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The microstructure and shear rheology of highly concentrated, jammed suspensions of soft 
particles are shown to depend on polydispersity and shear rate from computational simulations.  
Rich behavior is observed depending on the degree of polydispersity and the shear rate.  Glassy 
suspensions with a low degree of polydispersity evolve to face-centered cubic (FCC) and 
hexagonal close-packed (HCP) structures at low and high shear rates, respectively.  The 
structural rearrangement occurs over several units of strain and reduces the shear stress and 
elastic energy.  Suspensions with a higher degree of polydispersity exhibit a microstructural 
transition from a glass to a layered-like structure for sufficiently high shear rates.  In this case the 
soft particles first rearrange themselves in the flow-vorticity plane during an induction time (or 
strain) before layers parallel to the flow-vorticity plane are formed.  The induction strain decays 
exponentially with shear rate revealing that the devitrification of monodisperse and polydisperse 
suspensions is a shear-activated process.  Finally a generic dynamical state diagram is found that 
depends on the polydispersity and the ratio of viscous to elastic forces due to shear.  
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I. Introduction 

The macroscopic properties of colloidal dispersions are determined by the spatial arrangement of 

the particles into the microstructure.  In the quiescent state, many different structures are found 

depending on the relative importance of the Brownian, repulsive and attractive forces.  

Monodisperse Brownian hard spheres [1,2], which interact only through repulsive excluded 

volume interactions, exhibit a liquid phase at low volume fractions beneath 0.494φ =  where they 

start crystallizing.  Liquid-crystal coexistence is observed at volume fractions between 0.494 and 

0.545; a fully crystalline state consisting of a mixture of hexagonally close-packed (HCP) and 

face-centered-cubic (FCC) domains exists between 0.545 and 0.58.  Above 0.58φ = , particles 

are trapped in an arrested glass phase.  Polydispersity is known to obviate crystallization [3-7]; 

the suspension then stays in a supercooled state up until it forms a glass at 0.58φ = .  Barrat and 

Hansen [3] used density functional theory and showed that the required polydispersity to inhibit 

the crystallization (i.e. terminal polydispersity) for hard spheres is in the range of 0.06-0.07.  

Monte Carlo simulations predicted a value of 0.057 for the terminal polydispersity of hard sphere 

[4,5].  Pusey [6] showed that in experiments the terminal polydispersity is in the range of 0.06 to 

0.12.   

The state diagram of soft repulsive microgels exhibits apparent similarities with that of 

hard-sphere suspensions.  For instance, microgel suspensions have been found to undergo the 

same sequence of transitions from fluid to crystal to amorphous solid with increasing volume 

fraction [8-12].  Suspensions of soft sphere polymer micelles also undergo a transition from fluid 

to crystal states with increasing volume fraction [13].  However several major quantitative 

differences signal the role of softness [14].  First, the onset of crystallization and the extent of the 

phase coexistence region depend on the degree of softness [8,13,15].  For instance, 
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crystallization is strongly inhibited in hairy suspensions like star polymers because the dangling 

chains can locally interpenetrate and fluctuate beyond the limit allowed by the Lindeman 

criterion [16].  Second, particles can be compressed well above close-packing where they come 

into contact and form a disordered jammed state [17].  In this regime, Brownian motion is 

negligible compared to the elastic energy associated with deformation at contact.  Again the role 

of polydispersity is to suppress crystallization so that only three regimes are usually observed in 

polydisperse soft particle suspensions: liquid suspension, entropic glass, and jammed glass [18].  

The application of oscillatory or steady shear flows is known to affect the microstructure 

of colloidal suspensions and the rheology [19].  The case of model hard sphere suspensions made 

of sterically stabilized colloidal particles has attracted a lot of attention.  Two decades of 

experiments have revealed a rich phenomenology [20-28].  When subject to oscillatory shear, 

hard sphere suspensions exhibit various structures: face cubic centered (FCC) crystals, stacked 

layers with hexagonal close-packed (HCP) symmetry, string and liquid-like structures, and tilted 

layers [21,29].  The exact morphology depends on a number of parameters such as the volume 

fraction, the amplitude, and frequency of the solicitation and the shearing history.  Suspensions 

with a fluid-like ordering at equilibrium or glasses tend to crystallize under oscillatory shear 

[20,21,24,26,29].  Three-dimensional crystals at equilibrium are transformed into two-

dimensional structures [21,24].  These shear-induced structures vanish upon flow cessation.  

Generally, FCC ordering appears at low strain and frequency amplitude and hexagonally close-

packed layer at higher amplitudes.  Out-of-equilibrium phase diagram has been proposed to 

rationalize the structural changes occurring upon shearing [21,29].  In a study by Koumakis et 

al.[30] the elastic and viscous moduli of suspension composed of PMMA particles with a 

volume fractions close to the random close packing were significantly smaller than their glass 
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counterparts.  Furthermore, the obtained crystals in the experiments were not in a 

thermodynamic equilibrium.  Similar trends are observed in steady continuous flow and 

Poiseuille flow [23,25,27].  On the numerical side Butler and Harrowell used Brownian 

dynamics simulations and showed that below the melting temperature, suspension turns into 

hexagonal packed strings which are aligned in the flow direction, while above the melting 

temperature, it forms unstructured layers in the shear plane [31]. 

Charge stabilized hard sphere suspensions constitute another class of suspensions which 

has been intensively studied [32-43].  Particles interact through a long-ranged repulsive potential 

which promotes crystallization at equilibrium.  Shear-induced structures consisting of stacks of 

two-dimensional crystal-layers with hexagonal symmetry are generally reported.  Several papers 

describe the transformation of the equilibrium crystal in relation to the rheological properties of 

the suspensions [32,34,37,42].  When subjected to increasing shear rate, the equilibrium structure 

exhibit two reversible transitions: (i) at low shear rates, the 3D crystals transforms into sliding 

two-dimensional HCP layers; (ii) at higher shear rates, the layers melt into an amorphous 

structure [32,34,38,42].  Melting induced by shear has been reported by several authors [36]. 

Although soft particles are also prone to crystallize, the effect of shear on soft particles 

glasses and crystals has been scarcely examined.  The role of shear seems to depend on the 

intensity.  Upon the application of a small shear, the polycrystalline phase of a block copolymer 

abruptly transforms into a single crystal [44].  One very comprehensive study concerns the 

ordering of poly(methyl methacrylate) (PMMA) microgel suspensions subjected to oscillatory 

shear [9].  Different phases are reported depending on the initial volume fraction and the strain 

amplitude.  When the volume fraction is below 0.548φ = , i.e. the volume fraction at which hard 

spheres crystallize, oscillatory shear never induces ordering.  Above 0.548φ = , crystalline order 
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with FCC symmetry is obtained at low strain amplitude, random-stacked structures consisting of 

planes of HCP particles aligned parallel to the flow-vorticity plane at larger amplitude, and 

finally string-like structures resulting from the breaking the random-stacked structure at high 

strain amplitudes.  A glass-to-crystal transition was also found in star polymer solutions [45] 

with a similar sequence of structural transitions [46].  Two-dimensional stacked HCP layers of 

particles have also been observed in PNIPAm microgels [47], polymeric micelles [48-50], and 

cluster crystals [51].  A few generic features, among which the prominence of the HCP sliding 

layer structure at relatively high shear rates sometimes followed by melting, emerge from this 

critical analysis of the literature.  However many important questions remain open.  First, since 

polydisperse suspensions never crystallize under shear, it is clear that a complete out-of-

equilibrium state diagram must include the degree of polydispersity of the suspensions in 

addition to the flow parameters and the volume fraction.  It is likely that this would help to 

rationalize the diversity of observations made in experiments where the polydispersity index is 

rarely specified.  Secondly, the question of the physical mechanisms leading to shear ordering 

from initially disordered suspensions is not addressed with only a few exceptions [27,38,41].  

Thirdly, the connection between structure and rheology in concentrated suspensions remains an 

important issue especially in highly concentrated suspensions [28]. 

In this paper we address these issues for the case of jammed suspensions of soft spherical 

particles.  We capitalize on a micromechanical model initially developed for describing the 

rheology of soft particle glasses under steady and oscillatory shear deformation [52,53].  We 

consider three-dimensional suspensions of elastic particles packed at volume fractions well 

above the jamming transition that interact through a nonlinear Hertzian pair-wise interaction.  

This model has been shown to quantitatively describe the linear and non-linear rheology of a 
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wide range of materials such as emulsions and microgels.  Here we investigate the structural 

changes induced by the application of a steady shear flow to jammed suspensions prepared in the 

amorphous state, starting from monodisperse particle distributions and subsequently increasing 

the polydispersity.  We show that monodisperse jammed glassy suspensions devitrify and 

become ordered upon flow inception.  FCC crystals form at low shear rates and reversibly 

transform at larger shear rates into sliding layers.  Polydispersed suspensions exhibit a 

transformation from the amorphous state to sliding HCP layers at a sufficiently shear rate after 

an induction time.  In both cases the sliding layers are parallel to the flow-vorticity plane.  The 

arrangement of particles in the flow-gradient plane is well described by a HCP morphology.  The 

layered state is metastable and disappears when the shear rate is decreased or suppressed.  We 

demonstrate that this disorder-layering transformation is a shear-activated process associated 

with a specific rearrangement of particles in the flow-vorticity plane.  A model quantitatively 

accounts for the variation of the induction time with the applied shear rate when the volume 

fraction and the polydispersity index are varied.   

II. Simulation Method 

We model soft particle glasses as a suspensions of N non-Brownian elastic particles in a solvent 

with a viscosity of sη  which are jammed in a cubic simulation box at volume fractions larger 

than the random close-packing of hard spheres, as shown in Fig. 1a [52,54].  Suspensions with 

volume fractions of 0.7,0.8φ = , and 0.9 were studied. Gaussian size distributions with standard 

deviation values of zero for monodisperse and values of δ = 0.02, 0.05, 0.1, and 0.2 were used to 

make the suspensions polydisperse, where the average radius of the particles is unity; δ  is 

termed the polydispersity index in the following.  The particles were initially placed in a cubic 

box and the box size was reduced using Lubachevsky and Stillinger compression algorithm [55].  
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After reaching the close-packed structure, the spheres were assumed deformable, and the box 

size was reduced further in small steps.  At contact, particles α and β create a flat facet resulting 

in a deformation of ( ), 0.5 cR R r Rα β α β αβε = + − , where Rα and Rβ are the radii of particle α and 

β, rαβ  is the center-to-center distance, and Rc is the contact radius, which is given as

( )cR R R R Rα β α β= + .  At this point the particles are not in force equilibrium.  The positions of 

the particles can be relaxed to ensure the particles are in force equilibrium and minimize the 

energy of the system[56].  However, the steady-state rheology and structures observed do not 

depend on the initial conditions of the suspensions. 

The model proposed by Seth et al. [52] considers both elastic repulsion and 

elastohydrodynamic (EHD) forces between particles, as shown in Fig. 1b.  The elastic repulsion 

force between particles α and β is given by the generalized Hertz law: 

 * 24
3

e n
cCE Rαβ αβε ⊥=f n , (1) 

where E* is the particle contact modulus ( ( )* 22 1E E ν= − , with E being the Young modulus, ν

= 0.5 is the Poisson ratio).  C and n are parameters that depend on the degree of compression.  

For 0.1ε <  1.5n = and 1C = , for 0.1 0.2ε≤ <  3n = and 32C = , and if 0.2 0.6ε≤ < 5n = and 

790C = [52,57].  ⊥n is the perpendicular direction to the facet at contact.  The EHD drag force, 

which is due to the existence of thin film of solvent between the flat facets of two particles in 

contact during the shear deformation, is given by  

 ( ) ( )1 2 2 1 4EHD * 3
,|| ||

n
s cCu E Rαβ αβ αβη ε += −f n ,  (2) 
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where uαβ,|| is relative velocity component in the direction of ||n , which is direction parallel to the 

facet at contact.  These two forces were assumed to be pair-wise additive, and the fluid inertia 

was neglected [52,53].  The velocity field due to the motion of the solvent is given as 

*
s

xy
Eα
γη∞ =u e  where ex is the basis vector in the x-direction.  The dimensionless equation of 

motion (length, time, and velocity are non-dimensionalized by R, *
s Eη , and *

sRE η , 

respectively) for each particle can be written as 

 ( ) ( ) ( )1 2 2 1 42 3
,|| ||

4
6 3

nr n
c c

fd C R Cu R
dt R αβ αβ

α
α αβ

β βα

ϕ
ε ε

π
+∞

⊥

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
∑ ∑x u n n ,  (3) 

where αx  is the position of the particle α and ( )rf ϕ  is the mobility function, which was set to 

0.01 in the simulations [52,53].   

 
(a)       (b) 

FIG. 1.  (a) Configuration of a suspension with a volume fraction of 0.9 and polydispersity index of δ 
= 0.1 that is in shear flow with an applied shear rate of γ .  The flow (u), gradient ( ∇ ), and vorticity (ω ) 
directions are shown in the figure.  (b) Schematic showing pair-wise interaction between particles α and 
β.  
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 Systems with N = 103 particles were prepared to characterize the response of jammed 

suspensions under steady shear deformation.  The Lees-Edwards [58] boundary conditions were 

utilized in the LAMMPS package [59] in order to impart the desired shear rate to the simulation 

box.  A wide range of shear rate ( 9 310 10γ − −= − , where γ  is the non-dimensional shear rate 

given by *
s

E
γηγ = ) was employed to determine the shear stress of the systems.  The stress tensor 

was calculated using the Kirkwood formula [60]: ( )1 N N

V αβ α β
β α β>

= −∑∑σ f x x , where V is the 

volume of the system and αβf  is the total force acting on particle α from particle β.  The elastic 

energy was determined by integrating the force acting on particles: 

( )
* 1 3

1

8
3 1

N N
n

cU CE R
n αβ

α β α
ε +

= >

=
+ ∑∑ , where C and n parameters are as the same as those used in the force law 

in Eq. (1).  The simulations were performed for 100 strain units and the stress tensor was 

calculated at regular intervals.  Although the simulation results were insensitive to the value of 

the time step below value of 10-2 for a non-dimensional shear rate of 10-4, it was chosen such that 

it produced 107 steps per strain at each shear rate.  We note that results for the shear rheology 

presented here are the same for simulations with 125, 103, and 104 particles. 

Structural properties of the system were characterized by determining the pair 

distribution function in suspensions with N = 104 particles.  The pair distribution functions 

( )ug ρ∇ and ( )ug ω ρ  in the flow-gradient and flow-vorticity planes were computed at different 

strain values to investigate the structural rearrangement as a function of the simulation time.  

Here ρ  is the magnitude of the two-dimensional position vector of a given particle in the flow-

gradient and flow-vorticity planes that is normalized by the radius of the particle.  
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To connect the microstructure to macroscopic properties of suspensions, the dynamic pair 

distribution function between the particles were determined by decomposing it into an 

orthogonal series of spherical harmonic functions[61] 

 ( ) ( ) ( ) ( )
1

,
l

s lm lm
l m l

g g r g r Y θ φ
∞

= =−

= +∑∑r . (4) 

The coefficient ( )2, 2g r−  of the expansion of ( )g r  can be used to determine the shear stress 

 ( ) ( )22 3
2, 2015

R e
yx n r f r g r drπσ −= − ∫ , (5) 

where n  is the number density of particles and ( )ef r  is the elastic contribution of the force.   

We also used bond order parameters to characterize the crystal structure of the 

monodisperse systems studied [15].  A bond is defined as a connection between particles i and j 

that are within a cutoff distance, which here is assumed to be 2.20.  The local bond order 

parameter Qlm is defined as  

 ( ) ( ) ( )( ),lm lmQ Y θ φ≡r r r , (6) 

where r is the bond between the neighboring particles, ( )θ r and ( )φ r are the polar and 

azimuthal angles, respectively, and Ylm are the spherical harmonics.  The average bond order can 

be determined by averaging the local bond order parameters over the number of bonds (Nb) in the 

system: 

 ( )
bonds

1
lm lm

b

Q Q
N

≡ ∑ r . (7) 
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To eliminate the dependence of bond order parameters on the rotation of the frame of reference, 

we calculate the second-order (Ql) and third-order (Wl) invariants as follows 

 
24

2 1

l

l lm
m l

Q Q
l
π

=−

≡
+ ∑ , (8a) 

 
1 2 3

1 2 3
1 2 3

, , 1 2 3
0

l lm lm lm
m m m
m m m

l l l
W Q Q Q

m m m
+ + =

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
∑ , (8b) 

where 
1 2 3

l l l
m m m

⎛ ⎞
⎜ ⎟
⎝ ⎠

is the Wigner 3j symbols[15].  It is also suggested to normalize the Wl 

values with respect to Qlm as follows[15]: 

 
3/2

2

ˆ l
l

lm
m

WW
Q

≡
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

. (9) 

The values of the bond order parameters (Ql and Ŵl) for an amorphous liquid are zero, 

and they are nonzero for even values of l when the structure has some degrees of crystallinity.  

We use four bond order parameters to determine the crystal structure, namely Q4, Q6, Ŵ4, and Ŵ6 

[62].  These provide a quantitative metric to determine whether a crystalline structure for 

monodispersed suspensions is hexagonally closed-packed (HCP) or face centered cubic (FCC).  

III. Results and Discussion 

III.A. Shear Stress and Elastic Energy 

 

The effects of polydispersity and volume fraction on shear stress and elastic energy per unit 

volume of suspension as functions of strain at a non-dimensional shear rate of 4
* 10s

E
γηγ −= =  are 

shown in Fig. 2.  At a low volume fraction of 0.7 (Fig. 2a), the shear stress initially increases 
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(linear elastic behavior) and shows a maximum value at a strain ~ 0.1 0.3γ − , which is in the 

range of a typical yield strain of these materials.  At this point the shear stress plateaus for 

several strain units, then decreases and reaches a steady state value.  The stress value at the 

plateau is the same regardless of the polydispersity.   

For the suspensions with a low polydispersity index, there is an induction strain before a 

rapid drop in the shear stress to its steady state value.  This drop in the shear stress occurs at a 

slower rate for suspensions with a larger polydispersity index.  The elastic energy behaves in a 

similar manner as seen in Fig. 2b.   

For suspensions with greater polydispersity, the elastic energy initially decreases, and 

depending on the degree of the polydispersity, it shows either a plateau region or maximum 

value, and then it reduces to a final steady state value.  The initial decrease in the elastic energy 

of the polydisperse suspensions is due to the existence of large overlaps between the 

polydisperse particles at the beginning of the shear simulations.  These initial overlaps do not 

affect the final states of the polydisperse suspensions subjected to shear flow.  At a higher 

volume fraction of 0.9 (Figs. 2c and 2e), the shear stress shows a very long plateau region as a 

function of the strain.  This plateau persists during the entire simulation for the suspension with 

polydispersity index of 0.2.  The elastic energy shows the same trend as seen in Figs. 2d and 2f.   

For a given volume fraction, the length of the induction strain plateau increases with 

increasing polydispersity.  The induction strain is around seven for monodisperse suspensions 

(Figs. 2c and 2d).  When the polydispersity index is 0.20, the shear stress and elastic energy 

immediately reach their steady state values.  The induction strain is the same for both the elastic 

energy and shear stress.  In addition as the volume fraction increases at a constant degree of 
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polydispersity, the shear stress increases as expected.  The induction strain increases with 

increasing volume fraction for all systems.   

Note that the value of the stress on the plateaus and final steady state stresses are 

independent of the starting configuration of the suspension.  The initial rise in the stress at the 

very smallest strains does depend on the initial configuration, but is not of interest here. 

Figure 3 shows the variations of the stress and elastic energy for a polydispersity index of 

0.1 and volume fraction of 0.8. At low shear rates, the shear stress and elastic energy reach their 

plateau values after a strain of about 0.1-0.3 and there is no induction strain before reaching the 

steady state (Figs. 3a and 3b).   At higher shear rates, there is an induction strain before a rapid 

drop in stress or energy before reaching steady state values.  The length of the induction strain 

decreases slightly with the shear rate. 
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FIG. 2.  Shear stress (left panel) and elastic energy (right panel) as a function of strain for different values 
of the polydispersity index and (a)(b) 0.7φ = , (c)(d) 0.8φ = , and (e)(f) 0.9φ = .  The applied shear rate 

is 410γ −= . 
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FIG. 3.  (a) Shear stress and (b) elastic energy as a function of strain at different shear rates for a 
suspension with 0.1δ =  and 0.8φ = .  The symbols in Fig. 3b are at the same shear rate as Fig. 3a. 

 

The steady state values of the shear stress and elastic energy as a function of the applied 

shear rate for the three polydispersity values investigated are shown in Fig. 4.  Both the shear 

stress and elastic energy follow the Herschel-Bulkley equation.  For the larger volume fractions, 

the onset of the plateau yield stress occurs at lower shear rates than the onset of the plateau of 

energy.  The elastic energy of the system is apparently less sensitive than the shear stress to shear 

rate at low shear rates.  The shear stress exhibits a discontinuity at an intermediate shear rate for 

the suspensions with low polydispersity and the lowest volume fraction.  The discontinuity 

occurs when the polydispersity, volume fraction and shear rate are such that there is an induction 

strain with a stress plateau prior to the rapid drop to the steady state shear stress.  These 

conditions are indicated by open symbols in Fig. 4.  The discontinuity shifts to higher shear rates 

with an increase in the polydispersity and volume fraction.  A similar behavior of the shear stress 

was reported by Chen et al. [37] for charge-stabilized polystyrene latex particles under simple 

shear flow. The shear stress of a sample with a volume fraction of 0.53 showed a discontinuity as 

a function of the shear rate which was interpreted as the signature of a structural transition. It is 
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likely that rearrangements in the microstructure of the suspension under flow are also responsible 

for the evolution of the shear stress and elastic energy observed in Figs 2-3.  They are 

investigated in the next section.   

 

FIG. 4.  Steady state flow curve (left panels) and steady-state elastic energy (right panels) as a function of 
the shear rate.  The following symbols are used to show results for different volume fractions: 0.7φ =  
(blue circle), 0.8φ =  (red diamond), and 0.9φ =  (black triangle).  Open symbols are used to distinguish 
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suspensions for which there is an induction strain with a stress plateau followed by a drop to steady state.  
Closed symbols indicate suspensions for which the stress immediately reaches the plateau.   

III.B. Structural Properties 

Suspensions with a low degree of polydispersity show a different microstructure at low and high 

shear rates compared to the systems with a high polydispersity index.  In this regard, the 

description of the structural properties is divided into two subsections in order to explore the 

variation with polydispersity. 

III.B.1 Microstructure of Monodisperse Systems 

The microstructures of jammed monodisperse suspensions and suspensions with a low degree of 

polydispersity ( 0.05δ < ) are different from those of polydisperse suspensions of soft particles. 

In order to elucidate the effect of the shear deformation on the microstructure of monodisperse 

soft particles glasses, the pair distribution functions in the flow-gradient ( )ug ρ∇  and flow-

vorticity ( )ug ω ρ  planes were determined at different shear rates (where ρ  is the magnitude of 

the two-dimensional position vector of a given particle in the flow-gradient ( u∇ ) or flow-

vorticity (uω ) planes that is normalized by the radius of the particle).  At both low and high 

shear rates, the pair distribution functions ( )ug ρ∇ and ( )ug ω ρ  show several well defined peaks 

indicating that a crystalline structure is formed under shear deformation (see Figs. 5a and 5b).  

The pair distributions in the flow-gradient plane, ( )ug ρ∇ , at a shear rate of 10-8 and at a higher 

shear rate of 10-4 are different as seen in Fig.5a.  The location of the first peaks is the same at 

both shear rates, but the magnitude of the peak at 810γ −=  is larger than at 410γ −= .  This shows 

that at low shear rate, the number density of particles in the first neighboring shell is larger than 

at high shear rate.  In addition the locations of the other peaks of the flow-gradient distribution 
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functions are different, which indicates that distinct microstructures exist at low and high shear 

rates.  The pair distribution function in the flow-vorticity plane ( )ug ω ρ  shows a different pattern 

as seen in Fig. 5b.  At a high shear rate, ( )ug ω ρ  exhibits few major and several minor peaks at 

small and large length scales, respectively.  More distinct peaks are observed at a lower shear 

rate.  Interestingly the peaks decay faster in the flow-vorticity plane.  In addition the difference in 

the microstructure is clearly seen in the snapshots of the simulation box at a low and high shear 

rates (see Figs. 5a and 5b). 

To quantify the difference in the configuration of the particles at low and high shear rates 

in monodisperse suspensions, the microstructures were characterized by the bond order 

parameters [15,62,63].  The lQ  and l̂W  are shown in Table I for a monodisperse suspension with 

0.9φ = at shear rates of 10-8 and 10-4.  In addition the values of lQ  and l̂W  are also given for 

perfect HCP and FCC crystals.  Although Q6 and 6̂W  values at high shear rate are slightly smaller 

than those of a perfect HCP, the 4Q  and 4Ŵ  values are in a good agreement.  Similarly, the bond 

order parameters values obtained at low shear rates match well with those of a perfect FCC 

lattice.  We note that an increase in the shear rate changes the 4Ŵ  parameter from negative to a 

positive, which is in agreement with the properties of FCC and HCP crystals [15].  Similar 

results were also observed for the suspensions with polydispersity index of 0.02.  In summary, 

starting from an amorphous state, the shear flow rearranges the soft monodisperse particles into a 

FCC structure at low shear rates and a HCP lattice at high shear rate.   
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(a) 

(b) 

FIG. 5.  (a) Flow-gradient and (b) flow-vorticity pair distribution functions of monodisperse suspension 
0.9φ =  as a function of the two-dimensional distance (ρ) at different shear rates. 

 

TABLE I.  Bond order parameters ( lQ  and l̂W ) for monodisperse system obtained at a volume fraction of 
0.9.   

System Q
4
 Q

6
 

4Ŵ  6̂W  

Monodisperse, shear rate = 10
-4

 0.1197 0.4518 0.0633 0.0001 

Monodisperse, shear rate = 10
-8

 0.1440 0.5092 -0.1404 -0.0120 

HCP 0.0972 0.4848 0.1341 -0.0124 

FCC 0.1909 0.5745 -0.1593 -0.0132 
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III.B.2 Microstructure of Polydisperse Suspensions 

The flow-gradient and flow-vorticity correlation functions ( )ug ρ∇  and ( )ug ω ρ  were 

determined at several strain values ( 1,10,20,30,40,and 100γ = ) to examine the effect of the 

strain (or the shearing time) on the microstructure of the suspensions.  Results for a volume 

fraction of 0.9 and polydispersity index of 0.1 are shown in Fig. 6 when the applied shear rate is 

410γ −= .  As seen in Fig. 6a, ( )ug ρ∇ initially reveals an amorphous structure, indicated by the 

rapid decay of the peaks over a few particle radii.  The structure becomes more ordered as the 

strain increases beyond about 30.  This ordering coincides with the rapid drop of the shear stress 

after the stress plateau region, which is shown in Fig. 2.  The growth of the well-defined 

secondary peaks in the pair distribution function ( )ug ρ∇  indicates that layers of particles 

parallel to the flow-vorticity plane are being formed.  The simulation box view in the flow-

gradient plane (Fig. 6a, right panel) clearly shows that at a very large strain ( 100γ = ), particles 

form layer-like structures parallel to the flow-vorticity plane.  A close examination of the 

simulation box in the flow-vorticity plane reveals a six-fold symmetry that vanishes at long 

distance.  The peaks of the pair distribution function in the flow-vorticity plane (Fig. 6b) decay 

more rapidly than in the flow-gradient plane (Fig. 6a), also indicating a less ordered structure.  

The same phenomenon occurs for all other systems with different volume fractions and degree of 

polydispersity. 
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(a) 

 
(b) 

FIG. 6.  (a) Pair distribution function in the flow-gradient plane (left panel) and flow-vorticity view of the 
simulation box during the shear flow (right panels).  (b) Pair distribution function in the flow-vorticity 
plane (left panel) and flow-vorticity view of the simulation box during the shear flow (right panels).  
Results are shown for a suspension with 0.1δ = , 0.9φ = , and applied shear rate of 410γ −= . 
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It is interesting to compute the coefficient 2, 2 ( / )g r R−  of the expansion of the pair 

distribution function into spherical harmonics (r corresponds to the three dimensional distance 

between particles).  It quantifies the angular asymmetry caused by accumulation and depletion of 

particles between the compression and extension axis [52].  It is shown in Fig. 7a for different 

strain values.  The first minimum point of 2, 2 ( / )g r R−  corresponds to the particle accumulation 

along the compression axes, and the maximum point corresponds to the depletion of the particles 

in the extension axis.  The minimum point occurs at 1.70mr R =  for 30γ ≤ .  As the strain 

increases, the position of minimum shifts to larger length scales ( 1.75mr R = ).  This observation 

indicates that during the structural rearrangement, particles become less compressed due to the 

formation of layered structures in the flow direction, which explains the decrease in elastic 

energy seen in Fig. 2.  Furthermore, the behavior of 2, 2 ( / )g r R−  does not change at intermediate 

strains 5 20γ≤ ≤ , which corresponds to the stress plateau.  In addition, the two-dimensional pair 

distribution functions at a low and high strain are shown in Fig. 7b.  At 5γ = , there are contacts 

in the flow and gradient directions, while the contacts in the gradient direction vanish with an 

increase in the strain that confirms the formation of layers parallel to the flow-vorticity plane.   
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(a)                                                             (b) 

FIG. 7.  (a) ( )2, 2 /g r R−  as a function of the reduced distance for a suspension with 0.1δ = , 0.9φ = .  
(b) Two-dimensional pair distribution function at 5γ =  (top) and 100γ =  (bottom) obtained at 0z = .  

The applied shear rate is 410γ −= . 

 

The effect of the shear rate on the microstructure of the system with a volume fraction of 

0.9 and polydispersity degree of 0.1 in the flow-gradient and flow-vorticity planes is shown in 

Figs. 8a and 8b.  At lower shear rates, the system is amorphous, and at higher shear rates, the 

structure shows a layer-like phase.  As the shear rate increases to 10-4, the flow-gradient 

distribution function shows distinct peaks, and the flow-vorticity distribution function indicates a 

weaker degree of structural rearrangement at larger length scale as already discussed above.  

Finally we also varied the volume fraction and the polydispersity index.  An increase in the 

volume fraction of the suspension at constant shear rate and polydispersity index leads to a more 

amorphous structure (see Fig. S1[64]).  In addition, an increase in the polydispersity index of the 
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suspensions at a constant volume fraction and shear rate can delay the phase transition during the 

shear deformation (see Fig. S2). 

 

(a) 

 
(b) 

FIG. 8.  (a) Effect of shear rate on the pair distribution function in the flow-gradient plane (left panel) and 
flow-gradient view of the end configuration of simulation box under different shear rates (right panel).  
(b) Effect of shear rate on the pair distribution function in the flow-vorticity plane (left panel) and flow-
vorticity view of the end configuration of simulation box under different shear rates (right panel).  Results 
are shown for the suspension with a polydispersity of 0.1 and volume fraction of 0.9. 
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III.C. Discussion 

1. Dynamical state diagram 

Towards creating a state-space map of structure as a function of shear rate, we define a 

dimensionless number λ that is equal to the ratio of the shear energy to the elastic energy for a 

given soft particle in the system.  The shear energy per particle is defined as 
34

3
s

s
RU π γη
φ

=  and 

is calculated for all systems as a function of the shear rate.  The values of the average elastic 

energy were determined as a function of the shear rate, and values of λ were calculated using: 

.

s

sim

U
U

λ = , where .simU is the elastic energy determined in simulations, as a function of the applied 

shear rate.  This parameter is shown as a function of the shear rate at different volume fractions 

for a system with a degree of polydispersity of 0.2 in Fig. S3.  As seen in Fig. S3, λ increases 

with an increase in the shear rate in a power-law due to that fact that the elastic energy increases 

with ~ aγ , where 1.0a < .  The exponents of the power-law fit are 0.6, 0.76, and 0.82 for a 

suspension with a polydispersity of 0.2 and volume fraction of 0.7, 0.8, and 0.9, respectively.  An 

increase in the volume fraction of the system results in a decrease in value of λ at a given shear 

rate due to fact that the increase in the elastic energy is larger than the increase in the shear 

energy for the particles at a given shear rate when volume fraction increases.  Interestingly, the 

transition from an amorphous to a layer-like structure occurs at 1λ ≅  for suspensions with 

polydispersity index larger than 0.02.  This observation indicates that the shear flow is necessary 

to overcome the energy barrier associated with the rearrangement of the microstructure.  At low 

shear rates, the value of the shear energy is smaller than the elastic energy and the structure is 

amorphous.  At high shear rates, the shear energy prevails and induces planar structures in the 

polydispersed systems.   
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In Fig. S3, the parameter λ is shown to depend on several parameters which are the shear 

rate, volume fraction, solvent viscosity, and particle elasticity.  To rationalize these variations we 

propose to introduce the non-dimensional shear rate *
0s Gγ γη=  by scaling the shear rate by the 

characteristic time 0s Gη , where sη  is the solvent viscosity and 0G  the storage modulus of the 

suspension ( 0G  is a function of the contact elasticity E* and volume fraction [65]).  0s Gη is a 

microscopic time scale which expresses the competition between the elastic driving forces and 

the dissipative viscous forces acting on the caged particles [66].  Employing this parameter, 

values of λ obtained at different volume fractions and degrees of polydispersity can be collapsed 

onto a master curve as shown in Fig. 9.  In addition, λ can be fitted to the power-law function: 

( )0.90
0514.1 s Gλ γη= .  The exponent of the power-law equation is 0.9, which is close to unity, 

indicating that *γ  and λ are essentially proportional up to 1λ ≅ .  Using this relationship (see 

Fig. 9), λ can be easily predicted for a given suspension in shear flow.  We note that here the 

suspensions form FCC, HCP, glass, and layered phase in this study, but regadless of the state of 

a given suspension the values of λ obtained from suspensions with different volume fractions and 

polidyspersity indices collapse onto a master curve.  

  



27 
 

 

FIG. 9.  Master curve of λ as a function of the reduced shear rate ( 0s Gγη ).  The power-law fit is shown 
using a dashed line.  To distinguish the volume fraction of different suspensions, the following symbols 
are used: 0.7φ =  (circle), 0.8φ =  (diamond), and 0.9φ =  (triangle).  To distinguish the polydispersity 
degree of each suspension, the following coloring scheme is used: 0δ = (blue), 0.02δ = (red), 

0.05δ = (black), 0.1δ = (green), and 0.2δ = (magenta). 

 

This suggests that a state diagram of the systems can be constructed using the parameter λ 

or 0s Gγη  and the polydispersity, as shown in Figs. 10a and 10b.  The state of the suspensions as 

a function of the λ shows several different regions (Fig. 10a).  At low λ and δ, structures tend to 

be FCC, and an increase in λ leads to a transition to HCP.  This transition occurs at λ ~ 0.1.  For 

the suspensions with larger degrees of polydispersity (δ > 0.02), no FCC structure was observed 

at small values of λ.  Instead, they show a glassy structure.  Further increase in λ leads to the 

formation of layer-like structures above λ ~ 1.0.  Figure 10 b shows the state diagram of soft 

particle glasses under shear flow as a function of the non-dimensional shear rate 0s Gγη .  The 

resulting state diagram is very similar to that obtained using the λ parameter but the advantage of 

this new representation is to be able to predict the state and the behavior of a suspension from the 
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knowledge of experimental parameters which can be easily determined.  As seen in the figure, 

the transition from FCC to HCP structure occurs at a dimensionless shear rate of 10-5, and the 

layered structure is formed around a reduced shear rate of 10-3.   

 We investigated the stability of the shear induced structures upon flow cessation. When 

the shear rate is decreased from values where the layered structure was formed, the suspension 

returns to the glassy phase for the suspensions with a polydispersity degree larger than 0.02 (see 

Fig. S4 in Supplemental Materials).  Similarly, complete flow cessation returns the suspension to 

an original glassy state.  For a suspension with a degree of polydispersity lower than 0.02, the 

HCP structure obtained at high shear rates transforms into an FCC structure when the shear rate 

is decreased.  The existence if a reversible transition from HCP to FCC for suspensions with low 

polydispersity is well supported by the variations of the bond order parameters shown in Table 

SI (see Supplemental Materials).   

 
(a)                                                                             (b) 

FIG. 10.  State diagram of the soft particle glasses in shear flow as a function of (a) λ and (b) non-
dimensional shear rate (determined using the low frequency modulus G0).  Following symbols are used to 
show the state of each suspension: 0.7φ = : layered structure (blue circle), glass (open red triangle), HCP 
(cyan square), and FCC (green square).  0.8φ = : layered structure (open blue circle), glass (open magenta 
triangle), HCP (open cyan square), and FCC (open green square).  0.9φ = : layered structure (half-filled 
blue circle), glass (half-filled brown triangle), HCP (half-filled cyan square), and FCC (half-filled green 
square). 
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2. Interpretation of crystallization in terms of shear activated phenomena 

The shear stress and the elastic energy of monodisperse and polydisperse suspensions show a 

rapid drop as a function of strain after reaching a plateau region.  The analysis of the 

microstructure also reveals that this drop is associated with structural rearrangement in the flow-

gradient and flow-vorticity planes.  The existence of the plateau in the stress and elastic energy 

raises several important questions.  Why is there an induction period during the shear flow?  

How does the microstructure change during this period?  Is there an activated process that leads 

to the crystallization of the suspensions? 

To address these questions, the maximum points of the two-dimensional pair distribution 

functions in both flow-gradient and flow-vorticity planes are plotted against the strain for a 

system with a volume fraction of 0.9 and polydispersity of 0.1 in Fig.11.  This maximum value 

corresponds to the magnitude of the pair distribution functions at the first peak, whose location 

does not change as a function of the strain.  The pair distribution function in the flow-gradient 

plane, ( )max
ug ρ∇  , is constant before the drop in stress (this constant period in ( )max

ug ρ∇  values is 

comparable with the induction strain as it was seen in Fig. 1.), and then it too drops and reaches 

steady state.  This rapid decrease shows that the number density of particles in the first neighbor 

shell decreases when the layered structure is formed compared to the glassy state.  On the other 

hand, the maximum of the pair distribution function in the flow-vorticity plane monotonically 

increases as a function of the strain in the plateau region of the shear stress as a function of 

strain.  Interestingly, we see that the reduction in the maximum value of ( )max
ug ω ρ  occurs earlier 

in the flow-vorticity plane compared to that in the flow-gradient plane.  These observations 

indicate that particles initially rearrange in the flow-vorticity plane during the induction strain.  
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During the rapid drop in the stress, layers parallel to the flow-vorticity plane are formed.  At 

higher strains, height of the first peak in both planes reaches steady state values.  This result (not 

shown here) is also seen in the monodispersed systems. 

 
FIG. 11.  The magnitude of the pair distribution functions at the first peak for a system with a volume 
fraction of 0.9 and polydispersity of 0.1.  The applied shear rate is 410γ −= . 

 

 The induction strain decreases with an increase in the shear rate.  During the induction 

period, particles are forced into layers requiring them to overcome an energy barrier E.  There 

are no thermal forces in our simulations, but the shear stress due to the elastic forces on the 

particles drives the dynamics.  Thus, we postulate that the rate S of successful collisions that 

drives particles into layers follows the relation 

 
0

~ exp ES
G
ηγ

σ
⎛ ⎞−⎜ ⎟
⎝ ⎠

, (10) 
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where 
0

s

G
η γ

and σ  are reduced shear rate and shear stress, respectively, and E is an energy barrier 

scaled by * 3E R .  The induction time INDτ  must be inversely proportional to the rate of collision (

1~IND S
τ ).  Since 

0

~IND IND G
ηγγ τ , we find ~ expIND

E
γ

σ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 for the induction strain.  We can rewrite 

this exponential relationship by noting that the stress obeys to the Herschel-Bulkely equation:

( )1/2
01 sK Gσ η γ= + , and so 

 1/2

0
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1

y
IND

s

E
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K
G

σ
γ

η γ

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟⎛ ⎞⎜ ⎟+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. (11) 

 Values of the induction strain ( INDγ ) as a function of the reduced shear rate are shown in 

Fig.12 for systems with different degrees of polydispersity and volume fractions.  As seen in the 

figure, values of INDγ  for different volume fractions collapse onto a master curve for a given 

degree of the polydispersity.  The data are successfully fitted to Eq. (11), and the corresponding 

fit parameters are shown in the figures for each degree of polydispersity.  The values of yE σ  

are in a range of 22 to 80, which are slightly larger than the range of 10 to 20 that is obtained 

from the energy per particle in simulations.  The K parameter shows a range of 696 < K < 918.  

This range of K is larger by a factor of three compared to range of 220 < K < 320 determined 

from the experimental flow curves of polyelectrolyte microgels at high shear rates [66].  As 

expected, the A parameter is around one.  This result indicates that the structural rearrangement 

for sheared glassy suspensions of the monodisperse and polydisperse soft particles is an activated 
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process.  Recently, it has been argued based on 2D experiments with no flow that crystal to 

crystal transitions cannot occur without an intermediate fluid phase [67].  The results of the 

simulations here show that in 3D transitions from FCC to HCP do occur in one step rather than a 

two-step process. 

 
FIG. 12.  Induction strain INDγ  as a function the reduced shear rate with respect to the low-frequency 
modulus G0 for suspensions with the polydispersity degree of (a) 0.0δ = , (b) 0.02δ = , (c) 0.05δ = , 
and (d) 0.1δ = .  The fit parameters are for 0.0δ = : 1.269A = , 22.65yE σ = , 917.2K = , for 

0.02δ = : 1.0A = , 29.54yE σ = , 700K = , for 0.05δ = : 1.664A = , 26.55yE σ = , 725K = , 

and for 0.1δ = : 1.097A = , 79.42yE σ = , 696.1K = .  To distinguish the volume fraction of 
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different suspensions, the following symbols are used: 0.7φ =  (circle), 0.8φ =  (diamond), and 0.9φ =  
(triangle). 

IV. Summary and Concluding Remarks 

In this study we investigated the effect of steady shear and polydispersity on the rheological 

properties and microstructure of jammed suspensions of soft particles.  Our results show that soft 

particle glasses regardless of their volume fractions can undergo shear-induced ordering.  In 

particular the microstructure changes from an amorphous phase to a layer-like structure parallel 

the flow-vorticity plane.  This structural rearrangement is in coincidence with the reduction of 

the shear stress and elastic energy of the system.  While the polydisperse systems show a layer-

like structure, the monodisperse suspensions ( 0.0δ = ) and the suspensions with a low degree of 

polydispersity ( 0.02δ = ) behave differently.  At low shear rates, the latter systems form FCC-

like structure, while at higher shear rates they exhibit HCP-like lattice due to the strong effect of 

shear flow on the microstructure.  We speculate that the state diagram for steady shear may also 

be applicable to oscillatory shear by replacing the shear rate by the product of the frequency and 

maximum strain. 

Furthermore, we showed that this disorder-layering transformation is a shear activated 

process.  There is an induction period before the layer-like structure is formed.  The induction 

period follows a universal exponential behavior for systems with different volume fractions at a 

given degree of polydispersity.  Our results demonstrate that the dimensionless localized energy 

(λ) show a universal power-law behavior as a function of the shear rate, which is normalized 

with respect to the low-frequency modulus of the systems.  In addition, the disorder-layering 

transformation occurs at λ~1, and a state diagram of these systems under shear flow has been 

constructed using this parameter.  The results of this study indicate that the shear flow changes 

the energy landscape to allow the suspension to explore other energy states.   
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The results of this study provide detailed information on the relation between the 

microstructure and macroscopic properties of jammed suspensions.  The provided state diagrams 

can explain the very different experimental observation on the microstructure of colloidal 

suspensions [20-27,29] and point to polydispersity index as an important parameter that controls 

the states of a suspension. 
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