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Large-scale turbulence in fluid layers and other quasi two-dimensional compressible systems con-
sists of planar vortices and waves. Separately, wave turbulence usually produces direct energy
cascade, while solenoidal planar turbulence transports energy to large scales by an inverse cascade.
Here we consider turbulence at finite Mach numbers when interaction between acoustic waves and
vortices is substantial. We employ solenoidal pumping at intermediate scales and show how both
direct and inverse energy cascades are formed starting from the pumping scale. We show that there
is an inverse cascade of kinetic energy up to a scale, ℓ, where typical velocity reaches the speed
of sound; that creates shock waves which provide for a compensating direct cascade. When the
system size is less than ℓ, the steady state contains a system-size pair of long-living condensate vor-
tices connected by a system of shocks. Thus turbulence in fluid layers processes energy via a loop:
most energy first goes to large scales via vortices and is then transported by waves to small-scale
dissipation.

Inverse cascade is a counter-intuitive process of self-
organization of turbulence. Predicted almost simulta-
neously for 2D incompressible flows [1] and sea wave
turbulence [2] and established in many cases of turbu-
lence in plasma, optics, etc. [3–8], it is predicated on
the existence of two quadratic conserved quantities hav-
ing different wavenumber dependencies. Excitation at
some intermediate wavenumber then leads to two cas-
cades: a direct one to small scales and an inverse one to
large scales. There is always a strong dissipation at small
scales which acts as a sink for the direct cascade. On the
contrary, large-scale motions are usually less dissipative,
so that inverse cascade can proceed unimpeded, either
producing larger and larger scales or reaching the box
size and creating a coherent mode of growing amplitude.
That process is now actively studied in 2D incompress-
ible turbulence [3, 4, 9–13], including in a curved space,
where vortex rings rather than vortices are created [14].
The energy of an incompressible flow in an unbounded
domain grows unlimited when the friction factors go to
zero at a finite energy input rate. The same happens to
the action of wave turbulence [15], if the long waves of
large amplitude are stable. For example, optical turbu-
lence in media with defocusing nonlinearity produces a
growing condensate [7, 8, 16]. On the contrary, in the
focusing case, condensate instability results in wave col-
lapses which provide for a loop of inverse cascade to the
small-scale dissipation so that there is a steady state with
only small-scale dissipation [8].
Here we consider compressible two-dimensional turbu-

lence which is of significant importance for numerous geo-
physical, astrophysical and industrial applications. We
show that it realizes the new, third, possibility of a
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steady state with only small-scale dissipation: On the
one hand, inverse cascade is able to produce long-living
stable vortices, on the other hand, the system reaches
a steady state as the vortices produce waves that break
and dissipate the energy. Two-dimensional compressible
hydrodynamics describes motions in fluid layers on the
scales exceeding the fluid depth when vortices are pla-
nar while waves are acoustic, the thickness playing the
role of density. We consider an ideal-gas equation of
state with the ratio of specific heats γ = cp/cv → 1
(that is near-isothermal) which is relevant to astrophys-
ical systems (where radiation provides for temperature
equilibration [17–24]) and for soap films flows with large
Reynolds number, non-vanishing Mach number and neg-
ligible solubility [25, 26].
Our results may also relate to the shallow water model,

which is basically described by the same set of equations,
but with γ = 2. In this context, some of potential ap-
plications include dissipation in geostrophic turbulence
and its impact on stability of mesoscale oceanic eddies
[27]. A weak direct energy cascade was predicted in [28],
using statistical mechanical arguments, which seemed in
contradiction with numerical results of [29]. A flux loop
of similar nature to the one discussed here perhaps might
solve that paradox.
Flux loop was also observed in a relatively simpler

case of weakly stratified 2D turbulence [30], where there
is only one conserved quantity, so that inverse cascade
can exist only in a restricted interval of scales until the
kinetic energy converts into the potential energy which
cascades to small scales. Our case is more complicated
and rich. First, because the energy, E = K + W =
∫

[ρu2/2 + c2ρ ln(ρ/ρ0)]dx, written here for isothermal
case (ρ is the density, ρ0 – mean density, u – veloc-
ity, c – sound speed), is both potential and kinetic;
and also because the kinetic energy has two components,
solenoidal and potential (dilatational). Second, smooth
flows in ideal 2D compressible hydrodynamics conserve
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FIG. 1. Time evolution of the total energy (left) and the rms Mach number (right) for cases A through E. The time is normalized

with the forcing time τf ≡ λ
2/3
f ε

−1/3
f . Cases A—C form a sequence with increasing grid resolution, where each step adds a

factor of two to the extent of both cascades in this dual-cascade setup.

not only the energy integral but also the potential vor-
ticity ω/ρ of any streamline, where ω = ∇ × u. We
characterize compressibility by the rms Mach number
M =

√

〈u2〉/c. When compressibility is small, two cas-
cades exist, much like in the incompressible case [31].
Indeed, the two relevant conserved quantities are close
to quadratic: i) the density times the squared potential
vorticity, H =

∫

ω2/ρ dx, goes into the direct cascade,
ii) the (mostly kinetic) energy goes into the inverse cas-
cade. As the vortices get larger and faster in the inverse
cascade, they start to create density perturbations thus
increasing potential energy along with the kinetic energy.
Even when external pumping is low-Mach, as the inverse
cascade proceeds to larger scales, typical velocities in-
crease and eventually become comparable to the speed
of sound, while density perturbations become substan-
tial. That allows an effective interaction of vortices and
waves and the energy transfer from the former to the
latter. Waves can then transfer energy back from large
to small scales due to wave breaking and shock creation.
We show that kinetic energy has an upscale flux above
the force scale λf . Since we observe a steady state, then
the return downscale flux must be of potential energy.
What is remarkable is that the fluxes are independent
of wavenumber k at k < kf ≡ 2π/λf thus representing
cascades.

The description of numerical simulations (implicit LES
[32–35]) can be found in [17]. Before analyzing the steady
state, let us describe the energy growth, saturation and
fluctuations. At small t, while M < 0.2, the kinetic part
strongly dominates the energy balance. On average, the
contribution of potential energy reaches W ≈ 0.1E at
M = 0.5 − 0.7, as the total energy growth saturates.
Remarkably, this 10% saturation level does not depend
on the pumping rate εf . Simulations show that K(t)
and W (t) are strongly coupled and oscillate with oppo-
site phases. The oscillation amplitude grows with M and
eventually saturates, reaching W ≈ 0.15E during dissi-
pation bursts and decreasing to 0.07E during the pe-

riods of more quiet evolution. The main characteristic
frequency of such oscillations is determined by the sound
speed c, rotation velocity profile of large-scale vortices
U(r), and mean inter-vortical separation L/

√
2 (L is the

domain size). These large-scale acoustic oscillations rep-
resent compressible component of the total condensate
energy.

Figure 1 presents the evolution of energy and Mach
number for the cases of weak (A, B, C), intermediate
(D) and strong (E) pumping εf . In all cases, the en-
ergy evolution starts with a linear growth E(t) = εf t,
which soon saturates due to a strong peak of small-scale
compressible dissipation. After that, the inverse cascade
is launched and the linear growth resumes with a lower
rate Ė = εg ∼ 0.9εf . As soon as the rms Mach number
exceeds 0.3, shock dissipation starts to play a role and
further slows down the energy growth to ∼ 0.4εf . Some-
what later, a domain-size vortex dipole appears and then
grows more coherent, as more energy is pumped in. The
periods of slow growth are interrupted by episodic bursts
of shock dissipation. For instance, the emergence of a
single strong shock (pressure jump > 2), connecting the
centers of large-scale vortices can cause a sharp drop in
E(t) by several per cent. As the bursts become more
frequent at higher energy levels (M > 0.5), the overall
growth slows down to below 10% and eventually satu-
rates, but one can still see short patches of uninterrupted
growth with the same characteristic rate of 0.4εf between
the bursts. Bursts of dissipation are observed to be of
different nature. Some are correlated with intermittent
appearance of shocks across the large-scale vortex dipole
that become particularly dramatic when the two vortices
approach closely. Some other cases correspond to vor-
tices being destroyed completely and then reappearing
after a while. Deep energy minima are accompanied by
intense oscillations of relative strength of the vortices in
the pair as best seen in the density movie [17]; apparently
the large-scale acoustic mode causes strong dissipation
[17, 36–44]. During the time intervals when vortices stop
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FIG. 2. Kinetic energy fluxes for the case C at M = 0.21,
0.30 (nonstationary, no condensate) and M = 0.49 (quasi-
stationary with condensate); D at M = 0.52 (quasi-stationary
with condensate); E at M = 0.62 (quasi-stationary, no con-
densate). Fluxes saturate at ΠK ≈ ±0.5 as Mach approaches
0.6 apparently due to a direct acoustic energy flux that
matches the energy injection rate at M ≥ 0.6, halts the total
energy growth and forms a closed energy flux loop at k > kf .

oscillating and are comparable in magnitude, the energy
continues approximately linear growth.

The evolution is different in run E, where condensate
vortices do not appear, the Mach number M ≃ 0.6 is
reached at the scales below the box size leading to many
mid-size vortices being present at the saturated stage,
which fluctuates much less as a result. Note that the
energy in the left panel is normalized by pumping. As
is clear from the right panel of Fig. 1, in all runs the
typical velocities and total energy reach approximately
the same values. Incidentally, it was reported that even
stable condensate does not appear in optical turbulence
when pumping is too strong [7]; whether there is a general
phenomenon of inverse cascade disruption due to high
effective nonlinearity (for instance, because integrals of
motion cease to be quadratic) is poorly understood.

It is important that the decay/growth of total energy is
determined by the shock (rather than total) dissipation;
apparently, solenoidal dissipation, however large and fi-
nite the kinematic viscosity ν, is irrelevant to the inverse
cascade.

Let us now analyze kinetic energy fluxes for states with
different Mach numbers that appear at different pumping
rates and in different boxes (Figure 2 and [17]). Consider
that we use solenoidal pumping so that at low Mach num-
ber we have practically incompressible turbulence with
most of the energy going to the left of the forcing scale
i.e. into the inverse cascade. We see that with increas-
ing Mach number, the larger and larger fraction of ki-
netic energy goes to the right of the forcing scale i.e.
into the direct cascade. Still, the inverse cascade is well-
pronounced in all cases. At Mach number of order unity,
approximately equal fluxes go to large and small scales
(a turbulence version of energy equipartition). Figure 3
shows the spectra of kinetic and potential energy and also

separately the spectrum of the kinetic energy of poten-
tial (dilatational) part of the velocity field. We see that
W (k) ≪ K(k) for most k, yet their fluxes must be com-
parable to provide for a steady state. This is an extra
reminder how different (and complementary) information
is brought by analyzing together spectra and fluxes. We
also see that the dilatational part of the kinetic energy
is small all the way to k ≃ 10kf so that the kinetic en-
ergy of vortices dominates. Only at k > 10kf the waves
dominate and kinetic and potential energies and fluxes
are getting equal as it must be in weak turbulence [15].

Turbulence at the scales smaller than the force scale
can be naturally assumed to carry the direct energy flux
provided by acoustic waves. This is supported by the
spectra, which show that at k >∼ kf the potential en-
ergy is equal the dilatational energy and both decay as
k−2 as expected for acoustic turbulence [15]. Of course,
there is more to turbulence at k > kf than the energy
cascade. It must also carry the cascade of H which it
does by the solenoidal part of the velocity field whose

vorticity spectrum behaves as k−3 ln−1/3(k/kf) in exact
correspondence to the theory of the enstrophy cascade
in incompressible turbulence [1, 45]. An effective Mach
number decreases towards small scales so that vortices
and waves are getting decoupled. Since the vortical con-
tribution decays faster, waves dominate kinetic energy for
the small-scale part of the spectra. For most wavenum-
bers, however, the energy of vortices is dominant.

Let us now look at turbulence at scales above the force
scale. It is likely that the acoustic direct energy cascade
originates at the scales far exceeding the force scale and
goes through it. This is evidenced by the spectra of po-
tential and dilatational kinetic energy which behave con-
tinuously through kf . On the contrary, the solenoidal
part of the kinetic energy has a narrow peak right at
k = kf and the kinetic energy flux ΠK jumps from ΠW /2
at k > kf to −ΠW /2 at k < kf so that the total energy
flux towards large scales is zero.

It deserves attention that the low-Mach energy spec-
tra at k < kf in the left panel are usual k−5/3, while the
spectra are close to k−2 in the right panel of Fig. 3. How-
ever tempting is to ascribe this to shock waves, this is not
the case since the spectra are overwhelmingly dominated
by the kinetic energy of solenoidal motions i.e. vortices.
That means that even though density variations are sub-
stantial only at large scales (where the Mach number is
not small), they modify vortices and affect spectra at
all scales down to the pumping scale. Our compressible
spectrum climbs towards small k faster than −5/3 spec-
trum of an inverse cascade with a large-scale sink (yet
slower than k−3 spectrum of the large-scale coherent vor-
tex [4]). To interpret this, recall that the mechanism of
inverse cascade is deformation of small vortices inside a
large one and the back reaction which reinforces the large
vortex [50]. In a compressible case, the fact that the spec-
trum is steeper may mean that for cascade to proceed the
ratio between energies of larger vortex and smaller vor-
tices inside it must be larger than in an incompressible
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FIG. 3. Energy spectra for case C at M = 0.2 (left) and 0.5 (right), see [17, 46–49] for definitions in the compressible case.

case.

That potential energy exceeds dilatational energy at
large scales is an extra evidence that density perturba-
tions are related not only to waves but also to vortices.
Note that similar detailed energy equipartition across
scales is seen in 3D at M ≈ 0.6 [51, 52].

When the inverse cascade reaches the system size and
creates coherent vortices, their main dissipation is at
shocks, which go out of the vortex centers, connect them
and create spiral structures around them. Apart from
purely fluid-mechanical interest, spontaneous formation
of strong vortices with shocks in compressible quasi-2D
flows may influence different astrophysical phenomena,
for instance in the contexts of disk accretion [54], galac-
tic disks [55] or planetesimal formation in protoplane-
tary disks [56]. Here we focus on analyzing the vor-
tex structure and the energy-momentum fluxes that sup-
port the coherent vortex. To appreciate better the pe-
culiarities of the compressible case, let us briefly remind
that in the incompressible case the inverse cascade pro-
duces a pair of vortices with a narrow viscous core, out-
side of which the mean azimuthal velocity is indepen-
dent of the radius: U =

√

3εf/αρ, where α is the rate
of uniform (bottom) friction [10]. Each vortex is sus-
tained by the inward radial momentum fluxes. The (ra-
dial) flux of the radial momentum is provided mostly
by the mean pressure: ρU2 ≈ rdP/dr. The flux of
the azimuthal momentum is provided by fluctuations:
τ = ρ〈uv〉 = rρ

√

εfα/3, where u, v are respectively az-
imuthal and radial fluctuating velocities in a reference
frame comoving with the vortex center. For the flat pro-
file, the turbulence-vortex energy exchange rate per unit
area, F1 = r−1∂rrUτ = 2ρεf , is also independent of
the radius and equal to twice the input rate; the turbu-
lence flux divergence F2 = r−1∂rr〈v(ρu2 + ρv2 + 2p)〉/2
is negligible [10]. All the energy input from the external
pumping and turbulence inverse cascade is dissipated in-
side the vortex by linear friction: αρU2 = 3εf .

For the compressible case which we consider, there is
no bottom friction and, consequently, no momentum loss
from the system. Averaging continuity equation for the

density of angular momentum and taking into account
that the mass flux 〈ρv〉 must be zero, we get inside the
vortex the condition for total zero momentum flux:

〈ρvu〉 = νΣr
∂

∂r

U

r
+

〈

νρ

r

∂v

∂φ

〉

+ r

〈

νρ
∂

∂r

u

r

〉

. (1)

Since the mean density and velocity profiles, Σ(r) and
U(r), are smooth then the first term in the rhs goes to
zero with ν. It is thus clear that inertial momentum flux
τ = 〈ρuv〉 could be nonzero only if there is a finite inviscid
limit of the last two terms in the rhs, which are due
to turbulence. That requires tangential discontinuities,
apparently provided by the spiral shocks coming out of
the vortices and long shocks connecting vortex centers
which we observe. Movies [17] also show density profile
strongly corrugated along φ and fast changing along r
which is conducive with having τ 6= 0. Most likely, the
mechanism of nonzero viscous momentum transfer at the
inviscid limit is the angle change of a streamline after
passing through shock. For that one indeed needs spiral-
like shocks, which deflect streamlines out. If the shock
deflects against the vortex flow, then the rhs of (1) is
negative, as can be expected (inertia brings momentum
in, viscous friction takes it out). Only with non-zero
inertial momentum flux into a vortex, the inertial energy
flux into vortex τr∂r(U/r) can be non-zero as well. We
expect the energy input rate εf to exceed the viscous
energy dissipation outside vortices, so that the energy
must flow into vortices to be dissipated there.

A typical snapshot of the vorticity and density fields
in the energy-saturated state with condensate is shown
in Fig. 4. To compute averages, we save 20 flow snap-
shots per crossing time; with these we can create rea-
sonably smooth animations [17] and robustly decompose
the mean flow from the turbulence, using an algorithm
similar to that of [10] with some modifications to account
for compressibility [17]. One learns from the case C that
the condensate vortex has a circular core with the vor-
ticity comparable to several other vortices present at any
given time; what distinguishes the condensate vortex is
a spiral around the core so that the density is perturbed
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FIG. 4. Vorticity and density fields in model B at t = 412. (See [17] for mp4 animations and visuals generated using the Line
Integral Convolution technique [53].)
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FIG. 5. Profiles of the mean density, Σ(r), and velocity, U(r), for condensate in model C at M ≈ 0.5, t ∈ [380, 400] (left panel).
Inset illustrates the radial force balance for the mean flow. Time-average turbulent fluxes for case C at t ∈ [283, 300] (center)
and t ∈ [380, 400] (right panel). The sum of two fluxes is shown by the dashed line; vertical lines indicate the forcing scale λf .

in the whole region, core and spiral, which provides for
strong dissipation. Secondary vortices, on the contrary,
do not perturb density in any substantial way. Most of
the time, vortex as a whole moves generally with a speed
much less than the flow velocity in the vortex itself, so
one can neglect distortions caused by the center motion.

As in [10], the mean vorticity profile within a coherent
vortex is close to isotropic, but the 2D density distribu-
tion shows shallow diagonal minima, resembling the den-
sity depressions along the lines connecting the vortices in
individual snapshots (Fig.4). The mean flow is charac-
terized by the azimuthally averaged density and velocity
profiles, Σ(r) and U(r), shown in the left panel of Fig. 5
for case C. We see that the density decreases monoton-
ically towards the center, while the velocity grows and
then decays. As vortex grows, the outer velocity pro-
file flattens. What matters, however, is the comparison
of the centrifugal force, ΣU2/r, and the radial pressure
gradient, dP/dr = c2dΣ/dr. It is more convenient to
compare U2 with c2d lnΣ/d ln r ≡ c2Σ′ which is done in
the inset in Fig. 5. Remarkably, radial balance of the mo-
mentum fluxes holds with the accuracy of a few percent
already on the mean profiles, despite quite complicated
structure of the vortex, as seen in Figs. 4 and 5. In other

words, the mean pressure and velocity satisfy the steady
Euler equation, that is the contribution of fluctuations
into the radial momentum flux is negligible, even though
the fluctuations are quite strong (and Umax ≈ 0.7c).

Fluctuations, however, play a crucial role in feeding
energy and azimuthal momentum to the vortex, as shown
in Fig. 5. We find that the fluxes here are quite different
from the incompressible case: F1, F2 are comparable but
they change sign along the radius (see Fig. 5 and [17]).
Apparently, those oscillations are the signature of a spiral
structure of shocks, so that the energy fluxes converge to
shocks at spiral arms rather than to the vortex center.

Note that fluxes fluctuate strongly, so that a short-time
average can often give an opposite sign of the energy
fluxes, as seen from comparing the right two panels in
Fig. 5. Positive (outward) angular momentum flux, like
observed here at some radii at the vortex periphery, was
previously observed in the case of a rotating disc and
ascribed to compressibility [54].
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