggests that the stiffness must be quite large (> O(100)) to be in the asymptotic

high-stiffness regime.

C. Kinetic energy density spectra

The regimes of entrainment- and plume-dominated heat transfer exhibit different types

of flows and dynamical signatures. Figure 9 shows the temporal kinetic energy density

spectrum averaged in x (〈〉x operator), i.e. 2πf〈K〉x = πf〈û2(f, x, z) + ŵ2(f, x, z)〉x, for the

three simulations shown in figure 3 (̂· denotes temporal Fourier transform, f the frequency).

The kinetic energy density spectrum for the high-stiffness case (figure 9a) shows a con-

vective layer with a mid-plane symmetry, similar to classical RBC. As expected, the en-

ergy peaks at frequency f/fc ∼ 1, where fc =
√

RaPr/(2π) is the reference turnover fre-

quency. The kinetic energy density decreases rapidly above the mean neutral buoyancy level

(z ∼ 0.33, see figure 3a) in the stably stratified region. Diffusive and viscous damping is

most rapid for low-frequency internal waves (such as those at the convection frequency), so

only relatively high-frequency waves carry energy all the way to the top of the domain. The

kinetic energy density is small above the buoyancy frequency, shown as the black solid line.

Interestingly, the arced dashed lines in figure 9a, which highlight low-energy (z, f/fc) paths,

indicate the presence of nodes of standing high-frequency internal waves.

Figure 9b shows the kinetic energy density spectrum for the moderate-stiffness case. As

for figure 9a, the energy density peaks at f/fc ∼ 1 in the convective region, but also at
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f/fc ∼ 0.04. A second peak at lower frequency can also be seen for the high-stiffness case

(figure 9a), though less intense, that is due to a large-scale circulation, which is stable on

very long timescales. For the moderate-stiffness case, the second peak may be due to the

large-scale circulation, but is also possibly related to the coupling of the convective and

wave dynamics; it may be due to the slow motion downward of low-density-anomaly stable

fluid entrained by the penetrating plumes. The buoyancy frequency (black solid line) in

the moderate-stiffness case is relatively close to the reference turnover frequency fc, such

that the kinetic energy density of the internal-wave field that peaks at f/fc ∼ O(1) quickly

decreases with frequency. Compared to the high-stiffness case, internal waves are yet more

strongly generated as a result of the penetrating plumes, complementing the generation

by Reynolds stress due to weaker plumes sweeping beneath the neutral buoyancy interface

(which is the main generation mechanism for stronger stratification, see [10]). We note that

in the case of water cooled from below (T ∗
b = 0◦C) and heated from above (T ∗

t = 25◦C),

the kinetic energy density spectrum obtained shows similarities with both figure 9a and 9b.

This is because the stiffness parameter approximating the quadratic EoS for water (with

T ∗
i = 4◦C) is then S ≈ (T ∗

t − T ∗
i )/(T ∗

i − T ∗
b ) = 5.25.

The kinetic energy density spectrum for the low-stiffness case (S = 2−8) is shown in figure

9c. Fluid motions in the upper stable layer (z ≥ 0.8) have a lot of energy at frequencies larger

than N , showing that even though the stratification is stable, the motions are not wave-like.

This is in part due to the fact that the stratification is weak, such that large convective

motions from the entrained fluid are not strongly affected by the restoring buoyancy forces.

The maximum of kinetic energy density spectrum in the bulk is approximately two orders

of magnitude smaller for S = 2−8 compared to the high-stiffness case. This is because

buoyancy-driven fast plumes are confined near the bottom boundary (the energy peak is

close to 1 near z = 0), while slower larger-scale structures of lower frequencies dominate the

fluid bulk (as already suggested from the large energy peak at ∼ 0.1 in figure 9b); this can

also be seen from the decrease in the frequency of the kinetic energy density maximum from

∼ 1 close to the bottom boundary layer to ∼ 0.1 at z ∼ 0.2.
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FIG. 9: Spectrogram of the kinetic energy density spectrum 0.5f〈û2 + ŵ2〉x as a function

of frequency and z for each of the three simulations shown in figure 3 (Ra = 8× 107;

S = 28, 20, 2−8 from left to right). The frequencies are normalized by the reference turnover

frequency fc =
√

RaPr/2π. The black solid (white dashed) line represents the mean value

of the real (imaginary) part of the normalized buoyancy frequency, i.e. N/fc with

N = 〈
√
−RaPr∂zρ〉x/2π based on our notations. The arced dashed lines in (a) highlight

global internal-wave modes.

D. Probability density functions

Probability density functions (PDFs) of flow variables describe important aspects of the

flow characteristics. In experiments, PDFs of the flow variables are accessible using ther-

mometers and PIV techniques, and geophysicists can infer flow statistics for e.g. Earth’s

deep interior from measurements of the magnetic field. Here we show that different convec-

tive regimes exhibit different flow statistics.

We show in figure 10 the PDFs of the temperature for all our simulations with Ra =

8×107. All PDFs are obtained based on temperatures interpolated on a uniform grid within

the entire domain, and have been normalized such that the integral value
∫
P(T )dT = 1.

As the stiffness increases and becomes large, the peak of the PDF tends toward T ≈ 0.5

and becomes more and more symmetric about its peak value, as is the case for convection-

only simulations (see PDF shown by the unfilled-square symbols in figure 10). Moreover,

the PDFs for the high-stiffness cases appear mostly exponential, in agreement with earlier

studies [31, 32]. As the stiffness S decreases, however, the peak shifts toward negative
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FIG. 10: Probability density function of temperature P(T ) for different stiffness

parameters S and Ra = 8× 107. As S is increased, the peak of P(T ) tends to 0.5 (dotted

line), the bulk temperature expected for classical RBC. As S is decreased, the peak of

P(T ) drops below the inversion temperature (dashed line). The profile of P(T ) is

symmetric about the peak for hight stiffness (black solid line shows exponential fit), but

asymmetric for low stiffness. Small local maxima of P(T ) in the range T ∈ [0.5, 1] are

expected to be representative of the plumes’ temperature. As in figure 6, the

unfilled-square symbols show results from a convection-only simulation with a vertical

height comparable to the convection depth of the highest-stiffness case. Note that P(T ) for

the convection-only results is normalized such that the integral value is equal to the

integral value of P(T ) for S = 28 over the range T ∈ [0, 1].

temperatures and the PDF becomes skewed toward the lower temperature values. The

decrease for low stiffness of the peak temperature is in agreement with the low average

temperature reported in figure 6, and the asymmetry tells us that the large-scale convecting

structures have densities only marginally smaller than 0 (the maximum density, see figure

6b). This asymmetry is a feature of the entrainment regime, and is not due to sampling a

subset of the total convective domain [see e.g. 33]. Asymmetric temperature distributions

have already been observed in laboratory experiments of convection in water [see 9], in

which case the asymmetry is most likely related to entrainment and mixing of the stable

fluid in the convection zone. Note that the oscillations of the temperature distributions for

high-stiffness cases are most likely due to statistics that are not yet fully converged in the

stable layer.

The PDFs of the vertical velocity w obtained for different stiffnesses are shown in figure
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11a (for clarity, we do not include results from all simulations). The PDFs are for vertical

velocities interpolated on a uniform grid within the convection zone only, and normalized

such that
∫
P(w)dw = 1. As in classical RBC (cf. unfilled-square symbols), the PDF of w

for high stiffness is symmetric with respect to positive/negative values. The PDF for low

stiffness is, on the other hand, skewed towards the positive vertical velocities w > 0, and a

similar albeit weaker asymmetry is also observed for S = 20. The asymmetry for S = 2−8

is toward high positive vertical velocities because plumes, which are much faster than the

entrained fluid, are only ascending. That the velocity distributions for the more flexible

cases are more peaked around small velocities than for the stiffer cases suggests that patches

of the stable fluid that are entrained within the convection zone have small velocities. In

an attempt to further characterize the dynamics of the plume- and entrainment-dominated

convection, we show in figure 11b the PDFs of vertical velocity w after normalization with

respect to their mean and standard deviation. For the high-stiffness cases, we see that the

slow speeds (in absolute magnitude) follow an exponential distribution while the distribution

at higher speeds decays like a Gaussian (cf. dashed line). For the low-stiffness cases the

result is the opposite: slow speeds seem to follow a Gaussian distribution (cf. dotted line),

while high speeds follow an asymmetric exponential distribution. The statistics for weak

stratification suggest a mixed dynamics. Large-scale structures that are relatively slow (but

with a Reynolds number ∼ 100 still relatively large based on a length scale of ∼ 1 and typical

rms velocity of ∼ 100) have a velocity distribution similar to isotropic random fluctuations,

possibly due to the fact that the motions of the entrained fluid are not driven by buoyancy

and thus are isotropic. Fast fluid motions (i.e. plumes rising in the dense fluid bulk), on the

other hand, are intermittent and strongly skewed towards w > 0. For the stiffest cases, fluid

motions in the convection zone are expected to be turbulent, which is in agreement with

the Gaussian distribution for the highest speeds. That the PDFs for the high-stiffness cases

(and also the convection-only simulations) are not purely Gaussian for slow speeds may be

explained from the fact that we have compiled statistics for w not only in the bulk but also

partly on the edge of the boundary layers, which are not as turbulent as the bulk.

Figures 12a-c show the joint PDFs of w and T for S = 28, 20, 2−8. For large stiffness

(figure 12a), the joint PDF shows a symmetry for T ∈ [0, 1] around zero velocity and

T = 0.5, because the heat transfer is due to both rising and sinking plumes. In figure

12b, the peak convective heat transfer occurs for values of T closer to 0, and the larger
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FIG. 11: (a) Probability density function P of velocity w from the convective region for

different stiffness parameters S and for Ra = 8× 107. Note that the convective region

encompasses both the entrainment zone and the plume zone (cf. figure 8). (b) Same as (a)

but normalized by the standard deviation σ and mean µ of the distributions. For high

stiffness (red solid line), the distribution looks exponential for slow speeds (dashed line).

For low stiffness (blue) the distribution looks Gaussian (dotted line) for slow speeds with

asymmetric exponential tails. As in figure 6, the unfilled-square symbols show results from

a convection-only simulation with a vertical height comparable to the convection depth of

the highest-stiffness case.

FIG. 12: Joint probability density function of temperature and vertical velocity for (a)

S = 28, (b) S = 20, (c) S = 2−8 and Ra = 8× 107. Note that the oscillations in (c) are most

likely due to statistics that are not yet fully converged in the stable layer for the

highest-stiffness case.
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values of the joint PDF for T > 0 and w > 0 highlight the increased importance of hot

rising plumes compared to cool descending ones. In the weak-stratification regime (figure

12c), low-velocity sinking fluid parcels are primarily responsible for the convective heat flux,

in addition to the slightly-hot fast rising plumes (seen in figure 3c). The asymmetry of

positive/negative vertical velocities is evident and again demonstrates that buoyancy-driven

plumes only go upward.

E. Heat transfer scaling

We now discuss the Nusselt-Rayleigh scaling obtained from our simulations, which is

an essential element of the study of convective heat transfers. The Nusselt number Nu is

traditionally defined as the total heat transfer Q, normalized by the purely conductive heat

flux, and thus Nu measures the heat transfer enhancement due to convective motions. In

our case, the purely conductive heat flux across the domain boundaries is −(Tt − 1), such

that

Nu =
−Q
Tt − 1

(10)

In classical RBC, it is generally assumed that one can write Nu(Ra,Pr) = CRaβPrγ, with Ra

and Pr the two (separable) problem parameters. Here, we have two additional parameters

(S and Tt), but as we restrict Pr = 1 and Tt = −20, we only consider Nu ≡ Nu(Ra, S).

Figure 13 shows Nu/Ra0.28 as a function of S for all three reference Rayleigh numbers.

The exponent 0.28 for Ra is obtained from a best fit power law regression of Nu for our

simulations with Ra = 8 × 107, 8 × 108 for each S, and is within the range obtained in

classical RBC [1]. We do not expect the RBC scaling to work equally well for all S, and the

r2-value of this first fit is therefore small (i.e. ∼ 0.52) due to the relatively large dispersion

of the exponents in the range [0.26, 0.31] obtained for different S. Nevertheless, there is

then a relatively good collapse of the data for different S with exponent −0.086 (with final

r2-value of 0.99). That the exponent is negative is expected since as the stiffness decreases

we showed that the heat transfer increases. Note, however, that this exponent has no

theoretical grounding yet. For the smaller Ra = 8 × 106, Nu/Ra0.28 is above the collapsed

data, especially for the high-stiffness cases, because the convection pattern is steady. This is

consistent with classical RBC studies which showed that the Nusselt number has a steeper
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FIG. 13: Variations of Nu/Ra0.28 with S where Nu = −Q/(Tt − 1) for three reference

Rayleigh numbers. The dashed line shows the best fit power law regression of Nu in terms

of S for Ra = 8× 107, 8× 108.

scaling with Ra for smaller Ra, close to the onset of convection.

The empirical law

Nu(Ra, S) ≈ 0.26Ra0.28S−0.086

(1− Tt)
(11)

suggested by figure 13 can be useful in predicting the size of the convection zone in mixed

convective–stably-stratified systems. However, the Nusselt numbers obtained are small (we

find Nu ∈ [1, 7]), compared to those demonstrated in classical RBC, where Nusselt numbers

have been reported in the range Nu ∈ [10, 30] for Pr = 1 and Rayleigh numbers in 8× 106–

8 × 108 [see e.g. 29]. In order to reconcile the expected enhancement of the heat transfer

due to convective motions in our simulations in the high-stiffness limit with RBC results,

we consider the rescaled Nusselt number (subscript C standing for convection)

NuC =
Q

1/h
, (12)

where h = (2Ldb + Lcp + Lce) is a measure of the depth of the convection zone based on

(9). NuC thus corresponds to the heat flux normalized by the diffusive heat flux through

the depth of the convective layer only.

In figure 14 we plot NuC as a function of the effective Rayleigh number Raeff = Rah3

(also characterizing this convective layer only). We find that NuC ≈ CRa0.28
eff for each fixed

S where C is a constant that depends on S. For the high-stiffness cases (S = 28) we find
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Ra = 8× 106, 8× 107, 8× 108, respectively. The dash-dot line has slope 0.28, while the

dashed line has slope 1. Results of five convection-only simulations are shown by filled

squares; note that the lowest Raeff convection-only simulation is stationary in time; also,

the scaling exponent for the convection-only results is 0.28 (discarding the lowest Raeff

case).

that NuC is in the range 3–30 for Raeff ∈ [2 × 104, 2 × 108], in relatively good agreement

with classical RBC results (shown by the filled squares). For fixed reference Ra number,

d log NuC/d log(Raeff ) appears to approach 0.28 as S→∞, similar to classical RBC, which

suggests that the coupling between the two layers diminishes. For small stiffness, however,

d log NuC/d log(Raeff ) increases up to 1 for Ra = 8× 107 and S = 2−8, indicating that the

weakly stratified fluid significantly enhances the convective heat transfer.

F. Extension of Moore’s model to include the effect of S

With the help of (11) we can now extend Moore’s approximate model [28] for the pre-

diction of the convective layer depth. This is done by equating the diffusive heat flux in the

stable region with the convective heat flux, i.e.

− [Tt − Tbulk(S)]

1− h
≈ −Nu(S)(Tt − 1), (13)
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with consideration of the effect of S on Nu(S) and Tbulk(S) (approximately the temperature

at the top of the convective layer) through equations (11) and (6). We obtain

h ≈ 1− [Tbulk(S)− Tt]
0.26Ra0.28S−0.086 , (14)

and the prediction (14) (with Tbulk substituted by (6)) is shown in figure 8 by the filled

diamonds. It should be noted that in the high-stiffness limit Nu, Tbulk and h seem to

become independent of S, so (14) cannot be valid as S → ∞. That some variations of Nu

are observed for S ∈ [26, 28] shows that we are not yet in the high-stiffness regime even

with S = 28, and suggests that RBC is quantitatively recovered only when S � O(100).

The classical RBC scaling of heat transfer is nevertheless recovered for the highest stiffness

considered, when choosing an appropriate effective Rayleigh number (see figure 14).

VI. CONCLUSIONS

We have presented two-dimensional direct numerical simulation results of thermal con-

vection with buoyancy reversal, and demonstrated that the convective and internal-wave

dynamics can be strongly coupled depending on the stable stratification strength. Our

results are expected to hold qualitatively for arbitrary profiles of the thermal expansion

coefficient with temperature, despite only considering a simple piecewise linear EoS. Simi-

larities with convection in water, for which the EoS is quadratic, have been demonstrated

by comparing our results with previous numerical and laboratory experiments [9, 10].

The different dynamical regimes obtained for different S are best summarized by figure 8

(see also figure 15 for higher Rayleigh simulations), and the two most important findings are

that (i) for weak stratification (S ≤ O(10−1)), entrained fluid motions that are maintained by

rising plumes close to the bottom boundary dominate the convection zone, and (ii) classical

RB convection is recovered only for S � 100 since otherwise the influence of the stable

layer on the mean temperature profiles and flow statistics is significant. For the smallest

stiffnesses considered, the entire stable layer slumps down and becomes entrained by the

buoyant plumes, such that the convective dynamics is qualitatively very different from what

is expected from classical RBC or even penetrative convection. As S increases, however,

entrained fluid motions vanish and the convective dynamics becomes again dominated by

buoyant plumes; as expected, the overshooting length scale and mixing of the stable fluid
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decreases with increasing S. For large stratification (i.e. S ≥ O(100)), the convection is

relatively similar to RBC, the convective layer depth can be estimated assuming no feedback

from the stably-stratified fluid (see equation (5)), and flow statistics are similar to convection-

only statistics.

In the high-stiffness limit, the convection is not affected much by the waves it generates,

such that classical RBC statistics might be used as forcing in simulations of internal waves

within the stable zone. Whether the theoretical approach in [34] or numerical method based

on Reynolds stress [10] is valid is, however, beyond the scope of this manuscript. In fact,

as S decreases to S ≤ O(10), Reynolds stress may not be the only mechanism exciting

internal waves, so it may be necessary to consider other mechanisms such as the mechanical

oscillator effect [see e.g. 35, for a discussion of the mechanical oscillator effect in relation

with the generation of atmospheric internal waves by storms].

We have limited our study to fixing the top temperature to Tt = −20, which results in

approximately equal-size convective and stable layers for many parameter values. The effects

of changing Tt are qualitatively predictable and are not expected to change the importance

of the convective/wave coupling. Imagine a domain with larger Tt (e.g., Tt = −10). If the

convection height is the same as for the case Tt = −20, the temperature gradient in the

stable layer is larger (i.e. less negative), such that the heat flux is smaller in the stable

than in the convective layer. To obtain a thermal equilibrium the convection height h

must thus be different. In particular, h should decrease as Tt < 0 decreases (in agreement

with equation (5)), because the diffusive heat flux of the upper layer increases with h (i.e.

Qd ≈ −Tt/(1− h)) while the convective heat flux of the lower layer stays the same (at least

in the high-stiffness case). Preliminary results for S = 1 have confirmed this claim. For

Tt = −20 we have h ≈ 0.60 and Q ≈ 48, whereas for Tt = −40 we find h ≈ 0.27 and Q ≈ 55,

and for Tt = −10, we find h ≈ 0.89 and Q ≈ 44. Note that the increase of Q with decreasing

Tt suggests that the effect of Tt on h is not quite as dramatic as indicated by (5), at least

for S = 1.

The effect of the Prandlt number, which we did not explore (we set Pr = 1), is likely to

be more complex than Tt and will be reported elsewhere. Nonetheless, we might expect that

decreasing Pr will result in stronger convective/wave coupling. Plumes overshooting from

the convective region are expected to penetrate further into the stratified layer as a result

of rapid thermal diffusion processes in the low Péclet limit. Significant overshooting could
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potentially result in turbulent motions within the stably-stratified layer, a topic of interest

to astrophysical systems that would be worth investigating [36, 37].

We have based our analysis on the stiffness parameter S, which is equal to the ratio of the

thermal expansion coefficients, or N2/(dT/dz), in the stable and convective regions. In real

systems, we can only measure the end states of nonlinear processes, which means thatN2 and

dT/dz are expected to be both approximately zero in the well-mixed (convective) zone and

hence difficult to measure. Extracting S from real systems might thus require knowing the

thermal expansion coefficient within the convection based on the fluid composition directly,

while measuring both N2 and dT/dz in the stably-stratified zone. A different stiffness

parameter, SH , has been used in previous astrophysical studies of compressible convection

[38]. Anelastic simulations have a background temperature profile T̄ (z), and SH is defined as

the ratio of N2/(dT/dz) in the two regions, multiplied by the ratio of T̄ (z) in different parts

of the domain. For domains smaller than a typical pressure scale height (the Boussinesq

regime), T̄ (z) is almost constant, and thus S ≈ SH . Massive stars have stable layers with

typical stiffness SH ∼ 105, and therefore are good examples of coupled systems in which

the stable layer has a large stiffness [39]. Knowing whether the convection is similar to

RBC or include some types of entrained motions would yet still require a self-consistent

study, because the Rayleigh number in stars is so large that the required stiffness for the

entrainment to be negligible should be very large too. In the case of Earth’s liquid outer

core, the stratification strength of the stable layer–if it exists–is still uncertain (possibly

not too different from the Coriolis frequency, [40]) and the Rayleigh number is relatively

large [41]. Therefore, self-consistent studies might be required in the context of planetary

interiors in order to estimate the importance of the stable layer’s feedback on the convection.

It is possible that convective motions in the oceans and atmosphere [42, 43] may sometimes

fall within the class of low-to-moderate stiffness convective regimes (i.e. including some

entrainment), depending on the properties of the stably-stratified fluid [44, 45].

The plume- and entrainment-dominated regimes have been shown to have unique dynam-

ical signatures that can be of interest to astrophysicists, meteorologists, oceanographers, and

geophysicists. Understanding how the flow signatures relate to the mean state of a fluid is

of significant importance since measurements of, e.g., the stable stratification in planets and

stars are typically difficult, and the present study can provide information on the dynamics

of a system with a buoyancy reversal. We have neglected a number of physical effects that
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can have a significant impact on astrophysical and geophysical fluids. In the case of stars

and planetary interiors, the mean background convective state does not have a constant den-

sity profile, but a constant entropy profile, and compressibility and magnetic effects can be

significant. Non-uniform background density profiles can lead to upward buoyancy plumes

stronger than downward ones (and vice-versa), and strong variations of the buoyancy fre-

quency even deep in the stable region, resulting in internal waves of varying amplitudes

[30]. Double diffusive effects may also play a major role in some cases. In the ocean, for

instance, density is a function of both temperature and salt such that temperature gradients

can be stabilizing while salt stratification is destabilizing, and vice-versa. Our generic model

of convective–stably-stratified fluids provides a basis for future works aimed at considering

such physical effects, but also spherical geometry and rotation, along with buoyancy rever-

sal. The potential emergence of a mean flow in the stable layer similar to the Quasi-Biennial

Oscillation of the Earth’s equatorial stratosphere [46] is also a topic of significant importance

which will be explored in the near future.
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APPENDIX A: NUMERICAL METHOD AND SIMULATION DETAILS

We use the open-source pseudo-spectral code Dedalus [26] to solve equations (1). The

spectral decomposition consists of Chebyshev polynomial functions in ẑ direction and com-

plex exponential functions (Fourier series) in the periodic x̂ direction. We note nz and nx

the number of modes in the ẑ and x̂ directions, respectively. The use of Chebyshev polyno-

mials along the vertical axis results in increased resolution near the top and bottom domain

boundaries, such that an accurate treatment of the thermal and viscous boundary layers is

obtained with relatively few spectral modes. A 2-step implicit/explicit Runge-Kutta scheme

is used for time integration [47]. We list all simulation runs whose results are presented in

this paper in table I with relevant numerical and physical parameters.

In order to reach thermal equilibrium relatively rapidly, we initiate all numerical simula-

tions at t = 0 with low-amplitude noise added to a background zero-velocity field (u = 0)

and a background temperature field of the form (except those in section III, which are

started from the conductive state):

T = Tb + (Tbulk − Tb)
z

zconv
, z ≤ zconv, (15a)

T = Tt + (Tbulk − Tt)
1− z

1− zconv
, z > zconv. (15b)

In equation (15a) zconv is an estimate of the convective layer depth and Tbulk the bulk

temperature both obtained from preliminary simulations at low resolution, which allow us

to initialize the problem close to thermal equilibrium. An accurate estimate for zconv and

Tbulk results in an accurate estimate for the heat flux −(Tt−Tbulk)/(1−zconv), and hence the

temperature field in the stably-stratified layer, which is the fluid region that is longest to

reach equilibrium. While the convection reaches a dynamical equilibrium relatively quickly

(i.e. in ∼ O(100) turnover times, which corresponds to O(0.01) thermal time for Ra = 108),

the stably-stratified fluid layer above needs ∼ O(1) thermal time to reach equilibrium.

Setting up the initial temperature field close to thermal equilibrium in the stable region thus

reduces the simulation time significantly by allowing us to obtain converged flow statistics

rapidly, i.e. without having to wait several thermal times for the entire system to be at

equilibrium. We note that the initial state of the system is of much less importance for a

convective system without buoyancy reversal since in this case the transient initial phase

consists of an exponential growth of the most unstable modes until rapid saturation.
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Ra S nx × nz CFL dt

8× 106 2−8 256× 256 0.7 O(3× 10−6)

8× 106 2−7 256× 256 0.7 O(3× 10−6)

8× 106 2−6 256× 256 0.7 O(3× 10−6)

8× 106 2−5 256× 256 0.7 O(3× 10−6)

8× 106 2−4 256× 256 0.7 O(3× 10−6)

8× 106 2−3 256× 256 0.7 O(3× 10−6)

8× 106 2−2 256× 256 0.7 O(3× 10−6)

8× 106 2−1 256× 256 0.7 O(3× 10−6)

8× 106 20 256× 256 0.5 O(10−6)

8× 106 21 256× 256 0.5 O(10−6)

8× 106 22 256× 256 0.5 O(10−6)

8× 106 23 256× 256 0.5 O(10−6)

8× 106 24 256× 256 0.5 O(10−6)

8× 106 25 256× 256 0.5 O(10−6)

8× 106 26 256× 256 0.5 O(10−6)

8× 106 27 256× 256 0.5 O(10−6)

8× 106 28 256× 256 0.5 O(10−6)

TABLE I: See caption below.

We would like to note that the cadence at which data must be output is controlled by

the shortest of the convective time scale τc = 2π/
√

RaPr and the internal-wave time scale

τw = τc/
√

S. In order to construct flow statistics that capture the fastest dynamics here we

typically use min(τc, τw)/10 as the time step between two data outputs. It should be noted

that when the output cadence is high (S large), statistics are at equilibrium with relatively

short time averages. When the output cadence is long, however, longer time averages are

necessary to ensure statistical steady-state. This implies that about the same number of

data outputs are required to obtain converged statistics for all parameters S.
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Ra S nx × nz CFL dt

8× 107 2−8 512× 256 0.7 O(7× 10−7)

8× 107 2−7 512× 256 0.7 O(7× 10−7)

8× 107 2−6 512× 256 0.7 O(7× 10−7)

8× 107 2−5 512× 256 0.7 O(7× 10−7)

8× 107 2−4 512× 256 0.7 O(7× 10−7)

8× 107 2−3 512× 256 0.5 O(3× 10−7)

8× 107 2−2 512× 256 0.5 O(3× 10−7)

8× 107 2−1 512× 256 0.5 O(3× 10−7)

8× 107 20 512× 256 0.5 O(3× 10−7)

8× 107 21 512× 256 0.5 O(3× 10−7)

8× 107 22 512× 256 0.5 O(3× 10−7)

8× 107 23 512× 256 0.5 O(3× 10−7)

8× 107 24 512× 256 0.5 O(3× 10−7)

8× 107 25 512× 256 0.35 O(2× 10−7)

8× 107 26 512× 256 0.35 O(2× 10−7)

8× 107 27 512× 256 0.35 O(2× 10−7)

8× 107 28 512× 256 0.35 O(2× 10−7)

TABLE I: (Cont.) See caption below.
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