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In this work, we present observable consequences of parity violating odd viscosity term in in-
compressible 2+1D hydrodynamics. For boundary conditions depending on the velocity field (flow)
alone we show that: (i) The fluid flow quantified by the velocity field is independent of odd viscosity,
(ii) The force acting on a closed contour is independent of odd viscosity, and (iii) The odd viscosity
part of torque on a closed contour is proportional to the rate of change of area enclosed by the
contour with the proportionality constant being twice the odd viscosity. The last statement allows
us to define a measurement protocol of odd viscostance in analogy to Hall resistance measurements.
We also consider no-stress boundary conditions which explicitly depend on odd viscosity. A classic
hydrodynamics problem with no-stress boundary conditions is that of a bubble in a planar Stokes
flow. We solve this problem exactly for shear and hyperbolic flows and show that the steady-state
shape of the bubble in the shear flow depends explicitly on the value of odd viscosity.

I. INTRODUCTION

Hydrodynamics is generally concerned with the clas-
sical fluid motion arising due to application of external
forces1,2. In spite of this simplistic premise, hydrody-
namic framework is ubiquitously applicable to a vast
range of physical phenomena ranging from sub-atomic
to astronomical scales. Thus discovery of a new phe-
nomenon in hydrodynamics often leads to far reaching
implications to a wide class of systems. One such phe-
nomenon was uncovered in the seminal work of Avron,
Seiler and Zograf 3 where they showed that the viscos-
ity of quantum Hall (QH) fluids at zero temperature is
non-dissipative and is closely related to the adiabatic cur-
vature on the space of flat background metrics. This non-
dissipative viscosity is the anti-symmetric component of
the total viscosity tensor (dubbed odd viscosity4) is non-
zero in the presence of broken time reversal or broken
parity symmetry. The 2+1D is special since the odd
viscosity term is compatible with isotropy. The general
parity odd terms of the viscosity tensor in 3+1D was
previously considered in the context of plasma in mag-
netic field5 and in hydrodynamic theories of superfluid
He-3A6.

The concept of odd viscosity in QH fluids was subse-
quently generalized to 2+1D hydrodynamics with dom-
inant odd viscosity term in the stress. The generalized
Navier-Stokes equations with odd viscosity may lead to
counter intuitive effects. Avron4 showed examples of
such effects e.g., the radial pressure on a rotating cylinder
and chiral viscosity waves with quadratic dispersion in
compressible fluids. The odd viscosity effects have been
studied extensively in the context of QH fluids (where
it is dubbed as Hall viscosity)7–28. However, realistic
odd viscosity effects measurable in laboratory for general
classical fluids with broken time reversal symmetries29–31

have received less attention. The closest attempt to this
end was made recently in Ref. 30 where the authors con-
sidered geometric theory of swimming32–34 in Stokes flow
with odd viscosity. The torque acting on the surface of

the swimmer depends explicitly on the odd viscosity and
influences the swimming strokes. Most recently the ef-
fects of odd viscosity have also been studied in connection
with dynamics of systems of active rotors35. For an el-
egant pedagogical introduction of odd viscosity in fluid
dynamics, we refer readers to Refs. 4 and 30.

While the effects of odd viscosity are very prominent
in compressible fluids4, they are more subtle in incom-
pressible case. Our goal is to identify general observable
effects of odd viscosity in incompressible 2+1D fluids and
capture these effects in terms of a possible measurement
protocol. Such a measurement protocol can potentially
be adopted to the case of QH fluids. In this work we
prove several exact statements on the observable conse-
quences of odd viscosity in incompressible 2+1D fluids.
We show that the observable effects sensitively depend
on the type of boundary conditions imposed. The appli-
cability of a particular set of boundary conditions to a
particular fluid should be either analyzed starting from
microscopic (kinetic) theory or determined experimen-
tally. Here we consider two classes of boundary condi-
tions – (a) Flow dependent boundary conditions or more
precisely no-slip boundary conditions where the layer of
fluid in contact with a solid body has the same velocity
as the body, and (b) no-stress or force matching con-
ditions where the velocities of the surfaces bounding a
fluid are not all specified, but the surface tractions acting
on these boundaries are known. For the flow-dependent
boundary conditions, we prove the following three exact
statements: (i) The fluid flow quantified by the velocity
field is independent of odd viscosity, (ii) The force acting
on a closed contour is independent of odd viscosity, and
(iii) The odd viscosity part of torque on a closed contour
is proportional to the rate of change of area enclosed by
the contour with odd viscosity being the proportionality
constant. We emphasize that the above statements are
not limited to the case of Stokes flow (cf. Refs.4,30) and
are valid for the most general constant density incom-
pressible fluid in 2+1D. We further exploit statement (3)
to define a physical observable which we coin as odd vis-
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costance and define a measurement protocol to observe
it.

The above statements do not hold generically for no-
stress or free surface boundary conditions. A classic ex-
ample of free surface boundary in hydrodynamics is the
problem of finding a steady state or a dynamical shape
of two-dimensional bubbles in slow viscous flows (Stokes
flow)36–40. We generalize the problem of bubble dynam-
ics to include odd viscosity and show that the steady state
shape of the bubble explicitly depends on odd viscosity.

II. INCOMPRESSIBLE FLUIDS WITH ODD
VISCOSITY

Hydrodynamic equations for a 2+1D incompressible
fluid with constant density (ρ = 1) are the incompress-
ibility condition and Navier-Stokes (NS) equation given
by2:

∂ivi = 0 , Dtvi = −∂ip+ ∂jσij , (1)

where vi (i = 1, 2) are components of the fluid velocity
field and Dt = ∂t + vi∂i denotes the material derivative.
For an isotropic fluid but with broken parity the viscous
stress tensor can take the following general form441:

σij = νe(∂ivj + ∂jvi) + νo(∂iv
∗
j + ∂∗i vj) . (2)

Here νe and νo are the shear viscosity and the odd viscos-
ity, respectively. We use the notation a∗i = εijaj . Using
the incompressibility condition and (2) the NS equation
can be rewritten as,

Dtvi = −∂ip̃+ νe∆vi . (3)

The odd viscosity term has been absorbed by redefining
pressure p̃ = p − νoω, where ω = εij∂ivj is the vorticity
of the fluid. Taking curl of the above equation removes
modified pressure out of the equation and we obtain an
exclusively flow dependent equation of motion written in
terms of the vorticity ω

Dtω = νe∆ω . (4)

Eq. 4 along with the incompressibility condition ∂ivi = 0
constitute two equations for two components of velocity.
Pressure is not a “state variable” in incompressible hy-
drodynamics. It can be found from the NS equation (3)
after finding the flow v(x, t) from (4) and the incompress-
ibility condition. Prima facie it may seem that fluid flow
and the corresponding equation of state is completely in-
dependent of odd viscosity. However, we must recall that
the fluid flow is specified by equations of motion in con-
junction with boundary conditions. Thus to locate the
observable effects of odd viscosity we must analyze var-
ious boundary conditions and see how they dictate odd
viscosity effects in the resulting dynamics. To this end
we consider no-slip and no-stress (free surface) boundary
conditions. We first consider the odd viscosity effects for
no-slip boundary conditions.

III. EXACT RESULTS FOR NO-SLIP
BOUNDARY CONDITIONS

The no-slip boundary conditions enforce that the layer
of fluid in contact with a solid body has the same velocity
as the body

vi|surface = Ui . (5)

Assuming this condition to be true, we can make the
following three statements.
Statement I (Flow): If boundary conditions of an

incompressible flow depend only on the flow v(x, t) itself,
the flow does not depend on the value of odd viscosity νo.

The above statement simply follows from Eqs. 4 and 5
which are completely independent of νo. It has appeared
already in Ref.4 and here we just make it more precise by
explicitly specifying boundary conditions. As a corollary
to the statement I, we note that changing νo → −νo
would leave the flow unchanged (in QH fluids this reversal
can be achieved by changing the direction of external
magnetic field).
Statement II (Force): If boundary conditions of an

incompressible flow depend only on the flow v(x, t) itself,
the net force acting on a closed contour Γ does not depend
on the value of odd viscosity νo.

The force applied by a fluid to a unit length of a con-
tour is given by fj = niTij , where n is a unit vector
orthogonal to the contour outward to Γ and Tij is the
stress tensor defined as Tij = −pδij + σij . Using the
incompressibility condition we rewrite

Tij = −p̃δij + νe(∂ivj + ∂jvi) + 2νo∂
∗
i vj . (6)

Then the force f acting on a contour Γ is given by:

fj

∣∣∣
Γ

= −p̃nj + νeni(∂ivj + ∂jvi)− 2νon
∗
i ∂ivj

or introducing the tangent direction s = −n∗ to the con-
tour Γ

fj

∣∣∣
Γ

= −p̃nj + νeni(∂ivj + ∂jvi) + 2νo∂svj . (7)

In the above expression only the last term depends on
νo. Indeed by the statement I, the flow itself does not
depend on odd viscosity and so is modified pressure p̃
which can be found from flow according to (3). We can
then calculate the contribution from the odd viscosity
term to the total force F oj acting on the closed contour Γ

F oj = 2νo

∮
Γ

ds ∂svj = 0 . (8)

This completes the proof of Statement II. A corollary
of this statement is the absence of any total lift force
or Magnus force coming from the odd viscosity when
no-slip boundary conditions are imposed. We empha-
size that this statement holds in general moving and
shape-changing contours and for the incompressible fluid
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of constant density. It is not limited to Stokes flow
(cf. Refs.4,30). In particular, non-linear corrections (also
known as Oseen’s correction) to Stokes flow do not re-
sult in νo dependent lift force on a cylinder in contrast
to recent claims42. We have shown that that there is no
lift force due to odd viscosity. The correct definition of a
lift force involves integration of the full momentum flux
density tensor projected along the normal direction to
the closed contour, not just an integration of the change
of the pressure due to odd viscosity p − p̃ = νoω. The
final form of the net force acting on a closed contour Γ is
given by,

Fj = −
∮

Γ

(p̃nj + νeωsj − 2νeni∂ivj)ds . (9)

It can be determined once the flow vj is obtained. Notice
that the statement II is valid for flow dependent bound-
ary conditions and only for the net force acting on a
closed contour. Effects of νo are still observable if one
measures local forces given by Eq. (7).

Statement III (Torque): If boundary conditions of
an incompressible flow depend only on the flow v(x, t)
itself, the part of the net torque acting on a closed contour
which depends on the value of odd viscosity νo is given
by:

T o = 2νo

∮
Γ

ds vn = 2νo
dA
dt

, (10)

where A is the area enclosed by the contour.
The net torque on a closed contour is given by T =∮

Γ
τ ds, where the local torque τ on a unit contour ele-

ment can be written as,

τ = εkjxkfj

∣∣∣
Γ

= −p̃(xkn∗k) + νenixk(∂iv
∗
k + ∂∗kvi)

+ 2νoxk∂sv
∗
k .

The last term is the only νo-dependent term and the total
torque corresponding to this term on a closed contour is
given by,

T o = 2νo

∮
Γ

ds xk∂sv
∗
k = 2νo

∮
Γ

ds vn = 2νo
dA
dt

.

The integral in the above equation is the rate of the
change of the area A enclosed by the contour. The ex-
pression T o = 2νo

dA
dt has an obvious physical interpre-

tation as a rate of the expulsion of intrinsic angular mo-
mentum from the area enclosed by the contour Γ. The
odd viscosity is given by the half of the value of intrinsic
angular momentum per particle νo = l

2
13,29,35. Push-

ing away this angular momentum results in the torque

T o = d(Al)
dt . Eq. 10 has appeared first in Ref.30 where it

was derived for the swimming in the Stokes regime. The
derivation presented in this section extends the validity
of formula 10 beyond the Stokes limit.

Odd viscostance: Following statement III, we can
construct an experimental protocol that can lead to the

measurement of odd viscosity. We define odd viscostance
as

N o ≡ 1

2

T
dA/dt

, (11)

where T is a net torque acting on an expanding circle
with no-slip boundary conditions on the circle. In case
of incompressible, uniform, isotropic, infinite 2D fluid
with constant odd viscosity νo one finds N o = νo. How-
ever, the quantity N o characterizes the fluid system glob-
ally and might change if defects and inhomogeneities are
present in the fluid. Indeed, specializing to the case of the
radially expanding circle (vs = 0 at Γ)we obtain for the
torque τ = 2νovn+νer∂rvs. The latter term drops out in
the limit νe → 0 but is generally non-vanishing for finite
νo and in the presence of inhomogeneities. The relation
between N o and νo is similar to the relation between Hall
resistance and Hall resistivity.

If one has an experimental ability to change the sign
of νo the easiest way to extract the odd viscosity de-
pendent part of the torque (10) is to repeat the torque
measurement for both νo and −νo. Then T o is given by
T o = (Tνo − T−νo)/2 and the value of odd viscosity νo
can be found from (10). We emphasize that this protocol
is robust against the presence of impurities (presence of
other rigid obstacles) as long as they interact with the
fluid via no-slip boundary conditions.

IV. NO-STRESS BOUNDARY CONDITIONS

The above exact statements are limited to the case of
no-slip boundary conditions. For the no stress or free
surface boundary conditions the statement I (and there-
fore, II and III as well) would break down and may lead
to a odd viscosity dependent flow. In the following we in-
vestigate few examples of incompressible fluids with odd
viscosity and no-stress boundary conditions.

A. Expanding bubble

Let us consider the simplest example of expanding bub-
ble in an incompressible fluid with odd viscosity. The key
equation in the no-stress condition for the case of inviscid
bubble is given by,

niTij = 0 . (12)

Here, we took the pressure inside the bubble as zero.
A particular “stationary solution” in polar coordinates
(r, θ) satisfying Eq. 4 along with the incompressibility
condition is given by,

vr =
γ

2πr
, vθ =

αγ

2πr
, (13)

where γ = dA/dt = 2πRṘ is a rate of the area change
and α is some constant. For this particular solution ω = 0
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Figure 1. Bubble dynamics in an incompressible fluid with
odd viscosity placed in a shear flow. Any smooth initial shape
leads to an odd viscosity dependent elliptical shape in equilib-
rium. In the presence of surface tension the ellipse parameters
depend both on odd viscosity and surface tension terms.

everywhere outside the bubble. At the surface of the
bubble we have for normal and tangent forces fn = njfj ,
fs = fjsj with fj given by Eq. 7. For the solution at hand
the local forces along normal and tangential direction is
given by,

fn = −p+ 2νe∂rvr + 2νo
vθ
r

∣∣∣
r=R

, (14)

fs = νe

(
∂rvθ −

vθ
r

)
+ 2νo

vr
r

∣∣∣
r=R

. (15)

The first equation defines the necessary air pressure in-
side the bubble. The no-stress condition for tangent com-
ponent of the force

fs

∣∣∣
r=R

= 0 (16)

gives α = νo
νe

, where the flow is then given by,

vr =
γ

2πr
, vθ =

νo
νe

γ

2πr
. (17)

The tangent component of the flow vθ explicitly depends
and is entirely due to the odd viscosity νo.

B. Bubble dynamics

As a second example of no-stress boundary condition,
we consider the case of an inviscid bubble in Stokes
flow37,38 with odd viscosity. We define the problem by
specifying the flow at infinity and monitor the equilib-
rium shape of the bubble under the specified fluid flow.
We will consider a shear flow and hyperbolic flow (also
known as straining flow) as representative cases. The
motivation to consider this problem is to capture some
observable effects of odd viscosity in the final equilibrium
shape of the bubble. The fluid inside the bubble has a
negligible viscosity (both dissipative and odd) and is at
a constant pressure, which is chosen to be zero without
loss of generality. The fluid outside the bubble has a
dissipative viscosity νe and odd viscosity νo and is in-
compressible. Neglecting inertial effects, gravitational or

y x y x

Figure 2. Bubble dynamics in an incompressible fluid with
odd viscosity placed in a hyperbolic (straining) flow. Any
smooth initial shape leads to a slit shape in equilibrium in-
dependent of odd viscosity (with no surface tension). Adding
surface tension restores the elliptical shape.

other body forces, the fluid motion is governed by the
incompressibility condition and the Stokes equation,

∂ivi = 0, ∆vi =
1

νe
∂ip̃ . (18)

We consider the regime with low Reynolds number and
drop all non-linear terms in Eq. 3. On the surface of the
bubble, we must satisfy two dynamic boundary condi-
tions that balance the forces

njTij = −σκni, (19)

where we have defined σ as the surface tension, κ as the
curvature of the surface, and nx,y as two components of
the outward normal unit vector. We also need to match
the normal velocity Vn of a point on the bubble surface
to the normal component of fluid velocity at that point,

vini = Vn . (20)

To completely specify the problem, we must specialize
the appropriate boundary conditions at large distances,
which can be done by choosing the type of flow.

Bubble in a shear flow: Now we consider a bubble
placed within a shear flow such that (vx, vy) → (ky, 0)
at infinity. Here, k is the shearing parameter or the vor-
ticity at large distances. For this flow, we follow Ref.37.
Solving the biharmonic equation for the stream function
and imposing boundary conditions yields the exact bub-
ble shape in the form of ellipse. The major axis of the
ellipse is inclined to the flow direction at an angle α and
the deformation parameter of the ellipse ρ (the ratio of
the half difference to the half sum of major and minor
axes) are given by

ρe2iα =
1

1− ic
. (21)

Here the real function c ≡ c(σ, νe, νo) can be found by
matching boundary conditions which fix the pressure at
large distances. The details of calculations are given in
the appendix. The expression for c is especially simple in
the limit of zero surface tension σ = 0 where c = −νo/νe.
In the absence of odd viscosity νo, the ellipse collapses
to a slit. In the limit νe → 0 the bubble shape is near
circular, similar to the infinite surface tension limit37.
Thus the finite odd viscosity stabilizes the ellipse shape
by playing a role akin to surface tension.
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C. Bubble in hyperbolic flow and resurrection of
flow dependent boundary conditions

We now focus on the scenario when the bubble is
placed in a hyperbolic (purely straining) flow (vx, vy)→
C(x,−y). For this case, we again obtain elliptical shape
defined by Eq. 21. However, for this case c ≡ c(σ, νe)
is independent of the value of odd viscosity. For the
σ = 0 limit the basic straining motion transmits only
a constant normal force across the real axis, so that the
bubble is again a slit along this axis with no perturba-
tion on the flow. The details demonstrating odd viscosity
independent flow and boundary conditions for no-stress
boundary conditions for purely straining flow are given
in the appendix. It appears that the non-vanishing vor-
ticity in the case of shear flow is crucial for the shape of
the bubble to depend on odd viscosity. In contrast to the
shearing flow, the no-stress conditions for the hyperbolic
case on the bubble surface can be effectively reduced to
flow dependent boundary conditions, thereby resurrect-
ing statements (I-III).

V. OUTLOOK

The presence of the parity breaking odd viscosity term
in 2D hydrodynamics leads to many interesting phenom-
ena. Those phenomena have received limited attention
barring few exceptions29–31,35. Here we focus on the
case of an incompressible fluid. We show that for no-
slip boundary conditions the flow itself does not depend
on the value of odd viscosity. We give three exact state-
ments concerning the flow, forces and torques in this case.
Using the non-vanishing torque, we formulate a possible
protocol for measuring odd viscosity and introduce the
concept of odd viscostance. The no-stress boundary con-
ditions generically produce the flow dependent on the
value of odd viscosity. To this end, we consider the clas-
sical problem of the shape of the bubble in shear and
hyperbolic flows and show under what conditions flow is
modified by the odd viscosity. A future direction would
be to specialize our framework to experimental platforms
such as active rotors (see 35 and references therein).

Acknowledgements: We thank D. Banerjee, W. Irvine,
G. Monteiro, A. Souslov, V. Vitelli, T. Can and P. Wieg-
mann for stimulating discussions. A.G.A. acknowledges
the financial support of the NSF under grant no. DMR-
1606591 and the hospitality of the Kadanoff Center for
Theoretical Physics.

Appendix A: Two dimensional bubble in Stokes flow
with odd viscosity

Here we consider the problem of a stationary shape
of the bubble placed in a two-dimensional slow viscous
flow with non-zero odd viscosity. We closely follow the
beautiful paper by Richardson37. It turns out that the

the only technical modification required due to the pres-
ence of the odd viscosity is the replacement of the shear
viscosity νe by the complex viscosity

ν = νe + iνo . (A1)

We refer the reader for all details to37 and present here
only results and major steps of the derivation.

Stokes flow: The fluid inside the bubble has a neg-
ligible viscosity (both dissipative and odd) and is at a
constant pressure, which is chosen to be zero without
loss of generality. The fluid outside the bubble has a
dissipative viscosity νe and odd viscosity νo and is in-
compressible. Neglecting inertial effects, gravitational or
other body forces, the fluid motion is governed by the in-
compressibility condition and the Stokes equation (18).
We follow37 and introduce complex notations for coordi-
nates z = x+ iy and partial derivatives ∂ = 2(∂x − i∂y).
Then the general solution of (18) is given in terms of
complex velocity v = vx − ivy as:

v = 2i∂ψ = i(φ(z) + z̄φ′(z) + χ′(z)) (A2)

with the stream function ψ and modified pressure p̃ given

ψ(x, y) = <(z̄φ(z) + χ(z)), p̃/νe + iω = −4φ′(z) .
(A3)

Here φ(z) and χ(z) are arbitrary functions analytic in z
outside the bubble.

No-stress boundary conditions on the surface of
the bubble: On the surface of the bubble, we must sat-
isfy two stress conditions (dynamic boundary conditions)
given by Eq. 19 and one kinematic condition Eq. 20. The
stress tensor can be expressed as Tij = −(p̃+νoω)δij+σij
with the viscous stress from (2). In complex notations

T ≡ Txx − Tyy − 2iTxy = 4ν∂v , (A4)

Θ ≡ Txx + Tyy = −2(p̃+ νoω) . (A5)

The stress tensor is conserved ∂̄T +∂Θ = 0 and we write
its components in terms of the complex function H(z, z̄)
as

T = 4i∂H , Θ = −4i∂̄H . (A6)

The dynamic no-stress boundary conditions (19) on
the surface of the bubble Γ can be written in complex
notations,

NT + N̄Θ = 2σκN̄ , (A7)

where we have defined the complexified normal vector to
Γ as N = nx + iny. If the surface Γ is given in paramet-
ric form as z(s) with s - the arc length traversed in the
clockwise direction,

N = i(xs + iys) = izs = ieiθ . (A8)

Here θ is the angle between the tangent and the real pos-
itive x-axis. The curvature is then defined as κ = −θs =



6

−z̄ss/N̄ (we use the notation as = da
ds ). We rewrite (A7)

as,

izsT − iz̄sΘ = −2σz̄ss .

and using (A6):

z̄s∂̄H(z, z̄) + zs∂H(z, z̄) = −σ
2
z̄ss . (A9)

Integrating over s we obtain the dynamic boundary con-
dition in terms of H(z, z̄) valid on Γ:

H(z, z̄) = −σ
2
z̄s . (A10)

Next we consider the kinematic boundary condition
(20) setting the bubble surface velocity to Vn = 0 (for
stationary problem) and in complex notations on Γ we
have,

<[vN ] = 0 . (A11)

or using (A2,A8) in terms of the stream function we ob-
tain −∂sψ = 0, i.e., taking constant to be zero

ψ
∣∣∣
Γ

= 0 . (A12)

Boundary conditions on bubble for the Stokes
flow: Let us now rewrite the boundary conditions
(A10,A12) for the Stokes flow given by (A2,A3). We
obtain:

ν(z̄φ′(z) + χ′(z))− νφ(z) = −σ
2
z̄s , (A13)

<[z̄φ(z) + χ(z)] = 0 . (A14)

Here we used (A2,A3) to find

H(z, z̄) = ν(z̄φ′(z) + χ′(z))− νφ(z) (A15)

Multiplying (A13) by zs, we obtain

ν∂s(z̄φ(z) + χ(z)) = −σ
2

+ 2<[zsνφ(z)] . (A16)

Taking imaginary part of (A16) and combining with
(A14) we obtain

z̄φ(z) + χ(z)
∣∣∣
Γ

= 0 (A17)

and taking the real part of (A16) and using (A17)

<[z̄sνφ(z)]
∣∣∣
Γ

=
σ

4
. (A18)

Thus the three real boundary conditions (A10,A12)
can be written in a compact form (A17,A18) differing
from the one written in Ref.37 only by changing the dis-
sipative viscosity νe to complex viscosity ν = νe + iνo.

1. Two-dimensional bubble in a shear flow

To completely specify the problem, we must specialize
the appropriate boundary conditions at large distances.
We consider the bubble which is placed in a linear flow.
We consider two examples of linear flow: shear flow and
hyperbolic flow (or purely straining flow). In this section
we consider a two-dimensional bubble placed within a
shear flow which is specified by the asymptotics at infinity
as v = (ky, 0). This requires that in the limit |z| → ∞,

φ(z) ∼ 1

4

(
k − ip̃∞

νe

)
z , χ(z) ∼ −1

4
kz2 , (A19)

where p̃∞ is the yet to be determined pressure at infinity
resulting from zero pressure within the bubble. The goal
here is to determine the equilibrium shape of the bubble.
To achieve this, we use conformal mapping which maps
the fluid region to the exterior of the unit circle Γ in
the ζ-plane, given by z = w(ζ). w(ζ) is analytic in the
flow domain |ζ| ≥ 1 for a smooth bubble outline. We
choose a unique mapping requiring w(ζ) ∼ aζ as |ζ| → ∞
where a is a real constant related to the bubble size. Now
we define Φ(ζ) = φ(w(ζ)), X(ζ) = χ(w(ζ)). Both are
analytic functions for |ζ| ≥ 1, and in the limit |ζ| → ∞,

Φ(ζ) ∼ 1

4

(
k − ip̃∞

νe

)
aζ, X(ζ) ∼ −1

4
ka2ζ2 . (A20)

The two boundary conditions in Eqs. A17,A18 can then
be written as,

w(ζ)Φ(ζ) +X(ζ) = 0, <[iζw′(ζ)νΦ(ζ)] =
σ

4
|w′(ζ)| .

(A21)

ζ resides in the exterior of a unit circle and 1/ζ̄ resides
in the interior at the inverse point. If f(ζ) is an analytic

function outside of Γ then f(1/ζ̄) is an analytic function
of ζ in the interior. Using the first condition of (A21) we
analytically continue w(ζ) to the domain |ζ| ≤ 1 as,

w(ζ) = −X(1/ζ̄)

Φ(1/ζ̄)
, for |ζ| ≤ 1 , (A22)

w(ζ) ∼ a

1− ic
1

ζ
, for |ζ| → 0 , (A23)

where we have defined c = − p̃∞
kνe

. Replacing ζ by 1/ζ̄ and

taking conjugate in Eqs. (A22), we get,

w(1/ζ̄) = −X(ζ)

Φ(ζ)
, |ζ| ≥ 1. (A24)

The second condition of (A21) to be satisfied on |ζ| = 1
can be written as,

1

ζ
w′(1/ζ̄)νΦ(ζ)− ζw′(ζ)νΦ(ζ) =

iσ

2
[w′(ζ)w′(1/ζ̄)]1/2 .
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We analytically continue this condition to the whole
plane,

ν
Φ(ζ)

ζw′(ζ)
− ν̄ζ Φ(1/ζ̄)

w′(1/ζ̄)
=
iσ

2

1

[w′(ζ)w′(1/ζ̄)]1/2
. (A25)

The first term on the left-hand side is analytic and single-
valued in |ζ| ≥ 1 and the second term in |ζ| ≤ 1. The
condition (A25) is identical to the one obtained in Ref.37

with the only change that ν is complex. For real ν as
in37 the limit σ → 0 is somewhat peculiar. For complex
ν we can just put σ = 0 in (A25) in the absence of the
surface tension. We consider two cases.

Case I: σ = 0: In this case the functional relationship
(A25) becomes,

ν
Φ(ζ)

ζw′(ζ)
= ν̄ζ

Φ(1/ζ̄)

w′(1/ζ̄)
. (A26)

The left-hand side is analytic and single-valued in |ζ| ≥ 1
and the right hand side |ζ| ≤ 1. Therefore, both sides
should be equal to the same constant. We know the
limiting cases in each limit:

ν
Φ(ζ)

ζw′(ζ)
∼ ν k

4
(1 + ic) , |ζ| → ∞ , (A27)

ν̄ζ
Φ(1/ζ̄)

w′(1/ζ̄)
∼ ν̄ k

4
(1− ic), |ζ| → 0 . (A28)

Thus we have for c,

ν
k

4
(1 + ic) = ν̄

k

4
(1− ic) =⇒ c = −νo

νe
. (A29)

The general form for w(ζ) can be written as37,

w(ζ) = a(ζ + γ2/ζ), (A30)

where γ2 = 1
1−ic . This mapping with γ2 = ρe2iα gives

an ellipse with its major axis inclined at an angle α to
the flow direction and the deformation parameter of the
ellipse ρ (the ratio of the half difference to the half sum of
major and minor axes). The ellipse parameters are given
by:

tan 2α = −νo
νe
, ρ =

1

1 + ν2
o/ν

2
e

. (A31)

Case II: σ 6= 0: In the presence of surface tension σ,
the ellipse parameters depend on σ via a transcendental

equation for c37,

c = −νo
νe

+
2σ

πaνek
K[(1 + c2)−1/2]. (A32)

Here K(m) =
∫ 1

0
ds√

(1−s2)(1−m2s2)
is the complete elliptic

integral of the first kind.
2. Two dimensional bubble in a hyperbolic flow

We now consider the bubble placed in a hyperbolic flow
(a pure straining flow) v = (Cx,−Cy), where C > 0.
Such a flow is similar to a rigid rotation superposed on
top of a simple shear of strength k = 2C. For this flow
we note that,

φ(z) ∼ ip̃∞
4νe

z , χ(z) ∼ − iC
2
z2, |z| → ∞ , (A33)

where p̃∞ is yet to be determined pressure at ∞. Pro-
ceeding as in the previous section we map to the ζ-plane
where,

Φ(ζ) ∼ ip̃∞
4νe

aζ, X(ζ) = − iC
2
a2ζ2 , |ζ| → ∞ . (A34)

The analytic continuation of w(ζ) into the interior of
|ζ| = 1 now yields,

w(ζ) = −2aCνe
p̃∞ζ

, |ζ| → 0 . (A35)

The key equation that determines the steady state shape
of the bubble in the limit of σ = 0 is again given by (A26).
The left-hand side of (A26) is analytic and single-valued
in |ζ| ≥ 1 and the right hand side |ζ| ≤ 1. In the limits:

ν
Φ(ζ)

ζw′(ζ)
= −iν p̃∞

4νe
, |ζ| → ∞ , (A36)

ν̄ζ
Φ(1/ζ̄)

w′(1/ζ̄)
= iν̄

p̃∞
4νe

, |ζ| → 0 . (A37)

The only way to satisfy (A26) is to have p̃∞ = 0. Notice
that the odd viscosity does not enter this solution and
the bubble is simply a slit along the real axis. In the
presence of surface tension σ 6= 0 the boundary condi-
tion yields the equation of ellipse given again by Eq. A30
with γ2 = −2Cνe/p̃∞. γ2 can be found by solving the
transcendental equation37,

1

γ2
=

σ

πaνeC
K(γ2) . (A38)

The above equation is identical to the results of Ref.37

with odd viscosity not entering (A38). This is to be ex-
pected after the observation that putting p̃∞ = 0 into
(A36,A37) removes the dependence on odd viscosity from
boundary conditions. Therefore, this case is similar to
flow dependent boundary conditions independent of odd
viscosity and our exact statements apply to this case.
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