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Metrics used to assess the quality of large-eddy simulations (LES) commonly rely on a
statistical assessment of the solution. While these metrics are valuable, a dynamic measure is
desirable to further characterize the ability of a numerical simulation for capturing dynamic
processes inherent in turbulent flows. To address this issue, a dynamic metric based on the
Lyapunov exponent is proposed, which assesses the growth rate of the solution separation.
This metric is applied to two turbulent flow configurations: forced homogeneous isotropic
turbulence and a turbulent jet diffusion flame. First, it is shown that, despite the direct nu-
merical simulation (DNS) and LES being high-dimensional dynamical systems with O(107)
degrees of freedom, the separation growth rate qualitatively behaves like a lower-dimensional
dynamical system, in which the dimension of the Lyapunov system is substantially smaller
than the discretized dynamical system. Second, a grid refinement analysis of each configura-
tion demonstrates that as the LES filter width approaches the smallest scales of the system
the Lyapunov exponent asymptotically approaches a plateau. Third, a small perturbation is
superimposed onto the initial conditions of each configuration and the Lyapunov exponent
is used to estimate the time required for divergence, thereby providing a direct assessment
of the predictability time of simulations. By comparing inert and reacting flows, it is shown
that combustion increases the predictability of the turbulent simulation as a result of the
dilatation and increased viscosity by heat release. The predictability time is found to scale
with the integral time scale both in the reacting and inert jet flows. Fourth, an analysis
of the local Lyapunov exponent is performed to demonstrate that this metric can also de-
termine flow-dependent properties, such as regions that are sensitive to small perturbations
or conditions of large turbulence within the flow field. Finally, it is demonstrated that the
global Lyapunov exponent can be utilized as a metric to determine if the computational
domain is large enough to adequately encompass the dynamic nature of the flow.
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I. INTRODUCTION

Direct numerical simulation (DNS) and large-eddy simulation (LES) have been employed for
computing the dynamics of turbulent flows. While DNS resolves all turbulent scales involved in the
dynamics with no physical modeling, LES represents the energy contained in the large scales and
the effect of the smaller scales is taken into account either explicitly through a sub-grid scale model,
or implicitly through the dissipation of the numerical method. Besides numerical algorithms, two
factors determine the quality of LES: the physical model or dissipation of the sub-grid scales (SGS),
which are filtered out in the governing equations, and the filter width, which describes the numerical
resolution of the resolved scales.

Assessing the quality of LES has been the subject of numerous studies [1–4]. A common
way to perform a grid refinement is to observe that the statistics are converging. Although this
is possible for Reynolds-Averaged Navier-Stokes (RANS) and laminar flows, an issue arises for
unsteady turbulent flows. Specifically, the modeled equations in LES introduce a dependence on
the filter width so that evaluating the quality of the simulation is particularly challenging. Quality
is defined as how well LES predicts smooth quantities correctly with respect to a DNS solution,
the latter of which is often not available. Hence, the problem of finding suitable measures of the
quality of LES. Current metrics used in determining LES quality address this problem by utilizing a
statistical assessment of the solution, considering mean-flow quantities and higher-order statistical
moments. One commonly used statistical metric is Pope’s criterion [1],

M =
ksgs

kres + ksgs
, (1)

which is the ratio of sub-grid turbulent kinetic energy, ksgs, over the total turbulent kinetic energy,
being the sum of the sub-grid turbulent kinetic energy and the resolved turbulent kinetic energy,
kres. This ratio is a function of time, t, and space, x. As a recommendation, Pope [1] suggests
that when M . 0.2, a simulation is sufficiently well-resolved. Physically, this assumes that 20% of
the turbulent kinetic energy contained in the sub-grid scales does not significantly affect the flow
solution. Although the definition of M is straightforward, directly evaluating the subgrid-scale
turbulent kinetic energy may not be trivial and has to be approximated. Pope’s criterion has been
applied to a variety of flow-field simulations, such as non reacting flows [5], gas turbine combustion
chambers [6, 7], and cardiovascular flows [8]. All of these studies used M . 0.2 as an indicator of
satisfactory quality of the solution.

Another method for assessing the quality of a simulation from statistical flow-field results is the
Index of Resolution Quality (IQ) for LES [2], which reads

LESIQ =
kres
ktot

. (2)

Similarly to Pope’s criterion, this index compares the resolved turbulent kinetic energy and the
total turbulent kinetic energy, ktot. Here, the residual scales are approximated using Richardson
extrapolation as ktot − kres = akh

p, where h is the grid size (typically assumed to be equal to the
filter width, ∆), p is the order of accuracy, and ak is a coefficient that is determined by running
the simulation on two different sized grids. Values of LESIQ between 0.75 and 0.85 are considered
adequate for engineering applications [2, 9].

Another metric considers the velocity field [3, 10],

Mν =
Tsgs

Tres + Tsgs
, (3)



3

which compares the sub-grid scale velocity fluctuations, Tsgs, to the sum of the resolved velocity
fluctuations, Tres, and the sub-grid scale velocity fluctuations. As in LESIQ, this index asymptot-
ically approaches zero as the simulation approaches the DNS-limit, and unity as the simulation
approaches the RANS-limit.

Similarly to a velocity-statistics metric, the ratio of the turbulent viscosity to the molecular
viscosity can also be used to determine the LES quality [10, 11]. In regions where this ratio is
very large, further refinement is likely necessary due to a high percentage of the viscosity being
modeled. In regions where there is no turbulence, this ratio should be zero. As a LES is refined,
the turbulent viscosity decreases until the limit of DNS, for which the ratio tends to zero.

Although these statistical metrics are practical, LES is inherently unsteady and a dynamic
measure is desirable to further characterize the LES quality in representing the dynamic content of a
simulation. This is particularly relevant for flows that are inherently transient. The key observation
is that turbulence is a deterministic chaotic phenomenon, which is characterized by an aperiodic
long-term behavior exhibiting high sensitivity to the initial conditions. Different approaches exist to
measure and characterize a chaotic solution [12–16]. On one hand, geometric approaches estimate
the fractal dimension of the chaotic attractor, which, in turn, gives an estimate of the active degrees
of freedom of the chaotic dynamical system. An accurate measure is the Hausdorff dimension [13],
which is often approximated by box counting, based on phase-space partitioning and correlation
dimension based on time series analysis [15]. On the other hand, dynamical approaches estimate
the entropy content of the solution, namely the frequency with which a solution visits different
regions of an attractor, for example by the Kolmogorov-Sinai entropy, and the separation of two
close solutions via the Lyapunov exponents. In turbulence, these measures of chaos have been
applied to simple inert flow configurations [16]. In particular, the maximal Lyapunov exponent, λ,
is relatively straightforward to calculate and amenable to a simple physical explanation: If a system
is chaotic, given an infinitesimal initial perturbation to the solution, two trajectories of the system
separate in time exponentially until nonlinear saturation. The average exponential separation is
the Lyapunov exponent. A solution is typically regarded as being chaotic if there exists at least
one positive Lyapunov exponent. The Lyapunov exponent is (i) a robust indicator of chaos, (ii) a
global quantity describing the strange attractors – the attractors of chaotic solutions – because it
does not depend on the initial conditions for ergodic processes [17], and (iii) relatively simple to
calculate [16, 18–21]. In addition, there are several benefits of using this method over the traditional
Pope’s criterion. First, the Lyapunov exponent can be used on transient simulations where a
statistically stationary flow is not present and the ability to determine the resolved and unresolved
turbulence fluctuations may not be possible. Secondly, calculating the Lyapunov exponent can be
accomplished quickly for arbitrary meshes or geometries and is independent of any closure models.
Finally, using the analysis of the Lyapunov exponent additional information on local turbulence
and sensitivity to domain size and shape can be obtained. For these reasons, the first objective
of this paper is to propose the Lyapunov exponent as a metric to evaluate the quality of LES in
describing the short-time dynamics of the turbulent flow.

The Lyapunov exponent represents the rate of separation, and its reciprocal is closely related
to the predictability horizon of a chaotic solution. Turbulent flows, which are governed by partial
differential equations, do not completely lack predictability because they are deterministic systems.
The phase space is infinite-dimensional, however, the strange attractor is finite-dimensional. Its
fractal dimension corresponds to the finite number of “unpredictable” features [22, 23]. For in-
finitesimal perturbations in inert flows, the Lyapunov exponent should scale as the inverse of the
shortest time scale, which is the Kolmogorov time scale, τη. In other words, λ ∼ τ−1η ∼ Reα,
where α = 1/2 from Kolmogorov theory [12], whereas α ≈ 0.46 in a multifractal approach [24].
The discrepancy between these two values is due to the intermittency of the cascade [20, 25, 26].
At larger scales, from phenomenological arguments, the predictability time is often related to the
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turn-over time of the energy containing eddies [27, 28].

Determining the predictability horizon of simulations is of importance for various practical ap-
plications. With the increase in computational power, the ability to use high fidelity simulations as
a tool for real time predictions and forecasting may soon be possible. For this type of application, it
is important to understand the timescales at which the simulation diverges from the true solution,
given a finite accuracy of the boundary and initial conditions. So far, the predictability of turbulent
flows has been investigated in simple configurations, such as 2D turbulence; however, the effect of
combustion has not been investigated yet. Therefore, the second objective of this manuscript is
to evaluate the effect that combustion has on the predictability of turbulent jets. The Lyapunov
exponent as a dynamic quality index for LES is examined by considering two different turbulent
configurations. First, forced homogeneous isotropic turbulence (FHIT), which represents a well-
characterized turbulent flow of academic interest, is selected. The second configuration consists
of a turbulent jet flame, in which the turbulent combustion is represented using a manifold-based
combustion model. Results from this simulation will be compared against an inert jet-flow simula-
tion that is performed at the same nozzle-exit conditions, thereby establishing a direct assessment
of the combustion process on the turbulence dynamics through the Lyapunov metric.

The remainder of this manuscript is organized as follows. The theory and practical evaluation
of the Lyapunov exponent in DNS/LES calculations is discussed in Sections II and III. In the FHIT
configuration in Section IV, various tests and results for different filter widths, initial perturbation
fields, and perturbation magnitudes are presented. In the jet configuration in Section V, the
convergence of the Lyapunov exponents for different grids of varying resolution and spatial extend
is examined. The effect of combustion is investigated by comparing the predictability of the reacting
jet with the corresponding inert case. The manuscript ends with concluding remarks in Section VI.

II. LYAPUNOV EXPONENT

A. Dynamical system representation

A turbulent flow can be represented as a dynamical system,

φ̇(t) = F(φ(t)) , (4)

with initial conditions φ(t = t0) = φ0; F is the set of bounded differentiable flow equations, φ̇
denotes the temporal derivative of the state vector φ. For a general chemically reacting flow, φ
contains the velocity vector (u), pressure (p), density (ρ), and vector of species mass fractions (Y ):
φ = (u, p, ρ,Y )T . The solution φ(t) belongs to a vector space H, called the phase space. In the
finite-dimensional case, H = RN , where N ∈ N. In the infinite-dimensional case H is a Hilbert
space. The fluid dynamics problems studied are infinite-dimensional because they are governed
by PDEs. However, they are characterized by the existence of a bounded set, called strange
attractor, because they are dissipative systems. This means that the turbulent solution lies in a
fractal set with finite dimension [29]. Moreover, after numerical discretization, the phase space
necessarily becomes finite-dimensional. Hence, the fluid systems are considered finite-dimensional
in this paper.

Consider two initial conditions φ0 and φ∗0, which are infinitesimally distanced, φ∗0 − φ0 =
δφ0 (see Fig. 1 for a schematic illustration). The temporal evolution of the separation of the
two trajectories, δφ(t), in the tangent space, obeys the linearized dynamical equation δφ̇i(t) =∑ND

j=1
∂Fi
∂φj

δφj(t0), where i = 1, 2, . . . , ND, with ND being the number of degrees of freedom of the

system, i.e., the dimension of the phase space. In the present study, ND ∼ O(107) for most cases.
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FIG. 1. Separation of two slightly different solutions. The initial divergence is exponential and the growth
rate is the Lyapunov exponent, λ.

Under ergodicity, Oseledets [30] proved that there exists an orthonormal basis {ej} in the tan-

gent space such that the solution can be expressed by a modal expansion, δφ(t) =
∑ND

j=1 αjeje
λjt,

where the coefficients αj depend on the initial condition δφ(t0). Mathematically, αj = 〈ej , δφ(t0)〉,
where the angular brackets denote an inner product. The exponents λ1 ≥ λ2 ≥ ... ≥ λND

are the
Lyapunov exponents. Customarily, the maximal Lyapunov exponent, λ1, is referred to as Lya-
punov exponent and the subscript is omitted (λ ≡ λ1). In the phase space, the modal expansion
describes the deformation of a ND-dimensional sphere of radius δφ(t0) centered at φ(t0) into an
ellipsoid with semi-axes along the directions ej . Therefore, the Lyapunov exponents provide the
stretching rates along these principal directions. Thus, given an infinitesimal initial perturbation
to the solution, δφ(t0), the two trajectories of the system separate in time exponentially as [16]

‖δφ(t)‖ ' ‖δφ(t0)‖eλt, (5)

where ‖·‖ is a norm. Figure 1 illustrates the significance of the Lyapunov exponent. The pre-
dictability time, tp, of the system for infinitesimal perturbations is then defined as the inverse of
the Lyapunov exponent

tp = ln

( ‖δφ(t)‖
‖δφ(t0)‖

)
1

λ
∼ 1

λ
, (6)

which is physically the time that a small separation, δφ(t0), takes to get amplified by approximately
a factor of 2.7.

B. Calculation of the Lyapunov exponent as a separation growth rate

The objective now is to utilize the Lyapunov exponent as an estimate for the rate of divergence
of the Eulerian solution obtained by LES. From this information, a metric is proposed to measure
how dynamically well-resolved the turbulent solution is. Using the Eulerian solution is a natural
choice since most numerical simulations calculate Eulerian quantities. Growth rates of Eulerian
fields have been used before in evaluating the error growth of weather models [18, 21], finite
perturbations of fully developed turbulence [20] and decaying two-dimensional turbulence [19].
By observing that an Eulerian field can be regarded as a trajectory in an extended dynamical
system [20], a practical method for obtaining the Lyapunov exponent is to perturb the initial field
φ(t0) as

φ∗(t0) = φ(t0) + ε ‖φ(t0)‖ , (7)
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where ε � 1, ‖ · ‖ ≡
(
1
V

∫
V (·)p dV

)1/p
is the Lp-norm, and V is the volume of the domain. The

separation, also known as error [21], is then measured by the Lp-norm of the subtracted Eulerian
fields,

‖δφ‖ = ‖φ∗(t)− φ(t)‖ . (8)

The separation behaves in accordance to Eq. (5), thus, the Lyapunov exponent is computed as the
linear slope of the natural logarithm of the separation versus time, λt = ln (‖δφ(t)‖/‖δφ(t0)‖). In
the remainder of this work, the L2-norm is chosen to measure the separation in Eq. (8).

If the process is ergodic, as assumed in this paper, the Lyapunov exponent is independent of
the initial conditions as long as the nearly infinitesimal limit is satisfied [12, 30]. The procedure
for calculating the Lyapunov exponent is given in Alg. 1.

Algorithm 1: Procedure for the evaluation of the Lyapunov exponent.

1: Run numerical simulation until statistical convergence of the solution φ is reached
2: Reset time to t = t0 and save solution φ
3: At time t = t0 compute φ∗ by perturbing the solution φ following Eq. (7)
4: Advance both solutions, φ and φ∗, to some time t
5: Calculate the norm of the separation field δφ from Eq. (8)
6: Take logarithm of separation norm, log10(‖δφ‖) and calculate the Lyapunov exponent, λ, as
slope of the linear region using linear regression
7: Normalize separation norm with saturation value to simplify inspection

C. Lyapunov metric for LES

Compared to LES-quality metrics that rely on statistical information about turbulent kinetic
energy or other flow-field quantities, the Lyapunov exponent intrinsically depends on the dynamic
and chaotic nature of turbulence. While many turbulent flow systems in engineering are able to be
time-averaged, some systems involve highly dynamic flows that cannot be averaged. For example,
rare events are particularly difficult to simulate and capture, such as preignition, extinction or
cycle-to-cycle variations in internal combustion engines. These rare events happen on a very small
time scale, therefore, the simulations of these systems must be able to resolve the relevant dynamic
scales to attempt to simulate these phenomena. As shown subsequently, the Lyapunov exponent
saturates when the dynamical scales of the problem saturate. Specifically, as the spatio-temporal
resolution approaches the smallest physical scales, the magnitude of the Lyapunov exponent reaches
a plateau. This, in turn, provides a robust evaluation of the resolution requirements and spatial
dimension of the computational domain in LES to capture the fundamental turbulent dynamics of
rare deterministic events.

One caveat in using the Lyapunov exponent is that its asymptotic value is not known a priori ;
current results show that the Lyapunov time scale scales with the integral time scale for both the
FHIT and jet cases. Iteration of resolution is likely required for more complex geometries and
physics. The Lyapunov exponent is expected to be dependent on physical models and numerical
discretization and can therefore be used as a sensitivity parameter and indicator to characterize
their quality.
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III. GOVERNING EQUATIONS

The evolution of the turbulent flow in LES is governed by the Favre-filtered form of the Navier-
Stokes equations. The Favre-filtered quantity of a scalar ψ is computed as

ψ̃(t,x) =
1

ρ

∫
ρ(t,x′)ψ(t,x′)G(x,x′; ∆)dx′ , (9)

where G is the filter kernel. The residual field is then evaluated as ψ′′ = ψ− ψ̃, and a Favre-filtered
quantity is related to a Reynolds-filtered quantity by ρψ̃ = ρψ. With this, the filtered conservation
equations for mass, momentum, and scalar transport, describing a chemically reacting flow in the
low-Mach number limit, take the following form

∂tρ+ ∂j(ρũj) = 0 , (10a)

∂t(ρũi) + ∂j(ρũj ũi) = −∂ip+ ∂jσij + ∂jτ
sgs
ij + fi , (10b)

∂t(ρψ̃) + ∂j(ρũjψ̃) = ∂j(ρα̃ψ∂jψ̃) + ∂jτ
sgs
ψj + ρω̃ψ , (10c)

where ∂j ≡ ∂/∂xj , ũi is the ith filtered velocity component, p is the filtered pressure, ρ is the
filtered density, α̃ψ is the mass diffusivity of scalar ψ, fi is a forcing term, and ω̃ψ is the filtered
chemical source term. The filtered viscous stress tensor is

σij = 2µ

(
S̃ij −

1

3
∂kũkδij

)
with S̃ij =

1

2
(∂iũj + ∂j ũi) , (11)

and the Reynolds stress tensor, τ sgsij , is modeled by a turbulent viscosity formulation,

τ sgsij = 2µT S̃ij −
2

3
ρk̃δij where µT = ρCs∆

2
(

2S̃ijS̃ij

)1/2
(12)

and the Germano model [31] is employed to evaluate Cs.
In the following, we consider two turbulent flow configurations, namely the inert forced homo-

geneous isotropic turbulence and a turbulent jet flame. For the case of an inert flow, the density
and viscous-diffusive transport properties are constant, so that these inert flows are fully described
by the solution of Eqs. (10a) and (10b). In contrast, the representation of the reacting flows re-
quires the consideration of the variable thermo-viscous-diffusive quantities on the combustion. For
this, a reaction-diffusion manifold combustion model is employed [32, 33], in which these quan-
tities are expressed in terms of a reduced manifold model that is parameterized in terms of the
mixture fraction, Z, and a reaction progress variable, C. With this, the scalar solution vector in
Eq. (10c) becomes ψ = (Z,C)T , and C is evaluated as the sum of major product mass fractions. In
the present study, the reaction-diffusion manifold is obtained from the solution of steady flamelet
equations, and a presumed probability density function (PDF) is used to account for the turbu-
lence/chemistry interaction. Denoting all thermo-chemical properties by ξ, the filtered quantities

are then parameterized by the following state equation, ξ̃ = ξ̃(Z̃, Z̃ ′′2, C̃), which introduces the

mixture fraction variance, Z̃ ′′2, that is here evaluated from an algebraic model [34]. A detailed
description of the combustion model and application to the jet-flame under investigation can be
found in [35–37].

Statistical quantities are evaluated from the turbulent flow-simulations by averaging over ho-
mogeneous directions and time. Hence, a Favre-averaged mean-flow quantity is denoted by 〈φ̃〉
and the resolved fluctuation is φ̃′′< so that φ̃ = 〈φ̃〉+ φ̃′′<. The resolved turbulent kinetic energy is
then computed as kres = 1

2〈ũ′′i<ũ′′i<〉 and the sub-grid scale turbulent kinetic energy is approximated
as ksgs = 〈ν2T /(Cs∆2)〉, where νT = µT /ρ is the kinematic turbulent viscosity, and ∆ is the filter
width, which is the cube root of the volume of a cell.
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IV. FORCED HOMOGENEOUS ISOTROPIC TURBULENCE

This section examines the Lyapunov exponent and predictability for forced homogeneous
isotropic turbulence [38–40] by DNS and LES. In particular, effects of perturbation magnitude,
mesh refinement, and convergence of the Lyapunov exponent are examined.

A. Model and computational setup

Homogeneous incompressible isotropic turbulence is simulated on a (2π)3 periodic Cartesian
domain (units are self-consistent). The velocity components are denoted as ũ = (ũ, ṽ, w̃)T , and
the problem is fully described by conservation equations for mass and momentum, Eqs. (10a) and
(10b), in which density and viscosity are constant so that the continuity equations reduces to the
divergence-free velocity condition, ∂j ũj = 0.

The simulations are initialized with a von Karman-Pao spectrum using turbulence values similar
to target values. The initial conditions were set to a turbulent Reynolds number of ReT = 300,
the ratio of integral length scale to the size of the computational domain is `/L = 0.3226, and the
ratio of Kolmogorov length scale to the mesh size is η/∆ = 1.15. Here, the integral length scale is
given by ` = k3/2/ε, the Kolmogorov length scale is η = (ν/ε)1/2, and ReT = k2/(εν).

A linear forcing term, fi = Aũi is added to the right-hand-side of Eq. (10b) to obtain statistically
stationary turbulence [41]. The resolved turbulent kinetic energy equation is

∂tkres = −εres − εsgs + 2Akres , (13)

where εres is the resolved viscous dissipation, εsgs is the sub-grid scale viscous dissipation, and ν is
the kinematic viscosity. In order to compare the LES cases, the total turbulent kinetic energy and
dissipation are evaluated from the resolved and sub-grid scale contributions, i.e., k ≈ kres + ksgs
and ε ≈ εres + εsgs.

To ensure stationary turbulence, Eq. (13) is set to zero. Given a target resolved turbulent kinetic
energy, kres, and total viscous dissipation, ε, the forcing amplitude, A, is given by A = ε/2kres [41].

As noted in [42], a constant forcing coefficient prescribes an eddy turnover time scale, but has no
set length scale so the simulation will adjust accordingly as the solution advances. The solution is
advanced in time until it reaches a statistically stationary state for the turbulent kinetic energy and
dissipation with a target turbulence Reynolds number of 300. Since the forcing is applied to the
resolved scales in the LES cases, iteration of the forcing coefficient is required for the coarser cases
because the sub-grid scale turbulent kinetic energy is used to calculate the turbulent quantities of
interest. The typical time to reach this state is around 20 eddy turn-over times. The variance in
turbulent kinetic energy and dissipation is of the order of 10% [41]. Based on the results of [43],
the normalized Lyapunov exponent is not expected to significantly change with these variances.

B. DNS-analysis: Effect of perturbation

To examine the effect of initial perturbations on the Lyapunov exponent, we begin our study
by considering DNS, in which all scales are resolved and the turbulent viscosity and sub-grid scale
dissipation become zero. Because the flow configuration is in principle an infinite-dimensional
dynamical system, the Lyapunov exponents could depend on the type of initial perturbations [16].
Therefore, a number of perturbations and initial conditions are tested to determine the robustness
of the Lyapunov exponent. For this, we consider the magnitude of the perturbation ε in Eq. (7),
and the quantity that is perturbed. The different types of perturbations considered in this study
are summarized in Table I.
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TABLE I. Effect of initial perturbations and perturbed variables on Lyapunov exponent.

log10(ε) Perturbed variable(s) λτη
−8 u, v, w 0.114
−4 u 0.115
−6 u 0.116
−8 u 0.117
−10 u 0.116

In the first test, all three velocity components (u, v, w) are perturbed by a value of ε = 10−8

using Eq. (7). The temporal evolution of the separation is shown in Fig. 2. The time is non-
dimensionalized by the Kolmogorov time scale, τη = (ν/ε)1/2. All of the variable separations
grow uniformly and homogeneously in time. Although the system is high-dimensional, the sepa-
ration exhibits behavior similar to traditional low-dimensional chaotic systems such as the Lorenz
model [44]. Three distinct regions can be identified (Fig. 2): An initial response, a linear region,
and a region of saturation. The velocity fields diverge initially from small structures to larger
homogeneous isotropic structures over time.

The Lyapunov exponent is evaluated from the slope of the separation in the logarithmic region
following Eq. (5). The slope of this region is determined by maximizing the correlation coefficient
given a desired linear fit size across the region. As noted in section II A, the inverse of this exponent
is related to the predictability time with an initial and desired error. The normalized Lyapunov
exponent for this case is λτη = 0.114, which corresponds to a predictability time of tp ≈ 1/λ ≈ 9τη.
The ratio of the eddy turn-over time, τ` = k/ε, to Kolmogorov time, τη, is τ`/τη =

√
ReT ≈ 17.

The Lyapunov time falls between these two time scales for this problem. The implication of this
analysis is that no matter how accurate the initial conditions are for this system, given the fact
that numerical simulations are not infinitely precise, the simulated turbulent velocity field will
diverge in a few eddy turn over times; the predictability time and Lyapunov exponent provide
quantitative information about the time horizon over which a turbulent event can be simulated.
Saturation occurs in this case because the separation cannot grow further than the average fields
as the simulation becomes statistically stationary.

In the next step, only one component of the velocity vector, u, is perturbed initially with a
perturbation magnitude of ε = 10−8. The evolution of the separation distance for all three velocity
components is shown in Fig. 3. The initial response region for the non-perturbed variables are
slightly different since they evolve from the initially unperturbed field due to non-linear coupling
through the governing equations. However, it can be seen that after this initial response phase,
the separation becomes indistinguishable between all three velocity components.

The last aspect to investigate is the effect of the perturbation magnitude on the evolution of
the separation and the Lyapunov exponent. For this, the magnitude of the initial perturbation is
varied over the following range: ε = {10−4, 10−6, 10−8, 10−10}, and only the u-velocity component
is perturbed. Results from this investigation are presented in Fig. 4. Since the Lyapunov exponent
theoretically does not depend on the initial condition [30], a smaller perturbation extends the
linear region and a larger perturbation shrinks the linear region while maintaining the same slope.
The initial-response region for all cases remains approximately the same and for these reasons the
saturation occurs earlier for larger perturbations. By evaluating the Lyapunov exponent for all
four cases, it is confirmed that λ is virtually invariant to the initial conditions, provided that the
perturbation is sufficiently small.
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FIG. 2. Separation and Lyapunov exponent for the FHIT DNS with time normalized by the Kolmogorov
time scale, τη. The contours correspond to the absolute values of the difference of u between two separated
simulations. The three distinct regions are separated both by vertical lines and different backgrounds.
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FIG. 3. Separation as a function of time for initial perturbations to u with ε = 10−8. The three distinct
regions are separated in the same way as Fig. 2.
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FIG. 4. Separation as a function of time for initial perturbations to the u-velocity component for ε =
{10−4, 10−6, 10−8, 10−10} (from top to bottom).
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C. LES-analysis: Effect of grid refinement

The quality of an LES solution depends on the accuracy of the sub-grid scale models and
numerical resolution that contribute to the dynamics of the turbulent flow. To examine the effect
of the resolution on the dynamics that is characterized by the Lyapunov exponent, a series of LES-
computations are performed. The individual test cases under consideration together with relevant
parameters are summarized in Table II. In this study, only the u-velocity is perturbed by ε = 10−8,
and the effect of the grid refinement is investigated.

TABLE II. Test cases for FHIT. N is the number of grid points in one direction; A is the forcing coefficient;
ReT is the turbulence Reynolds number; L/` is the ratio of the size of the domain to the integral length
scale; ∆/η is the ratio of the filter width to the Kolmogorov scale; M is Pope’s criterion, νT /ν is the ratio
of turbulent to molecular viscosity and λτη is the normalized Lyapunov exponent. There are fluctuations in
both turbulent kinetic energy and dissipation of around 10% which is the reason for the small discrepancies
in cases d through f .

Case N Aτ` ReT L/` ∆/η M νT /ν λτη
a 16 0.488 336± 51 2.49 12.23 3.1× 10−2 1.5× 100 0.063
b 32 0.525 353± 59 2.49 6.33 1.3× 10−2 4.3× 10−1 0.074
c 64 0.559 302± 42 2.65 3.00 2.9× 10−3 7.0× 10−2 0.078
d 128 0.575 400± 60 2.60 1.82 4.1× 10−4 1.0× 10−2 0.129
e 216 0.533 336± 6 2.72 0.99 1.0× 10−5 2.4× 10−4 0.115
f 256 0.533 333± 30 2.73 0.83 1.3× 10−7 3.0× 10−6 0.123

fDNS 256 0.543 300± 10 3.10 0.87 0 0 0.114

The resolved energy spectra are shown in Fig. 5. This comparison shows that as the resolution
is increased, the dissipative end of the spectrum grows as expected. The inertial subrange propor-
tional to k−5/3 is present for all seven cases. The spectra do not exhibit a large inertial subrange
due to the relatively low turbulence Reynolds number.
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FIG. 5. Energy spectra for all LES cases summarized in Table II.

The temporal evolution of the computed separation is shown in Fig. 6. From this figure, it
can be seen that the initial response region enlarges both in magnitude and time as the grid is
refined up to N = 128 (case d). The same fast-response region is observed in the accompanying
DNS case (case fDNS), which leads to the conclusion that the effect is independent of the LES
method. Importantly, these results show that the Lyapunov exponent monotonically increases
with decreasing filter width to a plateau around λτη = 0.12. Physically, the Lyapunov exponent
is a global chaotic parameter. Consequently it is expected that the Lyapunov exponent saturates
when the smallest dynamic and chaotic scales are resolved, and this is confirmed in Table II.
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FIG. 6. Separation and Lyapunov exponents as a function of grid resolution. The Lyapunov exponent and
initial-response region increase as the grid is refined up to N = 128. Note that the initial-response region
depends on the initial condition.

A summary of the computed Lyapunov exponents as a function of the filter size is shown in
Fig. 7. As the grid size approaches the Kolmogorov scale, the Lyapunov exponent of the system is
approaching a plateau. This plateau is indicative that the degrees of freedom contributing to the
global chaotic dynamics are fully resolved. According to the Kolmogorov scale, an over-sampled
grid yields the same chaotic dynamics as a grid spacing of the size of the Kolmogorov scale (Table
II). This analysis shows that for case d with 1283 grid points, the Lyapunov exponent saturates.
This implies that η/∆ = 0.55 is sufficient to capture the smallest chaotic dynamical scales and all
the relevant active degrees of freedom for this system. This saturation of the Lyapunov exponent
is therefore a way to characterize DNS resolution. Previous studies by [45] find that a ratio of
η/∆ = 0.34 or better indicates a quality DNS. The results compare favorably and show that the
grid for a numerical DNS should be around 2 to 3 times the Kolmogorov scale.
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FIG. 7. Normalized Lyapunov exponent as a function of the ratio between Kolmogorov scale and LES
filter width. Error bars take into account a 5% error due to Reynolds number fluctuations [43] and an
additional error in the Kolmogorov time scale due to fluctuations. The Lyapunov exponent tends to a
plateau, λτη ≈ 0.122, in case d. For this case, 99.96% of the turbulent kinetic energy is resolved.

V. TURBULENT JETS

In this section, the analysis of the Lyapunov exponent is extended and applied to a turbulent
jet flow. To gain fundamental understanding about the effect of combustion on the flow dynamics,
studies on reacting and inert jets are performed.
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A. Model and computational setup

Large-eddy simulations of inert and reacting turbulent jets are performed. The operating con-
ditions for the inert jet are chosen for comparison with experimental data [46]. In this experiment,
the jet is exiting from a pipe, and the length of the pipe is sufficiently long to ensure that the flow
is fully developed when the fluid exits the nozzle. The jet-exit Reynolds number in this experiment
is Re = 16,000 and the passive scalar is represented by heating the fluid, which exits the nozzle.

A non-premixed jet flame configuration at similar operating conditions was studied experimen-
tally [47–49]. The burner configuration consists of a central fuel nozzle of diameter Dref = 8 mm,
surrounded by a co-flow nozzle of square shape. The jet fluid consists of a mixture of 22.1 %
CH4, 33.2 % H2, and 44.7 % N2 by volume with a stoichiometric mixture fraction of Zst = 0.167.
The fuel bulk velocity is Uref = 42.2 m/s. Co-flowing air is supplied at an axial velocity of
7.11× 10−3Uref . The jet-exit Reynolds number is Re = 14,720. In the following, all quantities are
non-dimensionalized appropriately using Uref and Dref, and conditions of the jet flow.

Combustion is modeled by the flamelet/progress variable (FPV) approach [32, 33]. In this com-
bustion model, all thermochemical quantities are parameterized by a three-dimensional reaction-
diffusion manifold. For all reactive flow simulations, the reaction chemistry is described by the
GRI 2.11 mechanism [50], consisting of 279 reactions among 49 species. The governing equations,
given in Eqs. (10), are solved on a cylindrical coordinate system x = (x, r, ϕ)T . The computational
domain is 120Dref × 45Dref × 2π in axial, radial, and azimuthal directions, respectively. A well-
resolved LES pipe flow using the jet parameters is first simulated to obtain the inflow conditions
for the flame. Convective outflow conditions are used at the outlet and no-slip boundary conditions
are employed at the lateral boundaries. The domain is initialized with the co-flow velocity and
then advanced in time using a CFL number of approximately 0.5. Once the inert jet reaches a
statistically stationary state, the combustion model is turned on and the jet is advanced in time
until it is statistically stationary. Large-eddy simulations of five grids, shown in Table III and
Fig. 8, are simulated.

TABLE III. Mesh resolution of the five different grids used.

Grid Nx Nr Nθ
1 80 40 16
2 160 80 32
3 320 160 64
4 640 320 128
5 960 480 128

The mesh resolution should be compared with the Kolmogorov length scale, η. This scale can
be reasonably well estimated as [51]: η = (Re3 ε)−1/4 with ε = ξu′3/`, ξ ≈ 0.33, ` ≈ 0.226ru1/2.

The integral length scale is `, u′ is the root-mean-square velocity, ε is the dissipation rate, and ru1/2
is the jet half width. The Kolmogorov length scales for both cases are evaluated at a location near
the nozzle lip, with ru1/2 = 1/2, and u′ = 0.2. At this location the kinematic viscosity increases due
to heat release for the reactive jet, resulting in a local Reynolds number based on jet diameter and
jet exit velocity of Re1/2 = 1,800 for the reacting jet. The estimated length scales are summarized
in Tab. IV. At the finest grid spacing, the grid size is on the order of the Kolmogorov scale.

Each solution is advanced in time until it is statistically stationary. Statistics are obtained by
averaging over the azimuthal direction and in time, and results for mean and root-mean-square
quantities of normalized axial velocity, mixture fraction, and temperature are shown in Fig. 9.
The simulation results for the finer grids agree favorably with experiments. Once the simulation is
statistically stationary, the Lyapunov exponent is calculated following the process outline in Section
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FIG. 8. Grid distribution for the turbulent jet simulations, showing grid spacing as a function of spatial
distance for (a) axial and (b) radial direction. The azimuthal discretization is uniform for all cases.

TABLE IV. Reference parameters for the jet flow simulation. The parameters for the inert jet simulation
are slightly different to that of [46] in order to allow for comparison with reactive flow simulations. The
minimum filter width, ∆min, is computed as the cube root of the volume of the smallest cylindrical cell
(which is near the nozzle lip) for the finest grid (grid 5) for each case.

Parameter Inert jet Reacting jet
Re 14,720

η/Dref 1.9× 10−3 9.3× 10−3

∆min/η 2.23 0.46

II B and Alg. 1. Since the Lyapunov exponent is a measure for the short-time dynamics of a system
and does not rely on statistical information, an important aspect is the reduced computational cost
for its evaluation. For the Grid 4 inert case, two simulations, running for approximately 60 non-
dimensional times, are required to calculate the Lyapunov exponent. In comparison, to obtain the
statistics presented in Fig. 9, statistics were collected over approximately 1500 non-dimensional
times, which corresponds to an increase of computational cost by 1250 %.

The ratio between turbulent and molecular viscosity is shown in Fig. 10. From these results, it
can be seen that the region of highest turbulence is aligned with the shear layer. For the reacting
jet simulation on the coarse mesh (Grid 1), the shear layer shows regions in which this viscosity
ratio exceeds values of 30. For Grid 2, this ratio reduces to maximum values around 11, and become
less than 8 for the finer grids. One effect of the large turbulent viscosity in the coarsest grid is
that the flame height, which is determined by the location of the stoichiometric mixture fraction
on the centerline (see Fig. 10(b)), is noticeably shorter due to faster scalar mixing compared to the
solutions obtained for the finer grids. The inert jets have maximum viscosity ratios around 10 for
the finer grids.

B. Effect of perturbation

The axial velocity is perturbed using Eq. (7) with ε = 10−8 and ε = 10−4 for both the inert and
the reacting case using Grid 3. Temporal evolutions of the normalized separation for each com-
ponent of velocity and mixture fraction are shown in Fig. 11(a), and results for the corresponding
reacting cases with progress variable and temperature included are shown in Fig. 11(b). For each
plot the time is non-dimensionalized by the characteristic convective time scale, τconv = Dref/Uref .
The separations, similarly to the homogeneous isotropic turbulence, grow exponentially with time
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FIG. 9. Resolved center-line statistics for the inert (blue) and reacting (red) jets for axial velocity, mixture
fraction, and temperature compared with experimental values [46–49]. Mean quantities on the left column,
root-mean square quantities on the right column.

until saturation.

The initial response regions differ between the velocity and the scalars. For the FPV approach,
the density is interpolated from a pre-computed chemistry table that is a function of the scalars.
A small change in the scalars can lead to a larger change in the density which in the end affects the
velocity field through continuity and momentum conservation. This effect leads to larger initial
separation for the velocity field than for the scalars. This phenomenon is predominantly seen in the
reacting case due to larger density differences. In the linear region, the flow-field variables become
uniform which continues until saturation. For a larger or smaller perturbation, the Lyapunov
exponent remains invariant and the linear region shrinks or extends, respectively. Tests were also
performed by varying the initial time of the separation (not shown). The variation of the Lyapunov
exponent is around 5% based on these analyses.

C. Effect of grid refinement

To examine the dependence of the Lyapunov exponent on the mesh resolution, simulations on
five different grids are performed for the inert and reacting jets. In this study, the first four grids
are generated by successively doubling the mesh resolution in all directions, Grid 5 only refines the
mesh resolution in axial and radial direction. Quantitative results for the Lyapunov exponent are
shown in Table V.

For the forced homogeneous isotropic turbulence configuration in Section IV it was observed
that the Lyapunov exponent increases and reaches a maximum value once the grid is sufficiently
refined. For the inert jet, the relative increase in the Lyapunov exponent is much more pronounced
for the coarser grids than for the finer grids. The Lyapunov exponent more than doubles from Grid
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(a) Inert jet

(b) Reacting jet

FIG. 10. Jet quality evaluation for (a) inert jet and (b) reacting jet. In each panel, on the left of the vertical
line the ratio of turbulent viscosity to molecular viscosity, 〈νT 〉/〈ν〉, is shown; on the right the Favre-averaged
mixture fraction is shown. The white line indicates the Favre-averaged stoichiometric mixture fraction with
Zst = 0.167.

1 to 3 and doubles again from Grid 3 to Grid 4. Convergence is nearly reached after testing the
even finer Grid 5. Contours of the separation and of mixture fraction for each grid can be found in
Fig. 12. The corresponding temporal evolutions of the separations ‖δZ‖ are illustrated in Fig. 13.
The separations are present in the turbulent regions of the flow; the separation is zero in the co-
flow. For the reacting jet, the variation in the Lyapunov exponent is much larger between Grid 1
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ũ

Z̃

(a) Inert jet

0 20 40 60 80 100
t/τconv

10

8

6

4

2

0

lo
g

1
0

( ||δφ̃
||) ε= 10−4

ε= 10−8

ũ
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FIG. 11. Normalized separations of velocity and transport variables for (a) inert jet and (b) reacting jet;
axial velocity component ũ is perturbed with ε = 10−4 (blue) and ε = 10−8 (red). Simulations are performed
using grid 3.

TABLE V. Comparison of Lyapunov exponent for inert and reacting jet-flow simulations. Grid numbers
correspond to grids shown in Table III.

Grid
λτconv
(inert)

λτconv
(reacting)

1 0.330 0.200
2 0.428 0.305
3 0.735 0.311
4 1.649 0.291
5 1.839 0.290

and Grid 2, as compared to the difference between Grid 2 to Grid 3. This means that most of the
dynamics is captured in Grid 2. The statistical results, presented in Fig. 9, also show this behavior:
Grid 2 has closer statistics to the experimental values than Grid 1, and the statistical convergence
is observed for Grid 3 and above. These results show that Grid 3 is suitable for capturing the global
statistical behavior of the reacting jet, whereas at least Grid 4 refinement is needed to simulate the
dynamics of the inert jet. These observations are in agreement with the convergence of statistics
in Fig. 9. The physical reason for these two different resolution requirements is provided in the
next section. Establishing the relation between the convergence of statistics and the saturation of
the Lyapunov exponent is left for future work.

D. Effect of combustion and heat-release on predictability

Converting the normalized Lyapunov exponents for the finest grids into physical units, a pre-
dictability time of tp,reac ≈ 650 µs (3.45τconv) is obtained for the reacting jet, and tp,inert ≈ 100 µs
(0.54τconv) is obtained for the inert jet. The physical reason for this difference is due to tempera-
ture increase by combustion and associated effects on density and viscous transport properties. A
scaling of the effective Reynolds number can be calculated assuming a power law for the viscosity
as: Re = ρUrefDref/µ ∼ ρ(T )/µ(T ) ∼ (1/T )/T 0.7 ∼ T−1.7. Considering the present configuration
that is operated with a nitrogen-diluted CH4/H2-mixture, with an effective temperature ratio of
seven: Rereact/Reinert = (Ta/Tref)

−1.7 = 0.036. Because the jet exit Reynolds number is 14,720,
the effective Reynolds number of the flame reduces by a factor of 25. Combustion laminarizes the
flow field, which in turn is responsible for a slower and more predictable flow. This effect is also
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(a) Inert jet

(b) Reacting jet

FIG. 12. Mesh-refinement for (a) inert jet and (b) reacting jet. In each panel, on the left of the vertical
line the logarithm of the absolute value of the instantaneous separation at saturation (at t/τconv = 100)
is shown; on the right the instantaneous mixture fraction at the same instance is shown. The white line
indicates the Favre-averaged stoichiometric mixture fraction with Zst = 0.167.

present in Table IV. The Kolmogorov scale for the reacting jet is almost five times larger than
the inert jet. As noted previously, the Lyapunov time is representative of how long it takes for
nearby Eulerian fields to diverge. The actual predictability time is a function of the Lyapunov
time and would be dependent on how accurate the initial conditions provided are. For an error
of around 1% for the present configuration, the predictability time is expected to be around this
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value. With higher accuracy the predictability would become better. For example, the reacting
cases simulated assume a perturbation of around 10−8 and have an overall predictability time of
around 40 convective time scales before the separation reaches 1% of saturation (see Fig. 13).

The increased predictability of the reacting flow, due to laminarization, suggest that it may
be possible to determine the predictability time of reacting flows, using a lower Reynolds number
inert jet, given the proper scaling relationships. Muniz & Mungal [52] investigated inert jets at
Reynolds numbers of 2,000 and 10,000 and reacting flows at Reynolds numbers of 10,000 and 37,500.
In their work, several important observations were made, combustion reduced the local Reynolds
number by a factor of 10 over the flame, turbulence intensities by up to 40% and increased the
centerline velocities by a factor of 2 to 3. In the present study, similar behavior can be observed
for the reacting jet as shown in Fig. 9, suggesting the predictability of the reacting jet could be
estimated based on a simple inert jet with a reduced Reynolds number. However, in practice this
approach is not straightforward, as a large variation in the Reynolds number will be present due
to the localized heating of the fluid. Thus, at the centerline near the nozzle the effective Reynolds
number will be equal to that in the pipe, whereas the effective Reynolds number in the shear layer
will be significantly reduced. In the work of Tacina & Dahms [53], an extension of the classical
momentum diameter was developed for reacting flows, by replacing the exothermic reaction by an
equivalent non-reacting flow. In this approach, the temperature of one fluid is increased based on
the peak temperature and overall stoichiometry of the mixture. Good agreement of the effects
of heat release were obtained in the near and far fields for momentum-dominated turbulent jet
flames. A similar conclusion was obtained from the DNS study of Knaus & Pantano [54], which
determined that the effects of heat release rate can be scaled by using Favre-averaged large-scale
turbulence quantities for flows of moderate Reynolds numbers. However, this approach is less suited
for the dissipation subrange of the temperature spectra due to the strong nonlinearities present
in combustion. Following the approach proposed by Tacina & Dahms [53], the predictability of
the reacting jet could be estimated based on an equivalent inert jet simulation with modified
fluid temperatures. Determining the validity of this approach is beyond the scope of the current
investigation and is left for future work.

E. Application of the Lyapunov exponent to determining computational domain size

The Lyapunov exponent has been shown to converge if the dynamics of the system are ade-
quately resolved by the mesh. However, it is expected that the global dynamics of the system may
also be a function of the computational domain size and shape. This is examined by computing
the Lyapunov exponent for different domain sizes for the Grid 4 inert jet. Figure 14 presents the
global separation for computational domains of various lengths, from x/Dref = 2.5 to 120. As can
be seen in Fig. 14, the jet dynamics varies significantly over the first 20Dref of the jet. Thus, if
the computational domain is reduced to a length less than 20Dref it is expected that some of the
important jet dynamics will be lost. In comparison, past r/Dref = 20, smaller changes in the jet are
observed. Further, since these changes are due to the diffusion and lower velocity fluctuations, it is
expected that the positions downstream of this region will have a very small impact on the global
separation, and thus the global Lyapunov exponent. This behavior is confirmed in Fig. 14, where
the local separation converges for computational domains longer than 20Dref , with a mean relative
difference in the global separation of less than 11% for a domain of 20Dref , when compared to the
full domain. In addition, computational domains, with reduced radial length were also compared
with the trends agreeing with those of reducing the axial length.

In addition to comparing the normalized saturation curves to determine the impact of the do-
main size on the Lyapunov exponent, an analysis of the global saturation level is also completed.
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FIG. 13. Separations for each grid and case. Lyapunov exponents are presented in Table V. The contour
plots correspond to the logarithm of the absolute value of the separation for mixture fraction, ‖δZ̃‖, between
two simulations for Grid 4 for (top) inert jet and (bottom) reacting jet. The white line indicates the Favre-
averaged stoichiometric mixture fraction with Zst = 0.167.

With increasing domain size, saturation is observed at a lower threshold but occurs at approxi-
mately the same time. As the current approach calculates the Lyapunov exponent based on the
global separation, this behavior is consistent with the previous observations reported in the paper.
If the computational domain is resolved to a significant level, and assuming that the computational
domain includes the areas of high turbulence and areas which are sensitive to small perturbations,
the growth of the separation is determined by the local flow conditions. Thus, increasing the
computational domain does not influence the separation behavior. In comparison, the level at
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FIG. 14. Computed separation distance for different axial extends of the computational domains from
x/Dref = 2.5 to x/Dref = 120.

which saturation is observed is a strong function of the computational domain. The cause of this
is that as the computational domain increases the fraction of the domain that contains areas of
low turbulence or areas which are not sensitive to perturbations increases. Thus, on a global scale
the average separation observed decreases resulting in saturation at a lower value. It should be
noted that the following behavior is expected in physical geometries where turbulence, and thus
sensitivity to small perturbation, is decaying. In processes in which strong turbulence is generated
locally or develops, such as pipe flows, turbulence separation and boundary layer formation, this
behavior is not expected and the Lyapunov exponent, may retain a strong dependence on the size
of the computational domain.

F. Application of the Lyapunov exponent to assess flow-dependent properties

In the previous sections, the global Lyapunov exponent was computed to determine the impact
of various aspects (mesh resolution, computational domain, chemical source term and perturbation
level) on the global dynamics of the system. However, the same principle can be applied to assess
local flow-dependent properties. In the current section, the Lyapunov exponent analysis is applied
to determine local areas of strong separation, corresponding to areas of high turbulence or high
sensitivity to local conditions. Detecting such region via the Lyapunov exponent which can be
utilized to determine local grid refinement and areas which contain interesting flow dynamics.

The time evolution of the local separation, as a function of radial location at two axial heights,
one close to the nozzle at x/Dref = 0.33 and one further downstream at x/Dref = 20, is presented
in Fig. 15. Several important characteristics can be observed from this figure: First, the behavior
of the local separation, and conversely the Lyapunov exponent, is a strong function of radial
location. In the laminar coflow, the local separation remains close to machine precision over
the simulation time, indicating that the coflow is not sensitive to small changes in the initial or
boundary conditions. In comparison, the dynamics in the jet core and shear layer are clearly
visible in Fig. 15(a), with the core of the jet less sensitive to small perturbations as compared
to the shear layer. Further, the behavior in the jet core and shear layer is relatively constant
τconv > 20, demonstrating that saturation occurs very quickly and the separation growth is strongly
dependent on the radial location near the nozzle. In comparison, further downstream at x/Dref =
20 (Fig. 15(b)), a larger portion of the jet experiences similar rates of separation. However, at this
location the level at which saturation occurs is approximately four orders of magnitude lower than
at x/Dref = 0.33, demonstrating that the turbulence has decayed at this location.

A second data set is calculated at two fixed radial locations, one at the centerline (r/Dref = 0)
and the other one along the nozzle lip line, r/Dref = 0.5, for axial heights between x/Dref = 0 and
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(a) x/Dref = 0.33. (b) x/Dref = 20.

FIG. 15. Computed separation distance as a function of radial distance at two axial locations.

x/Dref = 60. These results are shown in Fig. 16. Compared to the radial separation profiles, which
reach saturation very quickly, an analysis of the separation growth shows that the time required to
reach saturation is a strong function of axial height. As seen in Fig. 16 the time to reach saturation
increases with increased axial height. The rate of saturation growth as a function of axial height
and non-dimensional time, represented by the red and black dashed lines, is compared to the mean
axial velocity. At both axial heights, the influence of the perturbation propagates downstream
at approximately the local mean axial velocity. Thus, the Lyapunov exponent can be applied to
estimate the time required for upstream turbulence to propagate downstream. This information is
trivial for a simple stationary inert jet, but this process could be applied for transient simulations
to distinguish between regions of turbulence generation and turbulence transport.

(a) r/Dref = 0. (b) r/Dref = 0.5.

FIG. 16. Computed separation distance as a function of axial heights at two radial locations.

VI. CONCLUSIONS

A metric based on the Lyapunov exponent is proposed to characterize the dynamic content of
LES and to assess the predictability time of simulations. This method is applied in simulations of
forced homogeneous isotropic turbulence and reacting and inert turbulent jets. It is shown that
the chaotic dynamics of DNS/LES calculations of isotropic, anisotropic, reacting, and inert flows
behaves like simple low-dimensional chaotic systems, such as the Lorenz system. The inverse of
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the Lyapunov exponent provides an estimate of the predictability time of a system, which is useful
information in predicting rapid dynamic phenomena. The Lyapunov exponent asymptotically
approaches a limit as the filter width decreases in size.

For small perturbations, the predictability of the reacting and inert flow cases scales with the
Kolmogorov time scales and becomes comparable to the integral time-scale of the system under
investigation. For the jet-flow simulations, it was shown that combustion makes the jet dynamics
more predictable in two ways. First, it enlarges the initial response time, which is the time that the
exponential divergence of the chaotic dynamics takes to begin. Second, the exponential growth rate
of the chaotic dynamics is lower due to the flame relaminarization, which decreases the effective
Reynolds number.

An analysis of the local Lyapunov exponent demonstrates that this metric can also determine
flow-dependent properties, such as areas of high turbulence and areas which are sensitive to small
perturbations within the flow field. This information can be used to indicate areas where local grid
refinement may be required. In addition, the impact of flow dependent properties on the evolution
of the flow can be assessed using the Lyapunov exponent and corresponding separation between
two simulations. This information can provide an indication of the sensitivity of the simulation to
initial conditions and boundary conditions, which may be important for the simulation of transient
events. Finally, it is demonstrated that the global Lyapunov exponent can be utilized as a metric
to determine if the computational domain is large enough to capture the dynamic nature of the
flow. For the inert jet, the Lyapunov analysis correctly predicts that the area which contains the
majority of the dynamics is located close to the nozzle. It is observed that outside of this area the
flow does not have a significant impact on the dynamic nature of the system as measured by the
Lyapunov exponent.

The Lyapunov metric is self-contained and model-free, which means it is consistent with the
LES model adopted and does not require estimates for the sub-grid kinetic energy. Since this
metric probes the short-time dynamics of unsteady flow-field simulations, it complements currently
employed statistical metrics that are difficult to apply in non-stationary flows. As such, the method
is directly applicable to any LES-calculation, easy to implement, and only requires a short-time
simulation to extract meaningful results. Furthermore, the Lyapunov metric can be used as a
sensitivity parameter to assess the impact of combustion models, chemical mechanisms, subgrid-
closures, and numerical discretization on the short-term dynamic behavior of a particular flow-field
simulation. One shortcoming of the Lyapunov exponent, however, is that its asymptotic value is
not known a priori, and simulations on successively refined meshes or different submodels are
necessary to assess the quality of particular numerical simulations.

This analysis provides a metric to determine the effect of the smallest scales on the flow dy-
namics, which is particularly relevant for examining deterministic rare or intermittent events in
turbulent flow simulations, such as local extinction and re-ignition events in turbulent flames [55],
engine knock and pre-ignition in internal combustion engines [56], or transition, separation, and
intermittency in turbulent flows [57]. If the events have a stochastic nature, the proposed Lyapunov-
exponent analysis has to be extended to relax the assumption on determinism. This is left for future
work.
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