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Abstract5

This paper investigates boundary layer flows with pressure gradient using a novel similar-6

ity/integral analysis of the continuity equation and momentum equation in the streamwise di-7

rection. The analysis yields useful analytical relations for Ve, the mean wall-normal velocity at the8

edge of the boundary layer, and for the skin friction coefficient, Cf , in terms of the boundary layer9

parameters and in particular βRC , the Rotta-Clauser pressure gradient parameter. The analytical10

results are compared with experimental and numerical data and are found to be valid. One of the11

main findings is that for large positive βRC (important effect of an adverse pressure gradient), the12

friction coefficient is closely related to βRC as Cf ∝ 1/βRC , because δ/δ1, δ1/δ2 = H and dδ/dx13

become approximately constant. Here δ is the boundary layer thickness, δ1 is the displacement14

thickness, δ2 is the momentum thickness and H is the shape factor. Another finding is that the15

mean wall-normal velocity at the edge of the boundary layer is related to other flow variables as16

UeVe/u
2
τ = H+(1+δ/δ1 +H)βRC , where Ue is the streamwise velocity at the edge of the boundary17

layer. At zero pressure gradient, this relation reduces to U∞V∞/u
2
τ = H as recently derived by18

Wei and Klewicki[1].19
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I. INTRODUCTION20

Turbulent boundary layer flows subject to pressure gradient occur in many engineering21

applications, for example diffusers, turbine blades, trailing edges of airfoils and the aft section22

of ship hulls. In particular, turbulent boundary layer flows with adverse pressure gradient23

(APG) often play a critical role in determining the performance of engineering devices.24

Under strong APG the boundary layer flow may separate from the solid surface, causing a25

drastic change to the flow pattern. In many occasions, accurate knowledge of the adverse26

pressure gradient boundary layer development is the most critical factor in predicting the27

overall performance of the device.28

Due to its significance, the APG TBL has been the subject of numerous theoretical,29

experimental and numerical studies over the past six decades. The idea behind the equilib-30

rium turbulent boundary layer was laid out by Rotta [2] and by Clauser [3], who examined31

a boundary layer with a well defined and simple pressure history. Clauser defined an equi-32

librium profile as one of a set of profiles in which a constant force history is obtained. In his33

analysis Clauser introduced a non-dimensional pressure gradient parameter β
RC

, commonly34

called Rotta-Clauser parameter:35

β
RC

=
δ1
u2τ

1

ρ

dP

dx
= − δ1

u2τ
Ue
dUe
dx

, (1)

where δ1 is the displacement thickness of the boundary layer, uτ =
√
τw/ρ is the friction36

velocity and Ue is the free stream velocity.37

Following Rotta and Clauser, during the last six decades numerous researchers have stud-38

ied the APG TBL, analytically, experimentally and numerically, e.g., [4–14]. Our knowledge39

and understanding of boundary layer flows with pressure gradient are, however, still incom-40

plete.41

The goal of the present study is to use integral and similarity analysis to gain a better42

understanding of the relationship between important parameters of PG TBLs. The relation-43

ships analytically developed herein are useful for the physical understanding of such flows,44

and to estimate important flow parameters. Integral analysis of the boundary layer equa-45

tions is almost as old as boundary layer theory itself (Pohlhausen 1921[15], von Kármán46

1921[16]). In the case of turbulent boundary layers, it has led to a panoply of integral47

methods that continue to be used in engineering analysis. It is important to stress that the48
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present similarity/integral analysis was not, however, performed to design a new integral49

method to compute turbulent boundary layers or to obtain closure relationships for integral50

methods. Rather, the novelty of the present integral analysis is twofold. The first relates51

to the manner in which the integral continuity and momentum equations are combined.52

The second is that the integral equations are expressed in terms of the pressure gradient53

parameter. This is convenient and useful because of the importance of this parameter in54

describing PG flows.55

One of the unique objectives of the present study is to investigate how the mean wall-56

normal velocity at the edge of APG TBLs, Ve, evolves under the action of a pressure gradient.57

In the traditional integral analysis, the mean wall-normal velocity is not explicitly utilized.58

In fact, due to its small magnitude, the mean wall-normal velocity has been largely ignored59

in previous studies of turbulent boundary layer flows. In ZPG boundary layer flows, the60

mean wall-normal velocity monotonically increases from 0 at the surface to a maximum61

value outside the boundary layer as sketched in figure 1. However, in boundary layer flows62

with APG, the mean wall-normal velocity continues to increase outside the boundary layer63

as also illustrated in figure 1.64

FIG. 1. Sketch illustrating the shape of the mean wall-normal velocity in boundary layer flows with

zero-pressure-gradient (ZPG) or adverse-pressure-gradient (APG).
65

66

We start the analysis by assuming self-similarity of the velocity moments in the continuity67

equation and the streamwise mean momentum balance equation. Subsequent integration of68

both equations from the surface at y = 0 to outside the boundary at y = aδ (see Fig.69

1) yields relationships for Ve and Cf in terms of the boundary layer parameters, and in70
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particular in terms of β
RC

. Experimental and numerical data are compared with these71

analytical relations, and the overall agreement is assessed.72

II. SIMILARITY/INTEGRAL ANALYSIS73

This work considers two-dimensional boundary layer flows in which the mean flow only74

varies in the streamwise x and wall-normal y directions, and is statistically homogeneous in75

the spanwise direction z. The governing equations for the 2D boundary layer flows, i.e., the76

continuity equation and mean momentum balance equation in the streamwise direction, are77

∂U

∂x
+
∂V

∂y
= 0, (2)

U
∂U

∂x
+ V

∂U

∂y
− ν ∂

2U

∂y2
− ∂T

∂y
+

1

ρ

dP

dx
= 0, (3)

where T = −〈u′v′〉 is the kinematic Reynolds shear stress. (Note that the contribution78

of ∂〈u′u′〉/∂x is neglected in the present analysis. Near separation and for strongly accel-79

erated/decelerated flows, such an assumption might not be adequate.) Setting T to zero80

results in the equation for laminar boundary layer flows. As the Reynolds shear stress is81

zero at the wall and outside the boundary layer, the present analysis also applies to laminar82

boundary layers with pressure gradient.83

The only assumption in the following development is that the boundary layer is assumed84

to be self-similar. This is of course not the case for many PG flows since they are often not85

in dynamic equilibrium. Imposing self-similarity of the velocity moments is equivalent to86

assuming that the TBL is in a state of quasi-equilibrium. The next section will demonstrate87

under what conditions this assumption can be considered to approximately hold.88

In this work, the boundary layer thickness δ and the streamwise velocity Ue at the edge of89

the boundary layer are used to normalize the flow variables. The normalized flow variables90

are91

U∗(η) ≡ U(x, y)

Ue(x)
; V ∗(x/δ, η) ≡ V (x, y)

Ue(x)
; T ∗(x/δ, η) ≡ T (x, y)

U2
e (x)

; η ≡ y

δ(x)
. (4)

Assuming self-similarity for U∗ (V ∗ and T ∗ do not need to be assumed self-similar as92

the equations do not involve ∂V/∂x or ∂T/∂x), the normalized derivatives appearing in the93

governing equations are as listed in table I. Note that the assumed self-similarity U∗(η)94

does not contradict the classical self-similarity assumption [2, 3]: (Ue − U)/uτ = Û(η).95
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Self-similarity of the TBL requires uτ/Ue =constant [5, 11]. It follows that U/uτ = f(η)96

and hence U/Ue = U∗(η). Consequently, the present analysis recasts the continuity and97

momentum equations in different forms than in the classical similarity analysis, but it does98

not contradict it in any manner.99

∂U
∂x = −Ue

δ
dδ
dxη

∂U∗

∂η + dUe
dx U

∗, ∂U
∂y = Ue

δ
∂U∗

∂η ,
∂2U
∂y2

= Ue
δ2

∂2U∗

∂η2
.

∂V
∂y = Ue

δ
∂V ∗

∂η ,
∂T
∂y = U2

e
δ
∂T ∗

∂η .

TABLE I. Normalized derivatives in the governing equations.

Substituting the normalized derivatives, the non-dimensional continuity equation be-100

comes101

∂V ∗

∂η
=
dδ

dx
η
∂U∗

∂η
− δ

Ue

dUe
dx

U∗. (5)

Integrating this equation from the surface η = 0 to outside the boundary layer η = a (where102

a ≥ 1) yields103

Va
Ue

=
dδ

dx

δ1
δ

+
u2τ
U2
e

(
a
δ

δ1
− 1
)
β
RC
. (6)

Multiplying U2
e /u

2
τ on both sides of equation 6 yields104

UeVa
u2τ

=
δ1
δ

dδ

dx

U2
e

u2τ
+
(
a
δ

δ1
− 1
)
β
RC
. (7)

In many previous experiments, V is not measured. However, if dδ/dx can be extracted from105

measurements, equation 7 can be used to calculate UeVa/u
2
τ , indirectly.106

Substituting the normalized variables, the non-dimensional mean momentum equation in107

the streamwise direction becomes108

−U∗∂V
∗

∂η
+ V ∗

∂U∗

∂η
− ν

δUe

∂2U∗

∂η2
− ∂T ∗

∂η
+
δ

δ1

u2τ
U2
e

β
RC

= 0. (8)

Replacing ∂V ∗/∂η from the continuity equation 5, and integrating equation 8 from η = 0 to109

η = a yields110

−dδ
dx

(δ1
δ

+
δ2
δ

)
− 2

δ

δ1

(
a− δ1

δ
− δ2

δ

) u2τ
U2
e

β
RC

+
Va
Ue

+
u2τ
U2
e

+ a
δ

δ1

u2τ
U2
e

β
RC

= 0. (9)

Combining equations 6 and 9 yields a relation for Va111

UeVa
u2τ

= H +
(

1 + a
δ

δ1
+
δ1
δ2

)
β
RC
, (10)
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or112

UeVa = Hu2τ +
(

1 + a
δ

δ1
+
δ1
δ2

)
δ1

1

ρ

dP

dx
. (11)

At separation uτ = 0, and thus113

UeVa =
(

1 + a
δ

δ1
+
δ1
δ2

)
δ1

1

ρ

dP

dx
, or Va = −

(
1 + a

δ

δ1
+
δ1
δ2

)
δ1
dUe
dx

. (12)

Setting a = 1 in the above relations produces the scaling for the mean wall-normal velocity114

at the edge of the boundary layer, Ve.115

For zero-pressure gradient boundary layer flows where β
RC

= 0, equation 10 recovers the116

relation derived by Wei and Klewicki[1]117

U∞V∞
u2τ

= H. (13)

Equating the right hand sides of equations 7 and 10 yields118

Cf =
2 δ1
δ
dδ
dx

H + (2 +H)βRC
. (14)

For β
RC

>> 1, the experimental and numerical data below indicate that δ1/δ ≈ 0.5, H =119

δ1/δ2 ≈ 3 − 4 and dδ/dx ≈ 0.08 − 0.24. Thus, at large β
RC

the friction coefficient can be120

approximated by121

Cf ≈
2 δ1
δ
dδ
dx

2 +H

1

β
RC

≈ 0.01 ∼ 0.03

β
RC

. (15)

To our knowledge, the above analytical relations are new. Before comparing them with122

data, a few remarks are warranted. First, it should be noted that Cf and β
RC

are also linked123

by virtue of their definitions (see eq. 1):124

Cf = −2δ1
Ue

dUe
dx

1

β
RC

. (16)

However, in this case the external flow parameters, namely the external velocity and its125

streamwise derivative, appear explicitly. In contrast, equation 14 solely involves parameters126

that are directly related to the structure of the boundary layer. Arguably, these parameters127

better reflect the state of the boundary layer, since the boundary layer does not respond128

instantly to pressure gradient variations. Consequently, we are able to obtain the approxi-129

mation at large β
RC

given by equation 15.130

It is also interesting to observe that the approximations that led to equation 15 can be131

linked to the similarity analyses of turbulent boundary layers as developed by Rotta[2, 5]132
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and Maciel et al.[11]. In the latter analyses, self-similarity implies that133

dδ

dx
= const, H = const,

δ1
δ

= const. (17)

To our knowledge, equilibrium TBLs represent the only case where these parameters are134

known to be constant.135

Self-similarity also implies136

Λ = − δ

Ue

(
dδ

dx

)−1
dUe
dx

= const. (18)

Combining equations 16 and 18 yields a relation for Cf similar to equation 15,137

Cf = Λ
2δ1
δ

dδ

dx

1

β
RC

. (19)

Comparison of equations 15 and 19 results in a relation for self-similar TBLs at large β
RC

138

Λ ≈ 1

2 +H
≈ 0.17 ∼ 0.25. (20)

In equation 20 it is assumed that 2 ≤ H ≤ 4. This range of values of Λ indeed corresponds139

to the values usually found in the case of large-defect self-similar TBLs [11].140

Finally, combining equations 14 and 19 yields an exact relation valid for all self-similar141

TBLs142

Λ =
β
RC

H + (2 +H)β
RC

. (21)

Note that a relation equivalent to equation 21 has been obtained by Rotta [5], but with143

uτ/Ue ∗ G instead of H, and ∆ instead of δ. Skote, Henningson and Henkes [17] presented144

the relation with δ1 instead of δ.145

III. COMPARISONS WITH NUMERICAL AND EXPERIMENTAL DATA146

The analytical relations developed are now compared with experimental and numerical147

simulation data of APG TBLs. Experiments include those by Angele and Muhammad-148

Klingmann (AM)[12], Indinger [9], Knopp et al.[18], Maciel et al.[11], Marusic and Perry149

(MP)[10], Shafiei Mayam[19] and Skare and Krogstad (SK)[20]. In the case of numerical150

simulations, we use the DNS data of Gungor et al. (GMSS)[21], Skote and Henningson151

(SH)[22], Spalart and Watmuff (SW)[23], and the LES data of Hickel [13]. All these flows152

are non-equilibrium TBLs whose mean velocity defect increases in the streamwise direction.153
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In the case of Skare and Krogstad [20], the last seven streamwise positions out of twelve are154

in a zone of near equilibrium, with almost self-similar mean velocity and Reynolds stress155

profiles. Hickel’s LES [13] is an attempt to numerically reproduce the flow case of Indinger156

[9]. These two flows are therefore similar and represent a strongly decelerated situation with157

massive separation downstream. The other flows constitute different dynamical evolutions158

of the mean momentum balance.159

Since δ/δ1, H, and dδ/dx are the parameters in the derived relations for Ve and Cf ,160

we first present experimental and numerical data of these parameters as a function of β
RC

.161

Figure 2 shows that, as expected, (1) δ
δ1

decreases, monotonically, from a value of about162

10 to about 2 at very large β
RC

, and (2) H increases, monotonically, from a value of about163

1.3− 1.4 to about 3.5− 4. An interesting point is that both δ
δ1

and H vary slowly with β
RC

164

for β
RC

> 100. Moreover, their variations lead to S = 1 + δ
δ1

+ H ≈ 6 for β
RC

> 10. S165

appears in equation 10 for Ve (setting a = 1).166

0 100 200 300 400 500

β
RC

0

2

4

6

8

10

Green:
δ
δ1

Red: H=
δ1
δ2

Black: 1 + δ
δ1

+ δ1
δ2

AM

Hickel

Indinger

Knopp et al.

GMSS

MP

Mayam

MRL

SK

SH

0 5 10 15 20 25
1
2
3
4
5
6
7
8
9

10

FIG. 2. Ratio of boundary layer thicknesses. See text for references.

With the exception of the last seven streamwise positions of SK [20] (the ones with167

β
RC
≈ 20), all the other flows and flow zones are not in equilibrium. Thus, for these cases it168

is not surprising that δ
δ1

and H evolve differently with β
RC

from one flow to another, as these169

flows are subject to different upstream history effects[24]. Moreover, the differences between170
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APG TBLs can be accentuated by Reynolds number effects since the Reynolds number is171

relatively low for some databases, e.g., the DNS of SH [22] where Reτ ≈ 100. Finally, it172

is worth pointing out that in most experiments the integral length scales, δ1 and δ2, can173

usually be obtained accurately while the uncertainty of δ is much larger[25].174

Figure 3 shows the dependence of the boundary layer growth rate dδ/dx on β
RC

. Central175

finite difference was used to calculate dδ/dx. In many experiments, the distance between176

x−stations is not small, so it is unavoidable that the calculated dδ/dx has fairly high un-177

certainty. Nonetheless, it is reasonable to state that at sufficiently large β
RC

, dδ/dx varies178

slowly with β
RC

. It becomes nearly constant with values in the range 0.08 − 0.24. More179

data are, however, needed to verify this. The different values of dδ/dx for a given β
RC

180

are expected since dδ/dx is strongly dependent on the upstream and local strength of the181

deceleration/acceleration, as well as the Reynolds number.182

0 50 100 150 200 250 300 350 400

β
RC

0.00

0.05

0.10

0.15

0.20

d
δ/
d
x

Hickel

Indinger

Knopp et al.

GMSS

SK
0 5 10 15 20 25 30 35 40

0.00

0.05

0.10

0.15

0.20

FIG. 3. Growth rate of boundary layer thickness, dδ/dx, as a function of βRC .

Figure 4 plots experimentally and numerically determined skin friction coefficient data for183

varying β
RC

. The various flows follow different trends of decreasing Cf with β
RC

. Again, this184

is expected because of the different streamwise evolutions of these non-equilibrium TBLs,185

and because of their different Reynolds numbers. Nonetheless, figure 4a shows that the data186

agree well with the approximate trend predicted by equation 15 for large β
RC

. It should be187
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FIG. 4. (a) Skin friction coefficient in APG TBLs as a function of βRC . (b) Compare analytical

relation 14, Cf =
2
δ1
δ
dδ
dx

H+(2+H)βRC
, with experimental and numerical data.

noted that experiments with values of β
RC

larger than 50 are rare. They include AM [12],188

Indinger [9] and, for the same flow, Maciel et al.[26] and Shafiei Mayam [19]. The DNS of189

GMSS [21] and the LES of Hickel [13] cover a wider range of β
RC

, including a region with a190

separation bubble.191

The left and right hand sides of equation 14 are compared in figure 4b for data sets that192

allow dδ/dx to be reasonably estimated. Not surprisingly, equation 14, which assumes self-193

similarity, works essentially perfectly for SK flow (open and filled symbols overlap) since it is194

in quasi-equilibrium. However, even in the case of the four other flows that are all in strong195

disequilibrium, both sides of the equation follow similar trends. Equation 14 is therefore196

seen to be a reasonable approximate relation between Cf and β
RC

even for non-equilibrium197

TBLs, at least in the case of a decelerating Ue.198

The left and right hand sides of equations 7 and 10 are compared with numerical and199

experimental data in figure 5. Experimental data of V for APG TBLs are very rare due to200

the challenges involved in its measurement. Maciel and collaborators have measured V in201

the case of a strongly decelerated TBL covering a wide range of β
RC

[19, 26]. In compari-202

son, numerical simulations provide detailed data on all velocity components, including V .203

However, numerical simulations are in general limited to low to moderate Reynolds numbers.204

Figure 5 shows that UeVe/u
2
τ and the right hand sides of equations 7 and 10 grow approx-205

imately linearly with β
RC

, even for the cases having β
RC

< 10. Yet, in the latter cases, δ
δ1

,206
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H and dδ/dx vary greatly with β
RC

. The only exception to this near linear growth occurs207

for the LES data of Hickel with UeVe/u
2
τ (green line) and the right hand side of equation 7208

(dash-dot green line). An explanation has not yet been found for these different behaviors.209

The smaller differences between UeVe/u
2
τ and the right hand sides of equations 7 and 10 may210

be due to the difficulties in obtaining accurate estimates of δ and, in the case of experiments,211

to measurement uncertainties of Ve, uτ and β
RC

.212

0 10 20 30 40 50 60 70 80

β
RC

0

100

200

300

400

500

Filled: U +
e V +

e

Open: H+ (1 + δ/δ1 +H)β
RC

GMSS

Hickel

Mayam

MRL

SH

SW
1. 4 + 6β

RC

0 2 4 6 8 10

0

20

40

60

80

FIG. 5. Comparing analytical relations 7 and 10 with numerical and experimental data. Filled

symbols and solid lines: UeVe/u
2
τ ; Open symbols and dash lines: H + (1 + δ/δ1 +H)βRC . Dash-dot

lines: right hand side of equation 7; Red dash line: 1.4 + 6βRC . See text for references.

IV. CONCLUSION213

In this work, APG flows are investigated using a new similarity/integral analysis of the214

continuity and mean momentum equations. Analytical relations are derived for the mean215

wall-normal velocity at the edge of the boundary layer and for the skin friction coefficient.216

This approach allows one to determine how these parameters evolve with the Rotta-Clauser217

pressure gradient parameter. To the authors knowledge, these analytical relations are new.218

The equation relating skin friction to the Rotta-Clauser pressure gradient parameter is of219
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particular interest. Specifically, the analysis yields an equation that indicates how structural220

parameters of the boundary layer affect the dependence of skin friction on the Rotta-Clauser221

pressure gradient parameter. Although the equation is only approximate for non-equilibrium222

flows, we have shown that the trends are nonetheless well captured by it in the case of223

decelerating turbulent boundary layers. Furthermore, thanks to this new analytical relation,224

a simple approximate relation is found between the skin friction coefficient and the Rotta-225

Clauser parameter for large values of the latter. New relations for self-similar turbulent226

boundary layers are developed. These explain, for example, the non-dimensional growth227

rates usually found in experiments at large β
RC

. Finally, the new relation for the mean wall-228

normal velocity is of interest since pressure gradients (especially adverse) rather strongly229

modify boundary layer growth.230

Like all other theoretical analyses of PG TBLs, the present analysis assumes local dynamic231

equilibrium of the flow. Thus, the relations developed cannot account for upstream effects232

of the pressure gradient, curvature and transition. Not surprisingly, the results presented in233

this paper suggest that ratios of boundary layer thicknesses, boundary layer growth and skin234

friction are affected by upstream history effects, at least for moderate values of the pressure235

gradient parameter. Upstream history effects cannot, however, be isolated from Reynolds236

number effects with the datasets available in the literature. An important contribution237

would be to design and conduct future experiments capable of isolating these effects.238
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