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A thin liquid film with non-zero curvature at its free surface spontaneously flows to reach a flat
configuration, a process driven by Laplace pressure gradients and resisted by the liquid’s viscosity.
Inspired by recent progresses on the dynamics of liquid droplets on soft substrates, we here study the
relaxation of a viscous film supported by an elastic foundation. Experiments involve thin polymer
films on elastomeric substrates, where the dynamics of the liquid-air interface is monitored using
atomic force microscopy. A theoretical model that describes the coupled evolution of the solid-liquid
and the liquid-air interfaces is also provided. In this soft-levelling configuration, Laplace pressure
gradients not only drive the flow, but they also induce elastic deformations on the substrate that
affect the flow and the shape of the liquid-air interface itself. This process represents an original
example of elastocapillarity that is not mediated by the presence of a contact line. We discuss
the impact of the elastic contribution on the levelling dynamics and show the departure from the
classical self-similarities and power laws observed for capillary levelling on rigid substrates.

I. INTRODUCTION

Interactions of solids and fluids are often pictured by
the flapping of a flag in the wind, the oscillating mo-
tion of an open hosepipe or that of a fish fin in water,
a set of examples in which the inertia of the fluid plays
an essential role. In contrast, at small scales, and more
generally for low-Reynolds-number (Re) flows, fluid-solid
interactions involve viscous forces rather than inertia. Of
particular interest are the configurations where a liquid
flows along a soft wall, i.e. an elastic layer that can de-
form under the action of pressure and viscous stresses.
For instance, when a solid object moves in a viscous liq-
uid close to an elastic wall, the intrinsic symmetry of the
Stokes equations that govern low-Re flows breaks down.
This gives rise to a qualitatively different – elastohydro-
dynamical – behaviour of the system in which the mov-
ing object may experience lift or oscillating motion [1–3],
and a swimmer can produce a net thrust even by apply-
ing a time-reversible stroke [4], in apparent violation of
the so-called scallop theorem [5]. This coupling of vis-
cous dynamics and elastic deformations is particularly
significant in lubrication problems, such as the ageing of
mammalian joints and their soft cartilaginous layers [6],
or roll-coating processes involving rubber-covered rolls
[7], among others.

When adding a liquid-vapour interface, capillary forces
may come into play, thus allowing for elastocapillary in-
teractions. The latter have attracted a lot of interest in
the past decade [8–10]. In order to enhance the effect of
capillary forces, the elastic object has to be either slen-

∗ E-mail: oliver.baeumchen@ds.mpg.de

der or soft. The first case, in which the elastic structure
is mainly bent by surface tension, has been explored to
explain and predict features like deformation and fold-
ing of plates, wrapping of plates (capillary origami) or
fibers around droplets, and liquid imbibition between fi-
bres [11–18]. The second case involves rather thick sub-
strates, where capillary forces are opposed by bulk elas-
ticity. A common example is that of a small droplet
sitting on a soft solid. Lester [19] has been the first to
recognize that the three-phase contact line can deform
the substrate by creating a ridge. Despite the appar-
ent simplicity of this configuration, the substrate defor-
mation close to the contact line represents a challenging
problem because of the violation of the classical Young’s
construction for the contact angle, the singularity of the
displacement field at the contact line, and the difficulty
to predict the exact shape of the capillary ridge. In the
last few years, several theoretical and experimental works
have contributed to a better fundamental understanding
of this static problem [20–25], recently extended by the
dynamical case of droplets moving along a soft substrate
[26–28].

Besides, another class of problems – the capillary lev-
elling of thin liquid films on rigid substrates, or in free-
standing configurations – has been studied in the last few
years using thin polymer films featuring different initial
profiles, such as steps, trenches, and holes [29–34]. From
the experimental point of view, this has been proven to be
a reliable system due to systematic reproducibility of the
results and the possibility to extract rheological proper-
ties of the liquid [35, 36]. A theoretical framework, based
on Stokes flow and the lubrication approximation, results
in the so-called thin-film equation [37], which describes
the temporal evolution of the thickness profile. From this
model, characteristic self-similarities of the levelling pro-
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Figure 1. (a) Schematics of the initial geometry: a stepped liquid polystyrene (PS) film is supported by an elastic layer of
polydimethylsiloxane (PDMS). (b) Schematics of the levelling dynamics: the liquid height h depends on the horizontal position
x and the time t. The elastic layer deforms due to the interaction with the liquid. (c) Experimental profiles of the liquid-air
interface during levelling at Ta = 140 ◦C on 10:1 PDMS. The initial step has h1 = h2 = 395 nm. The inset shows a close-up
of the dip region. (d) Experimental profiles during levelling at Ta = 140 ◦C on the softer 40:1 PDMS. The initial step has
h1 = h2 = 200nm. The inset shows a magnification of the bump region. Dashed lines in (c) and (d) indicate the initial
condition.

files, as well as numerical [38] and analytical [39, 40] so-
lutions have been derived, which were found in excellent
agreement with the experimental results. Furthermore,
coarse-grained molecular dynamics models allowed to ex-
tend the framework of capillary levelling by offering local
dynamical insights and probing viscoelasticity [41].

In this article, by combining the two classes of prob-
lems above – elastocapillarity and capillary levelling – we
design a novel dynamical elastocapillary situation free of
any three-phase contact line. Specifically, we consider a
setting in which a thin layer of viscous liquid with a non-
flat thickness profile is supported onto a soft foundation.
The liquid-air interface has a spatially varying curvature
that leads to gradients in Laplace pressure, which drive
flow coupled to substrate deformation. The resulting
elastocapillary levelling might have practical implications
in biological settings and nanotechnology.

II. EXPERIMENTAL SETUP

First, polydimethylsiloxane (PDMS, Sylgard 184, Dow
Corning) is mixed with its curing agent in ratios varying
from 10:1 to 40:1. In order to decrease its viscosity, liquid
PDMS is diluted in toluene (Sigma-Aldrich, Chromasolv,
purity > 99.9%) to obtain a 1:1 solution in weight. The
solution is then poured on a 15×15 mm Si wafer (Si-Mat,
Germany) and spin-coated for 45 s at 12.000RPM. The
sample is then immediately transferred to an oven and
kept at 75 ◦C for 2 hours. The resulting elastic layer has
a thickness s0 = 1.5 ± 0.2 µm, as obtained from atomic
force microscopy (AFM, Multimode, Bruker) data. The
Young’s modulus of PDMS strongly depends on the ratio
of base to cross-linker, with typical values of E = 1.7 ±
0.2MPa for 10:1 ratio, E = 600 ± 100 kPa for 20:1 and
E = 50± 20 kPa for 40:1 [42, 43].

In order to prepare polystyrene (PS) films exhibiting
non-constant curvatures, we employ a technique similar

to that described in [29]. Solutions of 34 kg/mol PS (PSS,
Germany, polydispersity < 1.05) in toluene with typical
concentrations varying between 2% and 6% are made. A
solution is then spin-cast on a freshly cleaved mica sheet
(Ted Pella, USA) for about 10 s, with typical spinning
velocities on the order of a few thousands RPM. After the
rapid evaporation of the solvent during the spin-coating
process, a thin (glassy) film of PS is obtained, with a
typical thickness of 200− 400 nm.

To create the geometry required for the levelling ex-
periment, a first PS film is floated onto a bath of ultra-
pure (MilliQ) water. Due to the relatively low molecular
weight of the PS employed here, the glassy film sponta-
neously ruptures into several pieces. A second (uniform)
PS film on mica is approached to the surface of water,
put into contact with the floating PS pieces and rapidly
released as soon as the mica touches the water. That
way a collection of PS pieces is transferred onto the sec-
ond PS film, forming a discontinuous double layer that
is then floated again onto a clean water surface. At this
stage, a sample with the elastic layer of PDMS is put into
the water and gently approached to the floating PS from
underneath. As soon as contact between the PS film and
the PDMS substrate is established, the sample is slowly
released from the bath. Finally, the initial configuration
depicted in Fig. 1(a) is obtained. For a direct compar-
ison with capillary levelling on rigid substrates, we also
prepared stepped PS films of the same molecular weight
on freshly cleaned Si wafers (Si-Mat, Germany) using the
same transfer procedure.

Using an optical microscope we identify spots where
isolated pieces of PS on the uniform PS layer display
a clean and straight interfacial front. A vertical cross-
section of these spots corresponds to a stepped PS-air
interface, which is invariant in the y dimension (see
Fig. 1(a) for a sketch of this geometry). Using AFM, the
3D shape of the interface is scanned and a 2D profile is
obtained by averaging along y. From this profile the ini-
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tial height of the step h2 is measured. The sample is then
annealed at an elevated temperature Ta = 120 − 160 ◦C
(above the glass-transition temperature of PS) using a
high-precision heating stage (Linkam, UK). During this
annealing period the liquid PS flows. Note that on the
experimental time scales and for the typical flow veloci-
ties studied here the PS is well described by a Newtonian
viscous fluid [29, 31–34] (viscoelastic and non-Newtonian
effects are absent since the Weissenberg number Wi� 1
and the Deborah number De � 1). After a given an-
nealing time t, the sample is removed from the heat-
ing stage and quenched at room temperature (below the
glass-transition temperature of PS). The 3D PS-air in-
terface in the zone of interest is scanned with the AFM
and a 2D profile is again obtained by averaging along
y. This procedure is repeated several times in order to
monitor the temporal evolution of the height h(x, t) of
the PS-air interface (defined with respect to the unde-
formed elastic-liquid interface, see Fig. 1(b)). At the end
of each experiment, the thickness h1 of the uniform PS
layer is measured by AFM.

III. EXPERIMENTAL RESULTS AND
DISCUSSION

III.1. Profile evolution

The temporal evolutions of two typical profiles are re-
ported in Figs. 1(c),(d), corresponding to films that are
supported by elastic foundations made of 10:1 PDMS and
40:1 PDMS, respectively. As expected, the levelling pro-
cess manifests itself in a broadening of the initial step over
time. In all profiles, three main regions can be identified
(from left to right): a region with positive curvature (neg-
ative Laplace pressure in the liquid), an almost linear re-
gion around x = 0 (zero Laplace pressure) and a region of
negative curvature (positive Laplace pressure in the liq-
uid). These regions are surrounded by two unperturbed
flat interfaces exhibiting h = h1 and h = h1+h2. In anal-
ogy with earlier works on rigid substrates [31], we refer
to the positive-curvature region of the profile as the dip,
and the negative-curvature region as the bump. Close-up
views of those are given in the insets of Figs. 1(c),(d).

The decrease of the slope of the linear region is a direct
consequence of levelling. A less intuitive evolution is ob-
served in the bump and dip regions. For instance, in the
first profile of Fig. 1(c), recorded after 10min of anneal-
ing, a bump has already emerged while a signature of a
dip cannot be identified yet. As the interface evolves in
time, a dip appears and both the bump and the dip grow
substantially. At a later stage of the evolution, the height
of the bump and the depth of the dip eventually saturate.
This vertical evolution of the bump and the dip is at vari-
ance with what has been observed in the rigid-substrate
case [29, 31], where the values of the maximum and the
minimum are purely dictated by h1 and h2 and stay fixed
during the experimentally accessible evolution. That spe-
cific signature of the soft foundation is even amplified for
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Figure 2. (a) Experimental evolution of the profile width
w (proportional to the lateral extent of the linear region as
displayed in the inset) as a function of time t, in log-log
scale, for samples involving different liquid-film thicknesses
and substrate elasticities. All datasets seem to exhibit a t1/6

power law. The slope corresponding to a t1/4 evolution (rigid-
substrate case) is displayed for comparison. (b) Experimental
levelling profiles on 10:1 PDMS from Fig. 1(c) with the hor-
izontal axis rescaled by t−1/6. (c) Same rescaling applied for
the levelling profiles on 40:1 PDMS shown in Fig. 1(d).

PS levelling on the softer (40:1 PDMS) foundation, see
Fig. 1(d). The evolution of the bump and dip results from
the interaction between the liquid and the soft founda-
tion. Indeed, the curvature gradients of the liquid-air in-
terface give rise to Laplace pressure gradients that drive
the flow. The pressure and flow fields both induce elastic
deformations in the substrate. Intuitively, the negative
Laplace pressure below the dip results in a traction that
pulls upwards on the PDMS substrate, while the positive
Laplace pressure below the bump induces a displacement
in the opposite direction. In addition, a no-slip condition
at the solid-liquid interface coupled to the flow induces
an horizontal displacement field in the PDMS substrate.
These displacements of the foundation act back on the
liquid-air interface by volume conservation. According
to this picture, the displacement of the solid-liquid in-
terface is expected to tend to zero over time, since the
curvature gradients of the liquid-air interface and the as-
sociated flow decrease.

III.2. Temporal evolution of the profile width

The capillary levelling on a rigid substrate possesses an
exact self-similar behaviour in the variable x/t1/4, lead-
ing to a perfect collapse of the rescaled height profiles of
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Figure 3. Experimental profile width w (see Fig. 2(a), inset)
as a function of γh0

3t/η (see definitions in text), in log-log
scale, for all the different samples and temperatures. Ex-
periments for 10:1 (red), 20:1 (green) and 40:1 (blue) PDMS
substrates, as well as annealing temperatures Ta = 120◦C
(down triangle), 140◦C (circle), 160◦C (up triangle) are dis-
played. Most of the data collapses on a single curve of slope
1/6 (dashed line). The data for capillary levelling on rigid
substrates (black symbols) are shown for comparison and col-
lapse on a single curve of slope 1/4 (solid line). The inset
displays a close-up of the early-time regime in linear repre-
sentation.

a given evolution [31]. In contrast, for a soft foundation,
no collapse of the profiles is observed (not shown) when
the horizontal axis x is divided by t1/4.

To determine whether another self-similarity exists or
not, we first quantify the horizontal evolution of the pro-
file by introducing a definition of its width (see Fig. 2(a),
inset): w(t) = x(h = h1 + 0.6h2) − x(h = h1 + 0.4h2).
With this definition, only the linear region of the pro-
file matters and the peculiar shapes of the dip and bump
do not affect the value of w. The temporal evolution of
w was measured in several experiments, featuring differ-
ent values of h1, h2 as well as three stiffnesses of the soft
foundation. First, the absolute value of w at a given time
is larger for thicker liquid films, as expected since more
liquid can flow. Secondly, the data plotted in Fig. 2(a)
clearly shows that in all these experiments the width in-
creases as w ∼ t1/6. Equivalently, dividing the horizontal
axis x by t1/6 leads to a collapse of all the linear regions
of the profiles, as shown in Figs. 2(b),(c). However, while
allowing for the appreciation of the vertical evolution of
the bump and dip, the non-collapse of the full profiles in-
dicates the absence of true self-similarity in the problem.
Nevertheless, we retain that for practical purposes asso-
ciated with elastocapillary levelling, the w ∼ t1/6 scaling
encompasses most of the evolution in terms of flowing
material.

III.3. The role of viscosity

The impact of the soft foundation on the levelling dy-
namics depends on two essential aspects: the stiffness
of the foundation and how strongly the liquid acts on
it. The first aspect is constant, and controlled by both
the Young’s modulus E and the thickness s0 of the (in-
compressible) PDMS layer, the former being fixed by
the base-to-cross-linker ratio. The second aspect is ul-
timately controlled by the Laplace pressure, which is di-
rectly related to the curvature of the liquid-air interface.
Even for a single experiment, the amplitude of the curva-
ture field associated with the profile evolves along time,
from large values at early times, to small ones at long
times when the profile becomes almost flat. Thus, we ex-
pect the relative impact of the soft foundation to change
over time.

This time dependence can be explored by adjusting
the PS viscosity. Indeed, the latter strongly decreases for
increasing annealing temperature, while the other quan-
tities remain mostly unaffected by this change. Hence,
the levelling dynamics can be slowed down by perform-
ing experiments at lower annealing temperature, in order
to investigate the dynamics close to the initial condition,
and accelerated at higher annealing temperature in or-
der to access the late-stage dynamics. Here, we report
on experiments at 120 ◦C (high viscosity) and 160 ◦C (low
viscosity) and compare the results to our previous exper-
iments at 140 ◦C.

Following lubrication theory [37], the typical time scale
of a levelling experiment is directly fixed by the cap-
illary velocity γ/η, where γ denotes the PS-air surface
tension and η the PS viscosity, as well as the thickness
h0 = h1 + h2/2 of the PS film. In Fig. 3, the experi-
mental profile width is plotted as a function of γh03t/η
[31], for experiments involving different liquid film thick-
nesses, substrate elasticities and annealing temperatures.
Samples with PS stepped films on bare (rigid) Si wafers
were used to measure the capillary velocity γ/η at dif-
ferent annealing temperatures [36]. In these calibration
measurements, the profile width follows a t1/4 power law,
as expected [31]. In contrast, for the experiments on
elastic foundations, two different regimes might be dis-
tinguished: for γh03t/η larger than ∼ 5 µm4, the width
follows a t1/6 power law and all datasets collapse onto a
single master curve over 3 to 4 orders of magnitude on
the horizontal scale; for values of γh03t/η smaller than
∼ 5 µm4, the evolution depends on the elastic modulus
and it appears that the softer the foundation the faster
the evolution (see inset of Fig. 3).

III.4. Vertical evolution of the dip and bump

Guided by the previous discussion, we now divide the
horizontal axis x of all the height profiles in different ex-
periments by the quantity (γh0

3t/η)1/6. As shown in
Fig. 4, this rescaling leads to a collapse in the linear re-
gion of the profiles, while the dip and the bump regions
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Figure 4. Rescaled experimental profiles for all data dis-
played in Fig. 3, colour-coded according to the dimensionless
time τ = tE/η. Inset: Evolution with τ of the normalized
distance between the height hd of the liquid-air interface at
the dip position xd and the corresponding value hd,rig for the
rigid case. Note that in all the experiments h1 = h2. Symbols
are chosen to be consistent with Fig. 3.

display significant deviations from a universal collapse.

In order to characterize these deviations, we introduce
the Maxwell-like viscoelastic time η/E and define the
dimensionless time τ = Et/η. This dimensionless pa-
rameter quantifies the role of the deformable substrate:
experiments on softer foundations (lower E) or evolving
slower (larger η) correspond to smaller values of τ , and
are therefore expected to show more pronounced elastic
behaviours. As seen in Fig. 4, we find a systematic trend
when plotting the experimental levelling profiles using
the parameter τ . Profiles with large τ (dark green and
black) display clear bumps and dips, comparable in their
vertical extents to the corresponding features observed on
rigid substrates (not shown). In contrast, profiles with
small τ (yellow and bright green) feature large deviations
with respect to this limit.

The previous observation can be quantified by track-
ing the temporal evolution of the height of the liquid-air
interface hd(t) = h(xd, t) at the dip position xd, which
we define as the (time-independent) position at which
the global minimum is located at the latest time of the
levelling dynamics (see arrow in Fig. 4). The inset of
Fig. 4 displays the normalized difference between hd and
the corresponding value for a rigid substrate hd,rig, plot-
ted as a function of τ . We find that the parameter τ
allows for a reasonable rescaling of the data. As antici-
pated, the difference between levelling on rigid and soft
substrates decreases monotonically as a function of this
dimensionless time. For small τ , the difference can be
larger than 20% of the liquid film thickness, while for
large τ it drops to less than 1%, which corresponds to
the vertical resolution of the AFM.
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Figure 5. (a) Theoretical profiles for the liquid-air inter-
face z = h(x, t) and the solid-liquid interface z = δ(x, t),
both shifted vertically by −h1. Here, we employ s0 = 2µm,
h1 = h2 = 2h0/3 = 120nm, µ = 25 kPa, γ = 30mN/m,
η = 2.5×106 Pa s. The inset displays a close-up of the dip re-
gion. (b) Finite-element simulation (COMSOL) of the solid’s
total displacement (black arrows) and its vertical component
δ (color code). The result has been obtained by imposing
the Laplace pressure field corresponding to the first profile in
(a) to a slab of elastic material exhibiting comparable geo-
metrical and mechanical properties as in (a). The maximal
displacement of 22nm is in good agreement with the theoret-
ical prediction shown in (a).

IV. THEORETICAL MODELLING

IV.1. Model and solutions

We consider an incompressible elastic slab atop which
a viscous liquid film with an initial stepped liquid-air
interface profile is placed. The following hypotheses are
retained: i) the height h2 of the step is small as compared
to the thickness h0 = h1 + h2/2 of the (flat) equilibrium
liquid profile; ii) the slopes at the liquid-air interface are
small, such that the curvature of the interface can be
approximated by ∂ 2

x h; iii) the lubrication approximation
applies in the liquid, i.e. typical vertical length scales are
much smaller than horizontal ones; iv) the components
of the displacement field in the elastic material are small
as compared to the thickness of the elastic layer (linear
elastic behaviour); v) the elastic layer is incompressible
(valid assumption for PDMS). Note that the hypotheses
i) to iii) have been successfully applied in previous work
on the levelling dynamics of a stepped perturbation of a
liquid film placed on a rigid substrate [39].

Below, we summarize the model, the complete details
of which are provided in the Supplementary Material [44].
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The main difference with previous work [39] is the cou-
pling of fluid flow and pressure to elastic deformations of
the substrate. The Laplace pressure is transmitted by the
fluid and gives rise to a vertical displacement δ(x, t) of
the solid-liquid interface, and thus an horizontal displace-
ment us(x, t) of the latter by incompressibility. Conse-
quently, the no-slip condition at the solid-liquid interface
implies that a fluid element in contact with the elastic
surface will have a non-zero horizontal velocity ∂tus. In
addition, we assume no shear at the liquid-air interface.
After linearization, the modified thin-film equation reads:

∂∆

∂t
+

∂

∂x

[
−h

3
0

3η

∂p

∂x
+ h0

∂us

∂t

]
= 0 , (1)

where ∆(x, t) = h(x, t)− δ(x, t)− h0 is the excess thick-
ness of the liquid layer with respect to the equilibrium
value h0. The excess pressure p(x, t) in the film, with
respect to the atmospheric value, is given by the (small-
slope) Laplace pressure:

p ' −γ ∂
2(∆ + δ)

∂x2
. (2)

Furthermore, the surface elastic displacements are re-
lated to the pressure field through:

δ = − 1√
2πµ

∫ ∞
−∞

k(x− x′)p(x′, t) dx′, (3)

us = − 1√
2πµ

∫ ∞
−∞

ks(x− x′)p(x′, t) dx′, (4)

where µ = E/3 is the shear modulus of the incompress-
ible substrate, and where k(x) and ks(x) are the Green’s
functions (see Supplementary Material [44]) for the ver-
tical and horizontal surface displacements, i.e. the fun-
damental responses due to a line-like pressure source of
magnitude −

√
2πµ acting on the surface of the infinitely

long elastic layer.

Equations (1)-(4) can be solved analytically using
Fourier transforms (see Supplementary Material [44]),
and we obtain:

∆̃(λ, t) = − h2
2iλ

√
2

π

exp

[
−
(
γλ4h 3

0

3η

)
t

1 + (γλ2/µ)(k̃ + iλh0k̃s)

]
,

(5)

δ̃ =
−k̃
µ

γλ2∆̃[
1 + (γλ2/µ)k̃

] , (6)

where ˜ denotes the Fourier transform of a function
and λ is the conjugated Fourier variable, i.e. f̃(λ) =
1√
2π

∫∞
−∞ f(x)eiλx dx. The vertical displacement h(x, t)−

h0 of the liquid-air interface with respect to its final state
is then determined by summing the inverse Fourier trans-
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Figure 6. Temporal evolution of the profile width (see defi-
nition in Fig. 2(a), inset), in log-log scale, as predicted by the
theoretical model, for different shear moduli, viscosities and
liquid-film thicknesses. The 1/4 power law corresponding to
a rigid substrate is indicated.

forms of Eqs. (5) and (6).
Figure 5(a) displays the theoretical profiles of both the

liquid-air interface z = h(x, t) and the solid-liquid inter-
face z = δ(x, t), for a stepped liquid film with thicknesses
h1 = h2 = 2h0/3 = 120nm, supported by a substrate of
stiffness µ = 25 kPa and thickness s0 = 2µm. The viscos-
ity η = 2.5×106 Pa s is adapted to the PS viscosity at the
annealing temperature Ta = 120◦C in the experiment.
The PS-air surface tension is fixed to γ = 30mN/m [45].
We find that the profiles predicted by this model repro-
duce some of the key features observed in our experi-
ments. In particular, the evolutions of the bump and dip
regions in the theoretical profiles (see Fig. 5 inset) qual-
itatively capture the characteristic behaviours recorded
in the experiment (see Fig. 1(c) inset).

An advantage of this theoretical approach is the pos-
sibility to extract information about the deformation of
the solid-liquid interface. As shown in Fig. 5, the sub-
strate deforms mainly in the bump and dip regions, as
a result of their large curvatures. The maximal vertical
displacement of the solid-liquid interface in this example
is ∼ 25 nm, and it reduces over time, due to the levelling
of the profile and the associated lower curvatures.

IV.2. Evolution of the profile width

The temporal evolution of the width w (see Fig. 2(a),
inset) of the profiles was extracted from our theoreti-
cal model for a series of different parameters. Figure 6
shows the theoretical width w as a function of the quan-
tity γh03t/η for all cases studied. With this rescaling, it is
evident that the width of the theoretical profile depends
strongly on elasticity at early times, while all datasets
collapse onto a single curve at long times. Moreover, this
master curve exhibits a slope of 1/4, and thus inherits
a characteristic signature of capillary levelling on a rigid
substrate. The early-time data shows that the width is
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larger than on a rigid substrate, but with a slower evo-
lution and thus a lower effective exponent. These obser-
vations are in qualitative agreement with our experimen-
tal data. However, interestingly, we do not recover in
the experiments the predicted transition to a long-term
rigid-like 1/4 exponent, but instead keep a 1/6 exponent
(see Fig. 3).

It thus appears that we do not achieve a full quantita-
tive agreement between the theoretical and experimental
profiles. The initially sharp stepped profile could possibly
introduce an important limitation on the validity of the
lubrication hypothesis. Indeed, while this is not a prob-
lem for the rigid case since the initial condition is rapidly
forgotten [40], it is not a priori clear if and how elas-
ticity affects this statement. We thus checked (see Sup-
plementary Material [44]) that replacing the lubrication
approximation by the full Stokes equations for the liquid
part does not change notably the theoretical results. We
also checked that the linearization of the thin-film equa-
tion is not the origin of the aforementioned discrepancy:
in a test experiment with h2 � h1 on a soft substrate
we observed the same characteristic features – and espe-
cially the 1/6 temporal exponent absent of the theoretical
solutions – as the ones reported for the h1 ≈ h2 geome-
try (see Supplementary Material [44]). Besides, we note
that while the vertical deformations of the elastic mate-
rial (see Fig. 5) are small as compared to the thickness s0
of the elastic layer in the experimentally accessible tem-
poral range, the assumption of small deformations could
be violated at earlier times without affecting the long-
term behaviour at stake.

Finally, we propose a simplified argument to qualita-
tively explain the smaller transient exponent in Fig. 6.
We assume that the vertical displacement δ(x, t) of the
solid-liquid interface mostly translates the liquid above,
such that the liquid-air interface displaces vertically by
the same amount, following:

h(x, t) = hr(x, t) + δ(x, t) , (7)

where hr is the profile of the liquid-air interface that
would be observed on a rigid substrate. Note that this
simplified mechanism does not violate conservation of
volume in the liquid layer. By deriving the previous equa-
tion with respect to x, and evaluating it at the center of
the profile (x = 0), we obtain an expression for the cen-
tral slope of the interface:

∂xh(0, t) = ∂xhr(0, t) + ∂xδ(0, t) . (8)

Due to the positive (negative) displacement of the solid-
liquid interface in the region x < 0 (x > 0), ∂xδ(0, t) is
always negative, as seen in Fig. 5. Therefore, we expect
a reduced slope of the liquid-air interface in the linear
region, which is in agreement with the increased width
observed on soft substrates. Moreover, taking the second
derivative of Eq. (7) with respect to x leads to:

∂ 2
x h(x, t) = ∂ 2

x hr(x, t) + ∂ 2
x δ(x, t) . (9)

In the dip region, hr(x, t) is convex in space (positive sec-
ond derivative with respect to x), while δ(x, t) is assumed
to be concave in space (negative second derivative with
respect to x) up to some distance from the center (see
Fig. 5). Therefore, the resulting curvature is expected to
be reduced. A similar argument leads to the same con-
clusion in the bump region. This effect corresponds to a
reduction of the Laplace pressure and, hence, of the driv-
ing force for the levelling process: the evolution is slower
which translates into a smaller effective exponent.

IV.3. Finite-element simulations

To check the validity of the predicted shape of the
solid-liquid interface, we performed finite-element sim-
ulations using COMSOL Multiphysics. Starting from
an experimental profile of the liquid-air interface at a
given time t, the curvature and the resulting pressure
field p(x, t) were extracted. This pressure field was used
as a top boundary condition for the stress in a 2D slab
of an incompressible elastic material exhibiting a com-
parable thickness and stiffness as in the corresponding
experiment. The slab size in the x direction was cho-
sen to be 20µm, which is large enough compared to the
typical horizontal extent of the elastic deformation (see
Fig. 5(a)). The bottom boundary of the slab was fixed
(zero displacement), while the left and right boundaries
were let free (zero stress). The deformation field pre-
dicted by these finite-element simulations is shown in
Fig. 5(b) and found to be in quantitative agreement with
our theoretical prediction.

V. CONCLUSION

We report on the elastocapillary levelling of a thin vis-
cous film flowing above a soft foundation. The experi-
ments involve different liquid film thicknesses, viscosities,
and substrate elasticities. We observe that the levelling
dynamics on a soft substrate is qualitatively and quan-
titatively different with respect to that on a rigid sub-
strate. At the earliest times, the lateral evolution of the
profiles is faster on soft substrates than on rigid ones,
as a possible result of the “instantaneous" substrate de-
formation caused by the capillary pressure in the liquid.
Immediately after, this trend reverses: the lateral evolu-
tion of the profiles on soft substrates becomes slower than
on rigid ones, which might be related to a reduction of
the capillary driving force associated with the elastic de-
formation. Interestingly, we find that the width of the
liquid-air interface follows a t1/6 power law over several
orders of magnitude on the relevant scale, in sharp con-
trast with the classical t1/4 law observed on rigid sub-
strates.

To the best of our knowledge, this system is a unique
example of dynamical elastocapillarity that is not medi-
ated by the presence of a contact line, but only by the
Laplace pressure inside the liquid. Notwithstanding, this
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process is not trivial, since the coupled evolutions of both
the liquid-air and solid-liquid interfaces lead to an intri-
cate dynamics. Our theoretical approach, based on linear
elasticity and lubrication approximation, is able to repro-
duce some observations, such as the typical shapes of the
height profiles and the dynamics at short times.

While some characteristic experimental features are
captured by the model, a full quantitative agreement
is still lacking to date. Given the careful validation
of all the basic assumptions underlying our theoretical
approach (i.e. lubrication approximation, linearization
of the thin-film equation, and linear elasticity), we hy-
pothesise that additional effects are present in the ma-
terials/experiments. For instance, it remains unclear
whether the physicochemical and rheological properties
at the surface of PDMS films, which were prepared us-
ing conventional recipes, are correctly described by bulk-
measured quantities [9]. We believe that further inves-
tigations of the elastocapillary levelling on soft founda-
tions, using different elastic materials and preparation
schemes, could significantly advance the understanding
of such effects and dynamic elastocapillarity in general.

Finally, we would like to stress that the signatures
of elasticity in the elastocapillary levelling dynamics are
prominent even on substrates that are not very soft (bulk
Young’s moduli of the PDMS in the ∼MPa range) and
for small Laplace pressures. In light of applications such
as traction-force microscopy, where localised displace-

ments of a soft surface are translated into the correspond-
ing forces acting on the material, the elastocapillary lev-
elling on soft substrates might be an ideal model system
to quantitatively study surface deformations in soft ma-
terials with precisely-controlled pressure fields.
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