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The dependence of the heat transfer, as measured by the nondimensional Nusselt number Nu, on
Ekman pumping for rapidly rotating Rayleigh–Bénard convection in an infinite plane layer is exam-
ined for fluids with Prandtl number Pr = 1. A joint effort utilizing simulations from the Composite
Non-hydrostatic Quasi-Geostrophic model (CNH-QGM) and direct numerical simulations (DNS) of
the incompressible fluid equations has mapped a wide range of the Rayleigh number Ra – Ekman
number E parameter space within the geostrophic regime of rotating convection. Corroboration of
the Nu–Ra relation at E = 10−7 from both methods along with higher E covered by DNS and
lower E by the asymptotic model allows for this extensive range of the heat transfer results. For
stress-free boundaries, the relation Nu− 1 ∝ (RaE4/3)α has the dissipation-free scaling of α = 3/2
for all E ≤ 10−7. This is directly related to a geostrophic turbulent interior that throttles the
heat transport supplied to the thermal boundary layers. For no-slip boundaries, the existence of
ageostrophic viscous boundary layers and their associated Ekman pumping yields a more complex
2D surface in Nu(E,Ra) parameter space. For E < 10−7 results suggest that the surface can be

expressed as Nu−1 ∝ (1+P (E))(RaE4/3)3/2 indicating the dissipation-free scaling law is enhanced

by Ekman pumping by the multiplicative prefactor (1 + P (E)) where P (E) ≈ 5.97E1/8. It follows
for E < 10−7 that the geostrophic turbulent interior remains the flux bottleneck in rapidly rotating
Rayleigh–Bénard convection. For E ∼ 10−7, where DNS and asymptotic simulations agree quanti-
tatively, it is found that the effects of Ekman pumping are sufficiently strong to influence the heat
transport with diminished exponent α ≈ 1.2 and Nu− 1 ∝ (RaE4/3)1.2.

I. INTRODUCTION

Rotation and convection are key components of many
geophysical and astrophysical systems, including plane-
tary oceans, atmospheres and interiors, as well as stellar
interiors [1–3]. These systems are typically rapidly ro-
tating, highly turbulent and observationally remote, ren-
dering them difficult to study. To investigate the funda-
mental dynamics of these systems in a simplified setting
many investigations employ the Rayleigh–Bénard config-
uration of a fluid confined between two parallel rotating
plates with an imposed buoyancy inducing temperature
difference ∆T . Complications are further reduced by as-
suming the rotation, at rate Ω, is aligned with the grav-
itational z axis and using a horizontally periodic Carte-
sian box for simulations [4, 5] or an upright cylinder for
experiments [6], both with vertical scale H .
The rotation of the system can be quantified by the Ek-

man number E = ν/2ΩH2, which measures the impor-
tance of the Coriolis force relative to viscous dissipation.
The Rayleigh number Ra = gαT∆TH3/νκ measures the
magnitude of thermal forcing relative to dissipative ef-
fects. Here ν is the kinematic viscosity, κ is the ther-
mal diffusivity, αT is the thermal expansion coefficient
and g is gravitational acceleration. The rotational con-
straint of the system is determined by the Rossby num-
ber Ro = U/2ΩH , a ratio of the strength of the Coriolis
force to inertial forces. Here U is a characteristic velocity
scale, which when expressed as a free-fall velocity gives an
a priori measure Ro = E

√
Ra/Pr. The Prandtl number
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Pr = ν/κ is an attribute of the fluid; for air, Pr ≈ 1.
These nondimensional parameters can be tied to the effi-
ciency of the vertical heat transfer in the system through
the Nusselt number Nu = qH/ρ0cpκ∆T , where q is the
heat flux and ρ0cp is the volumetric heat capacity.
The interplay between rotation and buoyancy and the

sensitivity of the flow to each of these forces can be exam-
ined through the heat transfer scalings of Nu with each
parameter. The precise nature of these scalings has be-
come the focal point of both laboratory experiments and
numerical simulations due to the relative ease of mea-
suring the Nusselt number and the link between these
scalings and the realized flow [7]. In fact, the power law
scalings provide a proxy for determining the flow mor-
phologies [8, 9] and once understood, can potentially be
used to extrapolate to settings like planetary interiors.
Assumptions for the functional form of the heat trans-

port scaling law are not unique; one such consideration
is

Nu− 1 ∝ PrγRaαEβ , (1)

allowing γ, α and β to independently determine the sen-
sitivity to fluid type, thermal forcing and rotation, re-
spectively. This choice follows logically from a common
strategy within the rotating Rayleigh–Bénard fluids com-
munity to either vary the rotation rate while holding Ra
fixed to focus on β [e.g., 11–13] or instead vary the heat-
ing at constant rotation to find α [e.g., 4]. This differ-
ence in approach has led to difficulties in consolidating
results into a robust scaling theory as the connection be-
tween exponents α and β remains ill-understood. Studies
frequently report differing values of the exponents ob-
tained from various slices through the multi-dimensional
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parameter space [6, 11]. Accordingly, there has been
much debate about the value of the scaling exponents
within the field. We proffer that this contention is formed
from a lack of insight into the Nu surface in Ra–E pa-
rameter space and how the directional path of a given
study within that parameter space affects the scaling ex-
ponents. Admittedly, the paucity of both laboratory and
DNS data within the low Ro regime constitutes the pri-
mary cause for this situation.
This issue has been resolved for the case of stress-free

boundaries with many verifications of the dissipation-free
scaling law of α = 3/2, β = 2 (implying γ = −1/2) for a
turbulent interior that throttles the efficiency of the heat
transport through the boundary layer regions [4, 11, 14].
Thus

Nu− 1 ∝ Pr−1/2Ra3/2E2 (2)

for stress-free boundaries. This relation can be further
rearranged as

Nu− 1 ∝ Pr−1/2R̃a
3/2

(3)

illustrating that the heat transport is controlled solely
by a supercriticality parameter through the reduced

Rayleigh number R̃a = RaE4/3; a parameter that ap-
pears naturally in the asymptotic theory of rotating con-
vection [15]. More generally, a sole dependence of the

scaling law (2) on Pr and R̃a implies β = 4α/3, indicat-
ing the expectation that the heat transport law can be
uncovered by measurement at either fixed Ra or E.
We note specifically that the E4/3 Ekman dependence

in the supercriticality parameter R̃a arises as a conse-
quence of critical Rayleigh number Rac ∼ E−4/3 for ro-

tating convection [15], thus R̃a ∼ Ra/Rac ∼ RaE4/3.
This should be juxtaposed with the non-rotating problem
where Ranrc is a fixed constant which results in a direct
parameter-independent link between Ra and the super-

criticality parameter, such that R̃a
nr

∼ Ra/Ranrc ∼ Ra.
For no-slip boundary conditions, King et al. [16] first

proposed a scaling law akin to the Malkus–Howard [17]
theory requiring the thermal boundary layers to be
marginally stable. Consistent with β = 4α/3, this pro-
duced scaling exponents α = 3 and β = 4. Neither this
result nor the stress-free result is observed [5–7, 11, 18]
and it is now generally accepted that the presence of
Ekman pumping associated with no-slip boundaries fur-
ther complicates the heat transport scaling law. Progress
towards an understanding of this fundamental interac-
tion for the case of no-slip boundaries has been furthered
through a collaborative effort combining heat transfer
data from asymptotic theory [18], direct numerical sim-
ulations [4, 11], and laboratory experiments [6, 12].
Here we present an empirical investigation of the

asymptotic heat transfer scaling appropriate for Pr = 1
fluids with no-slip boundaries. We focus on Pr = 1 flu-
ids because it is known to rapidly enter the regime of
geostrophic turbulence as a function of buoyancy forcing
[8, 9]. Presently, it is the only case for which data from

(a) (b)

(c) (d)

FIG. 1: (Color online) Four perspective visualizations of the

fluctuating temperature field θ for (a) cells at R̃a = 10, (b)

transitioning cells at R̃a = 15, (c) plumes at R̃a = 40 and

(d) GT at R̃a = 70 all at E = 10−11 and Pr = 1. The
magnitude of the fluctuations is indicated by red (hot) and

blue (cold) over ranges (a) [-1,1]E1/3, (b) [-4,4]E1/3, (c)

[-10,10]E1/3 and (d) [-18,18]E1/3.

DNS and asymptotic models exist for the geostrophic
turbulence regime. Laboratory experiments still trail in
their ability to access this regime [7, 12]. The asymp-
totic model, referred to as the composite non-hydrostatic
quasi-geostrophic model (CNH-QGM) is valid in the limit
E ↓ 0 [18]. It imposes a pointwise geostrophic balance
where the Coriolis force is balanced by the pressure gra-
dient force. Buoyantly driven fluid motions then evolve
under the dominant action of horizontal inertial advec-
tion and horizontal dissipation. Currently, this model
represents the only means of probing the turbulent – low
Ro regime of rotating Rayleigh–Bénard convection.

Results from numerical simulations of the CNH-QGM
have revealed the existence of four flow morphologies
with increasing Ra at fixed E. These include cellular mo-
tions that give way to convective Taylor columns formed
out of the instability and synchronization of the thermal
boundary layers. This gives way to state of boundary
layer plumes which synchronize intermittently. Eventu-
ally, the inability of the boundary layers to synchronize
gives rise to a state of geostrophic turbulence (GT) in
the fluid interior [4, 8–10].

The four morphologies and the transitions between

each state as a function of R̃a have been mapped out
extensively for the stress-free case where Ekman pump-
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FIG. 2: (Color online) Perspective visualizations of the

fluctuating temperature field θ for R̃a = 15 at (a) E = 10−11

and (b) E = 10−7. These display different structures, (a)
cells and (b) columns, indicating Ekman pumping can alter

the transitional R̃a value. The color scale covers (a)

[-5,5]E1/3 and (b) [-4,4]E1/3 from blue(cold) to red(hot).

ing is absent [c.f., 8, 9]. These same four morphologies
are present when no-slip boundaries are applied [4, 5].
While the transitions appear to occur at approximately

the same R̃a values as with stress-free boundary condi-
tions, there is slight variation with E as illustrated in fig-
ure 2. The estimated transition from cells to plumes for

the stress-free case occurs at R̃a ≈ 20 [8, 9], however the
no-slip results with E = 10−11 and E = 10−7 display dif-

ferent structures at R̃a = 15. The E = 10−7 field shows
columnar structures activated through a boundary layer
instability and some evidence of shielding (more detail for
defining each morphology can be found in [8]), indicat-
ing that higher E and the associated higher magnitude

of Ekman pumping accelerates transitions in R̃a space.
At E = 10−11 the fluctuating temperature field indicates
transitioning cells that do not extend to the boundary.

The field at E = 10−7 and R̃a = 10 shows well-defined
cells, thereby providing a lower bound for the cell to col-
umn transition.

One aim of this work is to explore how different scalings
can coexist within the complex Nu parameter space for
no-slip boundaries. This is addressed through an analy-
sis of runs for both fixed E and Ra and the consolidation
of these results to form a surface of Nu(R̃a, E) over a

range of 8 < R̃a ≤ 100 and 10−11 ≤ E ≤ 10−5. We uti-
lize a combination of results obtained from DNS [4, 11]
at and above the current lower bound of E ≈ 10−7 and
the asymptotic CNH-QGM for E ≤ 10−7 [18]. The fi-
delity of this model was verified with DNS at E = 10−7

for Pr = 1 in Plumley et al. [5]. While visually helpful,
the complexities of the surface render it difficult to char-
acterize analytically. However, low Ekman results can
be utilized to quantify the effect of pumping within the
GT regime. A key question we address is to what extent
Ekman-pumping disrupts the ability of the geostrophic
turbulent interior to throttle the heat flux through the
layer. This may be understood by assessing the depar-
ture from the dissipation-free scaling law (3). Inherent

in this statement is the need to produce a heat transport
scaling law that provides an understanding of measure-
ments obtained from different pathways through Ra–E
parameter space.
Based on the results of the asymptotic model at low

E, we extend (3) and propose the scaling law

Nu− 1 = c1(1 + P (E))PrγR̃a
α

(4)

where c1 ≈ 1/25 is a constant factor [14]. This states
that the effect of Ekman pumping is to enhance the heat
transfer by the multiplicative factor (1 + P (E)).

II. STRESS-FREE RESULTS

FIG. 3: (Color online) A 2D surface of Nu as a function of
Ra and E for stress-free boundaries and Pr = 1. Results

marked by (red) circles denote data obtained by the
CNH-QGM [10]. Note that the red dots are obtained from
one E-independent run of the stress-free CNH-QGM that

has been plotted along both E = 10−7 and 10−11. DNS data
for E ≥ 10−7 with Ra constant (blue squares) and E

constant (green diamonds) are also included. The dashed

line indicates Rac = 8.7E−4/3.

In figure 3 we illustrate the 2D surface obtained for Nu
in Ra–E parameter space. The surfaces were generated
from a combination of DNS and CNH-QGM data and the
MATLAB scattered interpolant and gridded interpolant
functions. A coarse mesh surface is created from all the
scattered data, where the scattered interpolant function
generates a continuous surface of the given data points
using linear interpolation. This surface is then smoothed
using the spline option of the gridded interpolant func-
tion to reduce any artificial variations.
Evident from this surface is the delayed onset of con-

vection for increasing rotation rates (decreasing E) where
Rac ∼ E−4/3 for Nu = 1 [15] (see dashed line). Also ob-
servable is the excellent quantitative agreement between
DNS and CNH-QGM data at E = 10−7. However, we
find the Nu–Ra–E surface of less visual utility in com-

parison to Nu–R̃a–E, which has the added benefit of
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FIG. 4: (Color online) The 2D surface plot of Nu as a

function of R̃a and E for stress-free boundaries and Pr = 1.
Results marked by (red) circles denote data obtained by the
CNH-QGM [18]. DNS data for E ≥ 10−7 obtained from
holding Ra constant (blue squares) [11] and E constant
(green diamonds) [4] are also included. Contours of the
gridded surface for E ≤ 10−7 are parallel to the E axis

indicating independence of E. Dashed lines from the squares
indicate those points were not included to form the surface.

FIG. 5: (Color online) Compensated surface plot

25(Nu− 1)/R̃a
3/2

for stress-free boundaries with Pr = 1.
Results from the CNH-QGM for E ≤ 10−7 are denoted by
circles (red), DNS at constant E by diamonds (green), and
DNS at constant Ra by squares (blue). Dashed lines from
the squares indicate those points were not included to form

the surface.

providing equivalence in the supercriticality for differing
E (figure 4).

For stress-free boundary conditions, the CNH-QGM

depends solely on R̃a and Pr as input parameters. This
eliminates the independent choice of a specific E or Ra
for a given run. Thus, the stress-free data shown as red
dots in figure 4 is independent of E and is therefore valid
at all E ≤ 10−7. For comparison with DNS data at a

specific Ra and E, the R̃a values are determined using

R̃a = RaE4/3
10 100

Nu

1

10

100 E = 10−7 DNS

E = 10−7 CNH-QGM

stress-free

3/2

1

3

FIG. 6: (Color online) Nu vs R̃a at fixed E = 10−7 for
DNS (filled squares) and CNH-QGM (open squares). This
curve represents the lower bound of achievable results for
DNS and upper bound for the CNH-QGM. For comparison
stress-free results are included (circles). This figure has been

reproduced from [5] with an extended range of R̃a.

the relation R̃a = RaE4/3.
As noted, in the case of stress-free boundaries, expo-

nents in (3) can be predicted by seeking the turbulent
dissipation-free scalings α = 3/2 and γ = −1/2, and from
(1) it follows β = 2. This scaling holds for all E ≤ 10−7

[14], thus creating a simple 2D surface in Nu–R̃a–E pa-
rameter space (figure 4). For E ≤ 10−7, it is observed
that the contours are parallel to the E axis confirming

the appropriateness of the supercriticality parameter R̃a.
Departure from the planar surface is visible for E >

10−7 which may be taken as evidence of a breakdown of
the asymptotic regime. This can be tied to a growing
Rossby number and the associated loss of the rotational
constraint that the CNH-QGM relies on for validity.
The features of the Nu surface are more pronounced in

the compensated surface normalized by the scaling law

c1R̃a
3/2

(figure 5). Approximate surface values of unity

indicate the region in R̃a–E space obeys the dissipation-
free scaling law (1) for geostrophic turbulence. It also
implies P (E) ≡ 0 in (4) for the stress-free surface as
expected given the absence of Ekman pumping.

III. NO-SLIP RESULTS

The presence of no-slip boundaries in low Rossby-
number convection requires the attenuation of the inte-
rior velocity field to zero within an O(E1/2H) Ekman
boundary layer [18, 19]. Within this layer geostrophic
balance is lost and a relaxation of the associated hor-
izontal non-divergence of the axial vortical field must
occur. This results in Ekman pumping (and suction)
for local cyclonic (anticyclonic) motions. We refer to
this phenomena generically as Ekman pumping where
the strength of the dimensional vertical pumping veloc-
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FIG. 7: (Color online) 2D Surface plot of Nu as a function

of R̃a and E for no-slip boundaries and Pr = 1. Results
marked by (red) circles denote data obtained for E ≤ 10−7

in the CNH-QGM. DNS data for E ≥ 10−7 are obtained
from holding Ra fixed (blue squares, [11]) and E fixed

(green diamonds, [4]).

ities, w∗
E , can be related directly to the local vortical

motions, ζ∗, via a classical linear boundary layer analy-
sis, i.e., w∗

E ∼ E1/2Hζ∗ [19]. It has been shown [18] that

despite the E1/2 dependence, there exists a transitional

R̃at ∼ E−1/9 where vortical motions intensify sufficiently
so pumping remains finite in the limit of rapid rotation,
i.e., limE↓0 wE 6= 0. For no-slip boundaries, Stellmach
et al. [4] and Julien et al. [18] have demonstrated that Ek-
man boundary layers can be parameterized by the afore-
mentioned velocity-vorticity pumping condition. The ex-
plicit appearance of E in that expression now indicates

three input parameters for a given run: R̃a, Pr and E.
Thus comparative differences with the stress-free case are
to be expected. One example is the enhancement of the
convective heat flux and large increases in the heat trans-
port. The increase in heat transport has been investi-
gated and confirmed by DNS at E ≥ 10−7 [4] and by the
CNH-QGM for E ≤ 10−7 [5, 18] for fixed E explorations.
The quantitative overlap of results at E = 10−7 (Figure
6), which represents a current lower bound for DNS and
upper bound for the CNH-QGM, supports the validity of
both methods in their respective parameter regions.

Results from DNS [4, 11] and the CNH-QGM along dif-
ferent pathways through parameter space are combined

to create a surface of the heat transfer Nu(E, R̃a) for
the no-slip case. The surface illustrated in figure 7 is a
markedly different and more complex surface in compar-
ison with the stress-free surface of figure 4. Specifically,

contours at fixed R̃a are no longer parallel to the E-
axis, now indicating an Ekman dependence within the
geostrophic regime. As illustrated in figure 7, the effect
on the heat transfer is nontrivial even at E = 10−11 [5],
due to the addition of Ekman pumping. While there is
a resemblance between the surfaces as E is lowered, the
Nu results for the no-slip case are higher than the corre-
sponding stress-free results. Also evident are the much

E
10 -8 10 -7 10 -6

Nu

1

10

100

Ra = 1 × 1010

Ra = 5 × 1010

Ra = 4.65 × 1012

4

4/3
2

FIG. 8: (Color online) Nu vs E at fixed Ra for the
CNH-QGM (open symbols) and DNS (filled symbols, [11]).
The runs cover a range of E for fixed Ra = 4.65×1012 (black
triangles), Ra = 5× 1010 (green circles) and Ra = 1× 1010

(red diamonds). Guiding slopes of 4 (dashed lines), 2
(dotted lines) and 4/3 (dot-dash) are included. The gray
stress-free points were calculated by taking each stress-free

data point at given R̃a and utilizing that R̃a = RaE4/3 at
the fixed Ra of each run to find the corresponding E.

higher Nu slopes in the lower R̃a regime [4, 5] where the
cellular morphology occurs [8]. A more detailed quantifi-
cation of these observations is provided in figures 8, 11
and 12 below.
Figure 8 shows the heat transfer results for cross-

sections through parameter space at three different fixed
values of Ra. The results at both Ra = 1 × 1010 (dia-
monds) and Ra = 5 × 1010 (circles), with E near 10−7,
show agreement between DNS ([11] 3 filled green data
points) and the CNH-QGM. These curves display a loss
of agreement towards the upper range of E, which is es-
pecially evident for the Ra = 1 × 1010 data (diamonds
in figure 8). This divergence signals an exiting of the
asymptotic regime and the break down of validity for the
CNH-QGM.
The transition of the no-slip curves away from the

stress-free curves (gray lines, figure 8) can be predicted

by R̃at > cE−1/9 or Et > c9/13Ra−9/13 as found in Julien
et al. [18] and fit with c ≈ 1 [5]. For all of the curves in
figure 8, the transition occurs below the lowest E plotted;
for example, the constant Ra = 4.65 × 1012 data has a
predicted transitional Et ≈ 1.7× 10−9. Within the cellu-

lar regime (R̃a . 20), the slopes are much higher than the
stress-free slopes, nearing α ≈ 3 in figure 6 and equiva-
lently β ≈ 4 in figure 8 before the transition to the plume
and GT regimes. This is consistent with recent labora-
tory and DNS investigations [6]. The transition from the
cellular to GT regimes occurs when the horizontally av-
eraged temperature gradient reaches its minimum and
the slope stabilizes at a finite value, indicating unstable
stratification in contrast to an isothermal interior [8].
In figure 9 the Nu curves obtained at fixed Ra and
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FIG. 9: (Color online) Surface plots of Nu(Ra,Ek) (top)

and Nu(R̃a, E) (bottom) showing the two directions of data
used in the surfaces. Colors and symbols agree with the line
plots shown in figures 6 and 8. The blue squares show data
with constant E. The black triangles, red diamonds and

green circles show data from constant Ra.

fixed E (figures 8 and 6 respectively) are illustrated

as pathways on the Nu(Ra,E) and Nu(R̃a, E) sur-
faces. The directionality of fixed Ra or E is clear in
the Nu(Ra,E) figure, although an asymptotically more

useful view is obtained for Nu(R̃a, E), where the con-
stant Ra lines appear as diagonal cross sections. Un-
like the stress-free surface, the complexities extend below
E = 10−7.

III.1. Quantifying the effects of pumping within

the low E, GT regime

For comparison with the stress-free surface, the no-slip
surface is compensated by the dissipation-free results (3)
in figure 10. This makes explicit the enhancement due
to Ekman pumping as the surface appears to be a plane,
with height greater than 1, that is tilted upwards with

E in the high R̃a - low E domain. This implies that the
stress-free fit is a useful base model for the no-slip curve

at high R̃a, which only requires alteration to account for

FIG. 10: (Color online) Compensated 2D surface of

25(Nu− 1)/R̃a
4/3

for no-slip boundaries. Data from the
CNH-QGM are denoted by (red) circles. DNS data are

included for fixed Ra (blue, squares) [11] and fixed E (green,
diamonds) [4].

R̃a = RaE4/3

10 1 10 2

(N
u
−

1
)/
R̃
a
3
/
2

10 -2

10 -1

Stress-free
E = 10−7

E = 10−7 DNS
E = 10−8

E = 10−9

FIG. 11: (Color online) Compensated plot of

(Nu− 1)/R̃a
3/2

for the Pr = 1 CNH-QGM results for
E = 10−7 (diamonds), E = 10−9 (squares), and E = 10−11

(triangles). The stress-free results are plotted as gray circles.

the increase in the heat transfer.
The enhancement can be directly computed from the

compensated heat transfer results obtained for cross-
sections at multiple values of fixed E as plotted in fig-
ure 11. For E < 10−7 an important observation is the
evolution of the compensated curves to the dissipation-

free exponent α = 3/2 for R̃a & 100. This is more explicit

in a blow up of the region R̃a > 80 (figure 12).
The E = 10−7 data exhibits no such convergence to

α = 3/2 in this region and continues to decrease with

R̃a. Instead we observe that, in addition to multiplica-
tive effects, the ageostrophic effect of Ekman pumping
now diminishes the heat transport efficiency to exponent
α ≈ 1.2. The transition to a self-similar scaling regime
(3) thus occurs for E < 10−7. This elicits a few remarks.
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R̃a = RaE4/3

80 100 120 140 160

(N
u
−

1
)/
R̃
a
3
/
2

0.04

0.06

0.08

0.1

0.12

0.14 Stress-free
E = 10−7

E = 10−7 DNS
E = 10−8

E = 10−9

E = 10−10

E = 10−11

FIG. 12: (Color online) An enlarged section of figure 11 for

80 ≤ R̃a ≤ 160 and 5 values of E. Results include
CNH-QGM (open symbols) and DNS (closed) for E = 10−7

(diamonds) and CNH-QGM results for E = 10−8

(right-facing triangles), E = 10−9 (squares), E = 10−10

(circles), E = 10−11 (upward triangles) and stress-free (filled
circles).

Given that E = 10−7 represents an established quantita-
tive benchmark between DNS and CNH-QGM data this

supports an extended range of R̃a for which the CNH-
QGM is valid. Despite this endorsement of the CNH-
QGM model, the E = 10−7 result complicates the under-
standing of the enhancement as it appears entering the
self-similar regime is associated with non-monotonic be-
havior in E. Indeed, given that CNH-QGM is geostroph-
ically balanced in both interior and thermal boundary
layer, the result α ≈ 1.2 cannot be attributed to loss
of geostrophic balance in the latter. The transition for
loss of balance has been predicted in [14] to be given by

R̃at2 ≈ d̃E−4/15 (or equivalently Rat2 ≈ dE−8/5). Thus,

the exploration of parameter space R̃a ≤ 160 < R̃at2
implies d̃ & 2.17. It then appears that the observed non-
monotonicity, captured by the DNS and CNH-QGM, can
be attributed solely to the ageostrophic effects of the Ek-
man pumping and the associated Ekman boundary layer.

The influence of pumping on the heat transfer for
E ≈ 10−7 is also visible in figure 8 for the curves with
constant Ra = 5 × 1010 (green circles) and Ra = 1010

(red diamonds). These curves show β ≈ 4/3, demon-
strating that the heat transfer slope is similarly dimin-
ished from the stress-free result (of β = 2) as for the
constant E = 10−7 data. However, the curve at higher
Ra = 4.65 × 1012 (E ≈ 10−9) reaches the self-similar
regime and runs parallel to the stress-free result with
β ≈ 2.

This can be understood as a Rossby number effect.
Departures from the stress-free scaling exponents are ex-
pected for larger Ro & .03. For the three curves in figure
8, the Rossby number ranges within the GT regime are
.05 ≤ RoGT ≤ .1 for the Ra = 1010 data (red diamonds),
.034 ≤ RoGT ≤ .067 for the Ra = 5 × 1010 data (green
circles) and .011 ≤ RoGT ≤ .022 for the Ra = 4.65×1012

data (black triangles). The Rossby number acts as a con-
trol parameter and for high Ro the results depart from
the expected scaling behavior. This is confirmed in fig-
ure 12 as the curves follow the expected scaling behavior
for the runs with lower Ro (lower E). For the E = 10−7

data at R̃a = 160, Ro = .058, whereas for E = 10−8 and

R̃a = 160, Ro = .027, and only the E ≤ 10−8 – lower Ro
curves result in the self-similar solution.

FIG. 13: (Color online) Compensated 2D surface of

Nu–R̃a–E using (5). Data from the CNH-QGM are denoted
by (red) circles. DNS data are included for fixed Ra (blue,
squares) [11] and fixed E (green, diamonds) [4]. While the

high E – low R̃a shows variation, the fitting applies to the

low E – high R̃a data and the effectiveness of the fit can be
seen in the flattening of the surface to a value of 1 in this

region.

The combination of observations from figures 7, 10,
and 12 leads to (4), where P (E) accounts for the verti-
cally shifted increase and the decreasing impact of Ekman
pumping as E ↓ 0. Therefore, we propose P (E) = c2E

δ

for the self-similar regime. The values of c2 and δ can be
fitted from the values of the E curves in figure 12. Ad-
ditional points for E = 10−8 and 10−10 were calculated
to supply four points to fit, and the E = 10−7 was not
included. Using the increase for each in relation to the

stress-free value at R̃a = 160, δ = .126± .012 ≈ 1/8 and
c2 = 5.97±1.31 provides an empirical estimate of the ex-
pected increase due to pumping within the GT regime.
Thus, for Pr = 1,

Nu− 1 =
1

25
(1 + 5.97E1/8) R̃a

3/2
. (5)

From the viewpoint of probing the geostrophic regime
by decreasing E, the 1/8 exponent indicates a slow de-
crease in the effect of Ekman pumping. Indeed, given
the amplification factor 5.97E1/8, a relative difference of
10−1 requires E ≥ 10−15. This is a bound satisfied by
rotating convection in most planetary and stellar objects
[7].
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FIG. 14: (Color online) The 2D surface of
(NuNS − 1)/(NuSF − 1). Here the subscripts denote the Nu
values from applying either no-slip (NS) or stress-free (SF)

boundary conditions.

Figure 13 shows the surface compensated according

to (5). The high R̃a values compress to a compensated
value ≈ 1, showing that the fit captures the expected

curves well in this region. The low R̃a, high E still shows
variations in the surface. This region is characterized by
cellular motions rather than GT and is not expressed as
well in the fit.
Another way to examine the no-slip results is to ig-

nore the scaling laws and instead compare the ratio of

(NuNS(E, R̃a)− 1)/(NuSF (E, R̃a)− 1), where the sub-
scripts denote Nu values from either the no-slip (NS) or
stress-free (SF) cases. Figure 14 shows the results of this
calculation. The majority of the plot shows that this
ratio is bounded by 2 and the surface is relatively flat.
This simultaneously indicates a bound on the enhance-
ment due to Ekman pumping and highlights the simi-
larity in the efficiency of heat transport as measured by
the exponents for both the stress-free and no-slip cases.
The strong effect of Ekman pumping within the cellular

regime is also observed in this figure in the low R̃a, high
E domain.

IV. CONCLUSIONS

The heat transfer scalings as function of thermal forc-
ing and rotation rate are a primary focus of rotating con-
vection studies. However thermal and mechanical diffi-
culties, and issues of numerical stability, limit laboratory
experiments and DNS to E ≥ 10−7. This value is known
to be on the boundary for probing geostrophic dynamics
[12]. Different approaches for entering the geostrophic
regime (fixed Ra or E) have also produced results that
appear incompatible. We have demonstrated that the

Nu(E, R̃a) surface is complex and that by mapping the
full 2D surface of results the aforementioned incompat-
ibility can be understood as cross-sections through the
surface in different directions.

Indeed, the surfaces show that any observed scaling
exponent is dependent on the particular cross-section

through R̃a-E parameter space. The surface highlights
the vertical shift of the heat transport results from the
stress-free to no-slip cases as well as the additional E
dependence caused by pumping. This dependence cre-
ates a more convoluted surface as the heat transfer is a
non-monotonic function of E even within the geostrophic
regime. The deviation from the simplified 1D stress-
free slope emerges from the E dependence of the Ekman
pumping velocity for no-slip boundaries. Thus, varying
E at fixed Ra for the no-slip case continuously varies the
strength of pumping and adds greater complexity in un-
derstanding the results despite the ease of experimental
design.

FIG. 15: (Color online) Compensated 2D surface of

Nu–R̃a–E using (5). The dashed line indicates the
approximate transition from the cellular regime to plumes
and the solid line indicates the approximate transition from

plumes to GT in order of increasing R̃a. The transitions
show some variation with E (see figure 2). The red stars

mark the location in parameter space of the four
temperature fields shown in figure 1.

For low E ≤ 10−8 and high R̃a ≥ 60, the results
reach an utlimate scaling that is used to characterize
this section of parameter space. Utilizing the stress-free
scaling law as a guide and fitting the heat transfer en-
hancement due to pumping, the scaling law Nu − 1 =

(1/25) (1 + 5.97E1/8) R̃a
3/2

applies for the Pr = 1 no-
slip case. This scaling law provides a benchmark for fu-
ture lower Ekman number DNS and experimental stud-
ies. It also facilitates conversion between the no-slip and
stress-free data. To connect these results with the flow
morphologies, figure 15 displays the compensated surface
with the approximate transition lines demarcated. For
Pr = 1 fluids, the columnar morphology is short-lived
and those transitions are not attempted in the figure.
More detail about the analysis for computing these tran-
sitions is provided in [9] and [20].

We finally note that a majority of laboratory experi-
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ments for RRBC are performed for water where Pr ≈ 7.
Mapping the surface for Pr = 7 (or other Pr ≥ 3) is
complicated by a lack of laboratory and numerical data
in the geostrophic regime, and a reduced overlap of re-
sults at E = 10−7 between DNS and the CNH-QGM [5].
The difficulties are compounded by the extended range of
parameter space dominated by columnar or plume struc-
tures for Pr ≥ 3 [10]. Such coherent structures act as
conduits for efficient heat transfer and most likely do not
reflect the ultimate characteristics of geostrophic turbu-
lence that has been shown to throttle the heat flux. Pre-
liminary data and surface results are presented in the
appendix. Future results by the UCLA Spinlab, Eind-
hoven TROCONVEX, and Gottingen Uboot laboratory

experiments should help by adding data at higher R̃a to

this surface for Pr = 7.
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Appendix: Pr > 1

In the laboratory, the most common working fluid is
water (Pr ≈ 7). The present status of the 2D surface for
Pr = 7 is illustrated in figure 16. The increased magni-
tude of Nu resulting from the columnar morphology is
evident in the diagram when compared to the Pr = 1
results in figure 4. However, we note that after a steep

increase in the Nu-R̃a curve at fixed E the slope appears
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to be settling into a regime that bears similarity with the
dissipation-free regime observed for Pr = 1 (Figure 17).

FIG. 16: (Color online) Two perspective surface plots of

Nu–R̃a–E for no-slip boundaries and Pr = 7. Data from
the CNH-QGM are denoted by (red) circles and DNS results
obtained at constant E [4] are denoted by (green) diamonds.

R̃a = RaE4/3
10 100

Nu

1

10

100
stress-free
E = 10−7 DNS
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E = 10−9

E = 10−11

FIG. 17: (Color online) Nu vs R̃a for fixed E = 10−7

(diamonds), E = 10−9 (squares), E = 10−11 (triangles) and
the stress-free case (circles) obtained by the CNH-QGM for
Pr = 7. The DNS data at E = 10−7 are included as filled

diamonds.


