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This paper describes a study of the self-sustaining process in wall-turbulence. The study is based
on a second order statistical state dynamics model of Couette flow in which the state variables are
the streamwise mean flow (first cumulant) and perturbation covariance (second cumulant). This
statistical state dynamics model is closed by either setting the third cumulant to zero or by replacing
it with a stochastic parameterization. Statistical state dynamics models with this form are referred
to as S3T models. S3T models have been shown to self-sustain turbulence with a mean flow and
second order perturbation structure similar to that obtained by direct numerical simulation of the
equations of motion. The use of a statistical state dynamics model to study the physical mecha-
nisms underlying turbulence has important advantages over the traditional approach of studying the
dynamics of individual realizations of turbulence. One advantage is that the analytical structure
of S3T statistical state dynamics models isolates the interaction between the mean flow and the
perturbation components of the turbulence. Isolation of the interaction between these components
reveals how this interaction underlies both the maintenance of the turbulence variance by transfer
of energy from the externally driven flow to the perturbation components as well as the enforcement
of the observed statistical mean turbulent state by feedback regulation between the mean and per-
turbation fields. Another advantage of studying turbulence using statistical state dynamics models
of S3T form is that the analytical structure of S3T turbulence can be completely characterized. For
example, the perturbation component of turbulence in the S3T system is demonstrably maintained
by a parametric perturbation growth mechanism in which fluctuation of the mean flow maintains
the perturbation field which in turn maintains the mean flow fluctuations in a synergistic interaction.
Furthermore, the equilibrium statistical state of S3T turbulence can be demonstrated to be enforced
by feedback regulation in which transient growth of the perturbations episodically suppresses streak
growth preventing runaway parametric growth of the perturbation component. Using S3T to iso-
late the parametric growth and feedback regulation mechanisms allows a detailed characterization
of the dynamics of the self-sustaining process in S3T turbulence with compelling implications for
advancing understanding of wall-turbulence.

I. INTRODUCTION

In this work the mechanisms sustaining and regulating
wall-turbulence are studied. Understanding how the tur-
bulent state is sustained against dissipation requires iden-
tifying the mechanism by which energy is systematically
transferred from the externally driven flow to the tur-
bulent fluctuations in the absence of fast inflectional in-
stability of the mean velocity profile. Understanding how
the turbulence is enforced to assume the observed statisti-
cal structure requires also understanding the mechanism
by which interaction between the mean and perturba-
tion fields establishes and enforces this observed statisti-
cal state.
The ubiquitous roll-streak structure, which was first

identified in the buffer layer [1], is known to play a key
role in the dynamics of wall-turbulence. While the roll-
streak structure is stable in plane wall-bounded flows, it
produces robust energy transfer from the mean shear flow
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to the perturbation field when an optimally configured
perturbation is excited [2, 3]. This growth results from
a streamwise roll circulation giving rise to a streamwise
streak through the lift-up mechanism [4]. What is not un-
derstood is how this mechanism is maintained in the ab-
sence of a linear instability. An early proposed resolution
of this conundrum was that these structures participate
in a regeneration cycle in which new streaks arise from
perturbations the origin of which is ascribed to the break-
up of previously formed streaks [5, 6]. This proposed cy-
cle can be viewed as a nonlinear instability mechanism
in which turbulence is sustained by energy transfer from
the externally forced shear to the perturbation field due
to the linear non-normal lift-up growth processes while
this non-normal growth is in turn sustained nonlinearly
through the continual re-emergence from streak break-
down debris of perturbations configured to excite sub-
sequent roll-streak structures. Alternative mechanisms
by which perturbation nonlinearity could sustain tran-
sient growth of the roll-streak structure have been the
subject of study since this nonlinear basis of the instabil-
ity maintaining wall-turbulence was postulated. Here we
refer to these mechanisms collectively as self-sustaining
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processes.

An alternative to the regeneration cycle class of self-
sustaining process is based on spanwise inflection of the
streak velocity profile giving rise to an unstable, or at
statistical equilibrium a neutral, eigenmode. In this class
of self-sustaining process Reynolds stresses arising from
this eigenmode sustain the roll circulation [7–10]. How-
ever, subsequent work indicated that streaks are often
too weak to be unstable and an alternative self-sustaining
process was postulated in which transient growth rather
than modal instability maintains the perturbations that
force the roll [11]. An advantage of the transient growth
self-sustaining process is that the optimal perturbations
maximally exploit the energy of the wall-normal shear in
addition to the spanwise shear that primarily supports
the inflectional instability. In fact, the most rapidly
growing perturbations in shear flow are oblique waves
which optimally exploit, by lift-up, the large reservoir
of energy in the wall-normal shear [12]. Moreover, the
Reynolds stresses arising in association with these opti-
mally growing oblique waves have been shown to give
rise to the strong systematic forcing of the roll circu-
lations required to maintain the streak [13] and consis-
tently, oblique waves are commonly observed to accom-
pany streaks in wall-turbulence [11].

Insight into the self-sustaining process was advanced by
recent work in which it was shown that roll-streak forma-
tion is not confined to the boundary layer as had been
previously established [8, 14, 15] but is operating simi-
larly throughout the shear flow [16–19]. This suggests
a universal underlying self-sustaining process mechanism
in shear flow that is not scale selective. Such a mecha-
nism was identified to be the streak amplification process
resulting from the organization of supporting roll circula-
tion by perturbation scale turbulence [13]. Because this
universal mechanism is not scale selective, scale restric-
tion, such as that imposed by Hwang and Cossu [17–
19], need only include scales nearby the scales of the se-
lected roll-streak in order to include the oblique waves
and associated adjoint perturbations which support the
self-sustaining process at a selected roll-streak scale.

While these various self-sustaining process mechanisms
address the question of how the roll-streak structure
might be nonlinearly destabilized, they leave open the
question of how this instability is regulated to zero mean
growth and more generally how the turbulence is en-
forced to assume the observed statistical equilibrium
state. Both of these questions can be addressed using a
statistical state dynamics model [13, 20]. While analyz-
ing complex spatially and temporally varying fields aris-
ing in observations and simulations of turbulent systems
using statistical quantities is common practice, it is less
common to adopt statistical variables directly as the vari-
ables for expressing the dynamics of the turbulent system.
An early attempt to exploit the potential of employing
statistical state dynamics to provide insight into turbu-
lence involved formal expansion and closure of the Navier-
Stokes equations in cumulants [21–23]. The cumulant

method was subsequently restricted in application in part
due to the difficulty of obtaining robust closure of the ex-
pansion when it was applied to isotropic homogeneous
turbulence. Surprisingly, while the assumed vanishing of
the first cumulant in isotropic homogeneous turbulence
would appear to simplify the dynamics, subsequent expe-
rience in solving statistical state dynamics models in the
cases of anisotropic two dimensional beta-plane turbu-
lence [24–27] and turbulent convection [28, 29] revealed
that closures retaining nontrivial expressions for the first
and in addition only the second cumulant comprise the
entire essential dynamics of the turbulence. For example,
statistical state dynamics of beta-plane turbulence closed
at second order while retaining the streamwise mean as
the first order cumulant predicts the equilibrium state
of this turbulence to be an analytical solution (in the
form of a fixed point) of the statistical state dynamics
including the remarkable spontaneous formation of jets
with the observed structure containing as much as 90%
of the kinetic energy of the flow [24–26, 30–34]. In ret-
rospect, precedence for such a program was provided by
the work of Herring [28, 29] in his study of the statisti-
cal equilibrium of turbulent convection. The approach of
using second order statistical state dynamics to obtain
the statistical equilibrium state of turbulent convection
has its roots in Malkus’s theory in which the statisti-
cal state was sought as the fixed point equilibrium be-
tween the mean thermal structure and the turbulent heat
fluxes [35, 36]. The success of this program in providing
an explanation for the statistical mean state of turbulent
convection was aided by the underlying instability being
a temporal normal mode which could be equilibrated by
second order thermal fluxes (obtained from the second cu-
mulant) modifying the time-independent thermal struc-
ture of the mean state (obtained from the first cumulant)
to stability. The successful application of statistical state
dynamics to turbulent convection encouraged a program
of applying the statistical state dynamics approach to un-
derstand the dynamics of anisotropic 3D wall-bounded
turbulence. However, attempts to extend the program of
Malkus to obtain the equilibrium state of wall-turbulence
as the fixed point of a second order closure of the sta-
tistical state dynamics did not succeed [37]. From the
point of view presented in this work the concept of ap-
plying the program of Malkus [38] to wall turbulence was
essentially correct requiring only the additional recogni-
tion that the instability to be equilibrated is the insta-
bility of the time-dependent operator associated with lin-
earization about the temporally varying streamwise mean
flow. In contrast, the program of Malkus and its varia-
tions was predicated on stabilizing the temporal modal
instability associated with linearization about the time-
independent mean flow. With the additional insight that
the instability maintaining the perturbation variance in
shear flow turbulence is parametric the equilibrium tur-
bulent state is understood to result from quasi-linear
adjustment of the time-dependent mean flow to neutral
parametric growth rate of its most unstable structure or
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structures. The growth rate of these temporally varying
structures is given by the maximal Lyapunov exponent
of the perturbation covariance equation (this growth rate
is necessarily zero given that the turbulence statistics are
stationary).

As remarked by Herring [28] second order closures of
the statistical state dynamics are necessarily quasi-linear.
SSD models that use a finite ensemble approximation to
estimate the second cumulant in the statistical state dy-
namics of the Navier–Stokes equations are consistently
also quasi-linear and we refer to such systems as RNLN

systems (restricted nonlinear systems of order N). The
simplest RNLN system is the RNL1 system which con-
sists of the streamwise mean equations forced by the
Reynolds stresses obtained from the perturbation covari-
ance formed using a single realization of the perturba-
tion dynamics. While the dynamics of the RNL1 system
is formally equivalent to that of a quasi-linear system
consisting of a mean flow and a realization of the per-
turbation dynamics, RNLN systems for N > 1 can only
be regarded as approximation to the second order statis-
tical state dynamics. Consistently, we regard our state
variables to be the mean flow and the covariance of the
perturbations (the first and second cumulants) regardless
of how many ensemble members are used to approximate
the covariance.

As N increases RNLN systems approach S3T dynam-
ics, which is a closure of the statistical state dynamics at
second order in which an equivalently infinite ensemble
is solved for by using a time dependent Lyapunov equa-
tion [30]. The S3T system is closed by either setting the
third cumulant to zero or by replacing it with a stochas-
tic parameterization. Because S3T dynamics is recovered
in the limit N → ∞ we can identify solutions of RNL∞

systems with S3T. While the use in S3T dynamics of a
time-dependent Lyapunov equation to advance the per-
turbation covariance in time allows direct solution for
the second cumulant corresponding to the covariance ob-
tained from a formally infinite ensemble, the great advan-
tage of RNLN systems is in allowing extension of second
order S3T statistical state dynamics methods to study
turbulence at high Reynolds number [16, 39, 40].

The self-sustaining process operating in the S3T sys-
tem is similar in some ways to previously proposed self-
sustaining processes in that a quasi-linear interaction oc-
curs between perturbations and the mean flow to main-
tain the roll which in turn forces the streak complet-
ing the cycle of nonlinear instability [13]. For exam-
ple, the self-sustaining process of Waleffe [9] and vortex-
wave interaction process of Hall & Sherwin and collabora-
tors [10, 41, 42] are also quasi-linear, although this quasi-
linearity is imposed by construction rather than resulting
from a closure. In the self-sustaining process of Waleffe
and that of vortex-wave interaction a single unstable or
neutral inflectional mode interacts with the mean flow to
transfer energy from the streak to maintain the roll. In
contrast, in S3T the streamwise mean flow interacts with
a broad spectrum of background turbulence in producing

the energy transfer that maintains the roll by a fundamen-
tally non-modal process. Moreover, unlike previously pro-
posed modal instability-based mechanisms or transient
growth-based mechanisms [11, 43], the growing perturba-
tions sustaining S3T turbulence result from parametric
instability of the time-dependent streak [13]. Paramet-
ric instability is generally associated with its application
to the study of the stability of a periodically modulated
system (cf. Drazin & Reid [44], section 48). We widen
application of this term to refer to any linear instability
that is inherently caused by the time dependence of the
system. The reason we have adopted the same word to
describe the instability of periodic and non-periodic flows
is that the same non-normality based instability mecha-
nism operates in both cases [45, 46]. Moreover, analysis
reveals that this parametric instability mechanism desta-
bilizes all linear time-dependent dynamical systems that
fluctuate with sufficiently high amplitude [46]. This in-
stability almost surely manifests asymptotically in time
in dominance of the perturbation dynamics by the struc-
ture of the top Lyapunov vector (or vectors in the case
of degeneracy) of the associated time dependent linear
dynamical operator [45, 47, 48].

In previous work we identified the parametric instabil-
ity mechanism underlying maintenance of the perturba-
tion variance in S3T Couette turbulence [13, 49]. We also
noted its association with the theory of the instability of
stochastic time-dependent linear dynamical systems. It
follows from this theory that the perturbation dynamics
can be decomposed into a basis of Lyapunov vectors each
characterized by a Lyapunov exponent [47, 48]. Time
dependent systems are non-normal with measure zero
exception [45, 46] and there is an analogy between the
Lyapunov vectors of a time dependent dynamical sys-
tem and the familiar example of the eigenvectors of a
time independent non-normal linear system. In both of
these cases the dynamics can be expressed using a ba-
sis of eigenvectors each characterized by the exponential
growth rate of its associated eigenvalue. This analogy
suggests a program of exploiting the known analytical
Lyapunov structure of the parametric stability of random
time-dependent dynamical systems to gain insight into
the dynamics of the perturbation component of the tur-
bulence and particularly the mechanism that maintains it.
Heretofore this perturbation component has been gener-
ally thought of as resulting from random transient growth
events and scattering by perturbation-perturbation non-
linearity. Characterization of the perturbation compo-
nent of the turbulence in terms of Lyapunov vectors of-
fers the possibility of understanding the maintenance and
structure of the perturbation component of turbulence in
wall-bounded shear flows more precisely. A realistic tur-
bulence exists naturally in the S3T self-sustaining state
for Couette flow in which only the first Lyapunov vector
is supported [13, 16, 40, 50] providing complete char-
acterization of this turbulence. The closest analogue to
the eigenvectors of a time independent non-normal oper-
ator are the Lyapunov vectors of Oseledets [47], which
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are referred to as the confluent Lyapunov vectors (CLV)
[51–54]. However, as we are interested primarily in per-
turbation energetics it suffices for our purposes to work
with the more easily calculated set of related Lyapunov
vectors introduced by Lorenz [48]. These Lyapunov vec-
tors (LV’s) correspond to orthogonalization of the CLV’s
in the energy norm. The LV’s span the same perturba-
tion state space and have the same Lyapunov exponents
as the CLV’s but they have been rotated in the spanned
space so as to be orthogonal in the energy norm. The
relation between the CLV’s and the LV’s is further dis-
cussed in Appendix A.

In this work we isolate the instability mechanism sup-
porting the perturbation structure from the turbulence
dynamics by obtaining the time-dependent mean flow
from a self-sustaining S3T turbulence and using this time
dependent mean flow to force the instability of a com-
pletely separate perturbation dynamics that has been
randomly initialized. This program is analogous to tak-
ing an inflectional streak from an observation of a station-
ary shear flow and calculating the most unstable tem-
poral normal mode on this streak: one would predict
the form of the perturbation structure to be that of the
fastest growing mode. In complete analogy we can pre-
dict the structure of the turbulent perturbations in this
S3T Couette turbulence to be that of the first Lyapunov
vector perturbation on the corresponding time-dependent
mean flow. Having obtained the structure of the pertur-
bation component of this simplified turbulence we then
proceed to characterize it in terms of its energetics and
mechanism of growth. Having obtained complete char-
acterization of this simplified turbulence supported by
only the first Lyapunov vector we then proceed to study
the energetics of the remaining Lyapunov vectors which,
although damped in this simple model with no param-
eterized nonlinearity, are expected to be maintained at
finite amplitude by scattering arising from perturbation
nonlinearity when a parameterization for nonlinearity is
included. The result of implementing such a parameter-
ization for perturbation–perturbation nonlinearity is the
prediction that the remaining Lyapunov vectors are ro-
bustly supported by direct energetic interaction with the
time dependent mean flow. The implication of this re-
sult is contrary to the idea that the perturbation vari-
ance in turbulent shear flow results from a cascade or
from random transient growth events suggesting rather
that spectrally nonlocal interaction with the fluctuating
mean flow constitutes a primary mechanism for main-
taining the perturbation variance. Consistently, we show
that these analytically characterized Lyapunov vectors
together comprise the dominant support for the pertur-
bation variance structure. Having understood the pertur-
bation dynamics in isolation we next proceed to recouple
the mean and perturbation systems to recover the com-
plete S3T turbulence dynamics and use this system to
study the feedback control mechanism that regulates the
turbulence to its statistical steady state.

II. THE S3T STATISTICAL STATE DYNAMICS

MODEL

Consider plane Couette flow between walls with veloci-
ties ±Uw. The streamwise direction is x, the wall-normal
direction is y, and the spanwise direction is z. Lengths
are non-dimensionalized by the channel half-width, δ,
and velocities by Uw, so that the Reynolds number is
Re = Uwδ/ν, with ν the coefficient of kinematic viscos-
ity. We take for our example a doubly periodic channel
of non-dimensional length Lx in the streamwise direction
and Lz in the spanwise.

The velocity field is decomposed into a streamwise
mean, U , with components, (U, V,W ), and perturbation
from this mean, u, with components (u, v, w). The pres-
sure is similarly decomposed into its streamwise mean,
P , and perturbation from this mean, p. The non-
dimensional Navier-Stokes equations decomposed into an
equation for the streamwise mean and an equation for the
perturbation are:

∂tU +U · ∇U +∇P −∆U/R = − [u · ∇u]x , (1a)

∂tu+U · ∇u+ u · ∇U +∇p−∆u/R = N , (1b)

∇ ·U = 0 , ∇ · u = 0 , (1c)

where N ≡ [u · ∇u]x−u ·∇u is the contribution to per-
turbation dynamics from the perturbation-perturbation
interactions. Square brackets denote an average over the
variable that appears as subscript, e.g.

[ · ]x ≡ L−1

x

∫ Lx

0

· dx , (2)

is a streamwise average and [ · ]x,z a streamwise and span-
wise average. The velocities satisfy periodic boundary
conditions in the z and x directions and no-slip boundary
conditions in the wall-normal direction: U(x,±1, z, t) =
(±1, 0, 0), u(x,±1, z, t) = 0.

The statistical state dynamics of (1) is closed at second
order by parameterizing the perturbation–perturbation
interactions, N , as a nondivergent stochastic excitation
and associated dissipation, G, chosen to satisfy at every
time instant:

[u · G]x,y,z = 0 , (3)

consistent with the requirement that perturbation–
perturbation interactions redistribute energy among the
perturbation components without introducing any net en-
ergy into the perturbation field.

With this parameterization the Navier-Stokes equa-
tions are reduced to this quasi-linear equation set:

∂tU +U · ∇U +∇P −∆U/R = − [u · ∇u]x , (4a)

∂tu+U · ∇u+ u · ∇U +∇p−∆u/R = G . (4b)

If the perturbation covariance obtained from this quasi-
linear RNL1 system is regarded as an approximation to
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the second cumulant an approximate closure of the re-
lated second order SSD is obtained. This closure sup-
ports realistic turbulence and has proven useful in study-
ing turbulence dynamics [40, 49, 50]. An N -member en-
semble of independent perturbation systems of form (4b)
sharing the same mean flow U solving (4a) provides an
approximation to the statistical state dynamics of the
S3T system referred to as RNLN [20].

It is convenient to use the non-divergence of the mean
flow to express the mean dynamics (4a) in terms of the
mean streamwise velocity, U , and a mean spanwise/wall-
normal velocity streamfunction, Ψ. In these vari-
ables (4a) is equivalent to

∂tU = UyΨz − UzΨy − ∂y [uv]x − ∂z [uw]x +∆1U/R,

(5a)

∂t∆1Ψ = (∂2

y − ∂2

z ) (ΨyΨz − [vw]x)

− ∂yz
(

Ψ2

y −Ψ2

z +
[

w2
]

x
−
[

v2
]

x

)

+∆1∆1Ψ/R, (5b)

with ∆1 ≡ ∂2

y + ∂2

z and the mean wall-normaland span-
wise velocities are given by V = −Ψz and W = Ψy re-
spectively. Subscripts in flow fields denote differentiation
in the variable indicated by the subscript.

Nondivergence of the perturbation velocity field is used
to eliminate the pressure from the perturbation equa-
tions (4b) by transforming the perturbation dynamics
into the variables wall-normal velocity v and wall-normal
vorticity, η ≡ uz − wx. In these variables equations (4b),
upon neglect of the advection of the perturbations by the
smaller magnitude V and W velocities (i.e. by neglect-
ing terms V ∂yu, W∂zu, u · ∇V , and u · ∇W in (4b)),
assume the convenient form:

∂t∆v + U∆vx + Uzzvx + 2Uzvxz − Uyyvx − 2Uzwxy

− 2Uyzwx −∆∆v/R = Gv , (6a)

∂tη + Uηx − Uzvy + Uyzv + Uyvz + Uzzw −∆η/R =

= Gη, (6b)

where Gv and Gη is the parameterization of the
perturbation-perturbation interactions in these variables.

We next Fourier expand the perturbation fields and
the stochastic excitation fields in x, e.g:

v = Re
[

∑

k>0

v̂k(y, z, t) e
ikx

]

,

where Re denotes the real part, and then write the equa-
tions (6) for the evolution of the Fourier components of
the perturbations in matrix form:

dφ̃k

dt
= Ãk(U)φ̃k + F̃kξ(t)− rφ̃k , (7)

where the state of the system φ̃k = [v̂k, η̂k]
T comprises

the values of the v̂k and η̂k on the N = NyNz grid points
of the (y, z) plane. The Fourier amplitudes of the per-
turbation fields satisfy periodic boundary conditions in x

and z and v̂k = ∂y v̂k = η̂k = 0 at y = ±1. The matrix Ãk

is the discretized Orr–Sommerfeld and Squire operator
for perturbations with x-wavenumber k evolving about
the instantaneous mean streamwise flow U(y, z, t) [13, 55].

We have parameterized G, as F̃kξ(t)−rφ̃k where F̃k is the
2N × 2N matrix determining the spatial structure of the
stochastic excitation, r is a linear dissipation coefficient
and ξ a 2N vector of independent zero-mean stochastic
processes satisfying:

〈ξ(t1)ξ(t2)
†〉 = δ(t1 − t2) I , (8)

where I is the 2N -identity matrix and † denotes the Her-
mitian transpose. The spatial structures of the forcing,
F̃k, do not affect the dynamics so long as the set F̃k

forms a complete basis for the forcing in the y − z plane
[56]. The forcing is chosen to be white in energy and is
expressed using the complete basis consisting of Fourier
modes in z and the eigenmodes of the Orr–Sommerfeld
and Squire operator in y. The specific choice of the basis
was made in order to satisfy the boundary conditions.

The energy density of the perturbations is given by

E = φ̃†
kMkφ̃k, where Mk is the energy metric. It is con-

venient to consider the perturbation dynamics (7) trans-

formed to generalized velocity coordinates φk = M
1/2
k φ̃k,

so that energy is given by the L2 norm E = φ†
kφk.

The perturbation dynamics in generalized velocity coor-
dinates are governed by:

dφk

dt
= Ak(U)φk + Fkξ(t)− rφk , (9)

where Ak = M
1/2
k ÃkM

−1/2
k and Fk = M

1/2
k F̃k. The

linear dissipation rate r is chosen so that no net energy
is introduced by the stochastic excitation consistent with
condition (3) being satisfied at each time instant (and at
every k). Delta correlation in time also implies that the
mean energy input by the excitation is independent of
the flow state.

The parameterization for perturbation-pertubation
nonlinearity, G, is highly simplified in order to probe
the perturbation dynamics in the least ambiguous man-
ner. First, this parameterization introduces no energy so
any perturbation variance is clearly not being supported
by the excitation itself as would be the case e.g. for
a stochastically forced pendulum. Second, this parame-
terization excites each degree of freedom equally so no
structural bias is introduced into the energetics as would
be the case e.g. a scale dependent excitation were used.
If the dynamics were normal and stable no perturbation
variance would be maintained by this parameterization.
Any variance maintained by this parameterization in the
case of a non-normal operator arises from induced trans-
fer of energy from the mean flow to the perturbations
rather than from the excitation itself. This parameteriza-
tion isolates the proposed mechanism for maintaining per-
turbation variance in wall turbulence: parametric trans-
fer directly from the mean flow to the perturbation field
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and in particular primarily to the Lyapunov structures.
For an equation of form (9) the ensemble average per-

turbation covariance, Ck = 〈φkφ
†
k〉, can be verified to

evolve according to the time-dependent Lyapunov equa-
tion:

dCk

dt
= Ak(U)Ck +Ck A

†
k(U) +Qk − rCk , (10)

in which: Qk = FkF
†
k [30, 57]. The required linear damp-

ing is

r =

∑

k Tr(Qk)
∑

k Tr(Ck)
, (11)

with Tr( · ) denoting the trace,
∑

k Tr(Ck) the total per-
turbation energy and

∑

k Tr(Qk) the net energy input
rate to all wavenumbers by the stochastic excitation.
With this choice for the linear damping the net energy
input rate is equal to the perturbation energy dissipation
rate at each time instant and no net energy is input to the
perturbation field. A similar parameterization was previ-
ously used to close a statistical state dynamics model of
baroclinic turbulence [31].
The linear equation (10) can be interpreted as the

transport equation for the turbulent Reynolds stresses
[58] with the first and second term on the RHS compris-
ing the linear terms expressing convection, generation,
destruction, redistribution and diffusion, while the third
and fourth term parameterizes the nonlinear component
of the diffusion and destruction.
Finally, we note that under the ergodic assumption

that streamwise averages are equal to ensemble averages
the Reynolds stress divergences appearing in the stream-
wise mean equations (5) can be expressed as a linear func-
tion of the ensemble average Ck obtained from the time-
dependent Lyapunov equation.
With the parameter choice of our example problem

S3T turbulence self-sustains by interaction between the
single perturbation structure with wavenumber k =
2π/Lx and the mean flow. Perturbations supported by
other streamwise wavenumbers that happen to be present
in an initial state can be verified to have negative Lya-
punov exponents and therefore damp out in the absence
of explicit excitation at these other wavenumbers and
are not retained in the solution [13, 16, 49]. Further, be-
cause in the S3T equations the streamwise wavenumber
perturbation–perturbation interactions are not retained
there is no mechanism by which energy can enter or be
maintained in streamwise wavenumbers other than the
wavenumbers that are either externally excited or nat-
urally maintained by the parametric mechanism, which
in our case is only k = 2π/Lx. Consequently, because
a single k is retained in the perturbation dynamics the
subscript on k in the velocity and excitation components
is dropped without ambiguity. The S3T system so re-
stricted self-sustains turbulence in minimal channel Cou-
ette flow even at R = 400 [13].
Summarizing, the S3T system we study consists of

mean equation (5) coupled with perturbation covariance
equation (10):

dΓ

dt
= G(Γ) + F(C) , (12a)

dC

dt
= A(U)C+CA†(U) +Q−

Tr(Q)

Tr(C)
C , (12b)

where Γ ≡ [U,Ψ]T is the vector of the variables of the
streamwise mean flow, G(Γ) expresses the time rate of
change of the streamwise mean flow due to self advec-
tion and dissipation, while the term F(C) produces the
Reynolds stress forcing of the mean equations from the
covariance of the perturbation field, C (see (5)). For fur-
ther details on the formulation see Ref. [13].
Results are presented for the minimal Couette flow

channel studied by Hamilton, Kim & Waleffe [8] with
streamwise length Lx = 1.75π and spanwise length Lz =
1.2π. We use R = 600 (instead of the minimal R = 400
used in Ref. [8]) in order to obtain turbulence statistics
without interruption by relaminarization events. For ex-
amples in which the retained perturbation streamwise
wavenumber, k = 2π/Lx, is stochastically excited this
is done using independent compact support wall-normal
velocity and vorticity structures in (y, z) chosen to inject
equal energy into every degree of freedom in the system as
described above. The resulting spatial forcing covariance,
Q, is spanwise homogeneous and is consistently taken to
be the identity matrix. Numerical calculations employ
Ny = 21 grid points in the wall-normal direction and
Nz = 30 grid points in the spanwise direction. A study of
S3T turbulence under similar conditions in various chan-
nel sizes were reported by Thomas et al. [49].

III. ISOLATING THE LINEAR DYNAMICS OF

THE SECOND ORDER CUMULANT

The unforced S3T equations:

dΓa

dt
= G(Γa) + F(Ca) , (13a)

dCa

dt
= A(Ua)Ca +Ca A

†(Ua) , (13b)

form a non-linear dynamical system that self-sustains
S3T turbulence [13, 16, 40, 49, 50]. The quasi-linear
structure of this system allows us to isolate the linear
dynamics of the incoherent component of the turbulence,
Cb:

dCb

dt
= A(Ub)Cb +Cb A

†(Ub) , (14)

where Ub(y, z, t) could be an arbitrary time-dependent
mean streamwise velocity but for our purposes is taken
to be the solution Ua(y, z, t) obtained from a sufficiently
long time series of a self-sustaining turbulence solv-
ing (13). With Ub chosen to be identical to the fluctuat-



7

1 2 3 4 5 6 7 8 9 10
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

FIG. 1: The first ten Lyapunov exponents of the dy-
namical operator A(Ua). The maximal Lyapunov expo-
nent is zero, consistent with Ua being the consistent time
dependent mean streamwise component supporting the
turbulent perturbation component of the combined tur-
bulent state.

ing mean flow, Ua, of the self-sustaining S3T turbulent
state, the time dependent linear equation (14) can be
verified to have exactly zero Lyapunov exponent and the
covariance, Cb, if randomly initialized can be verified to
asymptotically approach the rank 1 covariance produced
by the structure associated with this zero Lyapunov expo-
nent, which will be referred to as the first Lyapunov vec-
tor (cf. Appendix A). From the theory of time-dependent
linear dynamical systems we know that as t → ∞ the co-
variance can be decomposed into a basis of time depen-
dent Lyapunov vectors ordered in average growth rate by
their Lyapunov exponents [47, 48, 52] (cf. Appendix A).
This result obtained in the case of a time dependent lin-
ear dynamics is analogous to the more familiar case of
a time independent linear dynamics in which as t → ∞
the analogous covariance can be decomposed into a basis
of orthogonal time independent vectors which, with the
exception of the first, are not identical to the eigenvec-
tors of the associated time independent dynamical oper-
ator but are ordered in growth rate by the associated dy-
namical operator’s eigenmode growth rates. In both the
autonomous and non-autonomous case the covariance is
exponentially dominated by the most unstable of these
which has the structure of the most unstable Lyapunov
vector and eigenmode respectively.

Consider forcing the secondary perturbation dynam-
ics (14) to have the same time dependence as the pri-
mary self-sustaining S3T turbulent system (13) by set-
ting Ub = Ua in (14). The first question we address is
whether this coupling results in synchronization of the
perturbation fields. Under forcing by U ,the first 10 Lya-
punov exponents of a randomly initialized Cb, are shown
in Fig. 1. The maximal Lyapunov exponent of Cb as-
sumes the same zero value as that of Ca and both Ca

and Cb assume asymptotically the structure associated
with the same corresponding first Lyapunov vector. How-

0 1 2 3 4

104

10-15

10-10

10-5

100

FIG. 2: The approach towards synchronization mea-
sured by δ(t) occurs at twice the rate of the second Lya-
punov exponent of A(Ua), which is indicated with the
dashed line.

ever, Ca and Cb differ in amplitude (to the degree the
random initial state of Cb projects on the first Lyapunov
vector). Therefore it is required to use as a synchroniza-
tion condition convergence of the normalized covariances:

lim
t→∞

δ(t) ≡ lim
t→∞

∥

∥

∥

∥

Ca

‖Ca‖
−

Cb

‖Cb‖

∥

∥

∥

∥

= 0 . (15)

Convergence in this measure proceeds on average at
twice the rate of the decaying second Lyapunov expo-
nent of A(Ua), as shown in Fig. 2. To within streamwise
phase the first Lyapunov vector of the primary system,
which is the top eigenvector of Ca, is identical to the first
Lyapunov vector of the secondary system, which is the
top eigenvector of Cb, as shown in Fig. 3.
While both Ca and Cb are with exponential accuracy

rank one, as they are both the covariance produced by
the first Lyapunov vector, eigenanalysis of either Ca or
Cb reveals the remaining Lyapunov vectors of the lin-
ear time dependent system (14) which are decaying with
time at the rate of their Lyapunov exponents as shown
in Fig. 1. This decay of the Lyapunov vectors in the or-
der of their (negative) Lyapunov exponents is shown in
Fig. 4. We remark that support of the turbulence by the
single top Lyapunov vector is obtained when scattering
by the perturbation–perturbation nonlinearity is ignored
(Q = 0 in (12)). This turbulence provides an opportu-
nity to study the physical mechanisms of self-sustaining
turbulence in maximally simplified form. We will relax
the assumption Q = 0 after our initial study of this max-
imally simplified self-sustaining state in order to study
the effect of perturbation–perturbation nonlinearity on
the turbulence and specifically the role played by the
remaining Lyapunov vectors when these are maintained
by excitation parameterizing scattering of energy by the
perturbation–perturbation nonlinearity.
In this section we have verified that the perturbation

structure in S3T turbulence can be analytically identi-
fied with the first Lyapunov vector of the time depen-
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FIG. 3: The three components of perturbation velocity, u,v, and w (in sequence from top to bottom) of the first
Lyapunov vector (LV1), which is the eigenvector with the largest eigenvalue of the covarianceCa of the primary system
(left panels) and similarly for the secondary system with covariance Cb (right panels) initialized with a different initial
condition. The snapshots are at t = 3 × 104, which is a sufficient time for the asymptotic state to be obtained.
The figure demonstrates that in this S3T turbulent state the time varying mean streamwise streak velocity results
asymptotically in a unique (to within a streamwise phase) perturbation state to which initial conditions converge.
The normalized velocities are represented by contours of their absolute magnitude.

dent perturbation operator, A(U), linearized about the
instantaneous streamwise mean flow U(y, z, t). This re-
sult shows that the perturbation variance in S3T turbu-
lence is supported by an identifiable rank one structure:
the top Lyapunov vector of A(U). This perturbation
structure has zero Lyapunov exponent and in that sense
it can be understood to be the mode the reduction to
neutral stability of which establishes the statistical state
of S3T turbulence corresponding to neutrality of the time
dependent streamwise mean velocity.

IV. ENERGETICS OF THE LYAPUNOV

STRUCTURES UNDERLYING THE

PERTURBATION COMPONENT OF S3T

TURBULENCE

Having determined the analytical structure of the per-
turbation field to be that of the top Lyapunov vector of
the fluctuating perturbation dynamics we consider next
the mechanism maintaining this structure. We will show
that the perturbation component of the turbulence is
not maintained by temporal mode instability but rather
by parametric instability. Parametrically unstable sys-
tems are unstable due to the interaction between the

non-normality and the time dependence of the dynam-
ical operator rather than to temporal mode instability
of the operator at individual instants of time. In fact,
instability of the operator is irrelevant to parametric in-
stability as the familiar analysis of parametric instability
in the damped pendulum using the Mathieu equation
demonstrates.
In order to study this parametric instability mecha-

nism in detail the following analysis is performed: at
each instant the normalized perturbation state, φ, is pro-
jected on the ellipsoid the principal axes of which are in
the directions of the eigenvectors of the symmetric matrix
A+A†. By eigen-decomposition USU† = A+A† with
U the matrix composed of the instantaneous eigenvectors
of A +A† arranged in columns and S the diagonal ma-
trix of the corresponding eigenvalues. The instantaneous
growth rate of perturbation energy is given by

g(t) =
φ†USU†φ

φ†φ
. (16)

Similarly, we can calculate the growth rate of the pertur-
bation energy that would be obtained if the eigenmodes
were orthogonal with their same eigenvalues by forming
the ellipsoid the principal axes of which correspond to



9

0 1000 2000 3000 4000

10-10

10-5

100

FIG. 4: Evolution of the energy of the first 5 Lya-
punov vectors (LV) of the perturbation covariance dy-
namics which has been synchronized with the mean flow
of the turbulent S3T system (13a) and initialized white in
energy. The streamwise wavenumber of all the Lyapunov
vectors is k = 2π/Lx so the individual members of the or-
thogonal set of Lyapunov vectors differ only in their y−z
structure. The maximal Lyapunov exponent associated
with the first Lyapunov vector (LV1) is zero consistent
with it constituting a component of the statistical steady
state. Except for LV1, the remaining Lyapunov vectors
(LV’s) decay at the rate of their negative Lyapunov expo-
nents. However, the second Lyapunov vector (LV2) has
a small negative Lyapunov exponent and exhibits large
excursions associated with the time dependence of the
dynamical operator.

the instantaneous growth rate of the eigenmodes of A

and projecting the normalized state on these eigenmodes.
The normalized projections of the perturbation state φ
on this ellipsoid are then the instantaneous equivalent
normal growth rates i.e. the growth rates that would oc-
cur if A were a normal matrix with these eigenvalues.
The equivalent normal energy growth rate is given by

h(t) =
φ†EDE−1φ

φ†E−1†E−1φ
, (17)

where E is the matrix consisting of the instantaneous
eigenvectors of A arranged in columns and D is the diag-
onal matrix of twice the associated modal growth rates
of the modes.
The probability density function of the eigenvalues of

A + A†, which correspond to the axes of the instanta-
neous growth rate ellipsoid, and the probability density
function of twice the real part of the eigenvalues of A,
which correspond to the axes of the modal growth rate
ellipsoid, are shown for a self-sustaining turbulent state
in the example system over a time interval τ = 5000 in
Fig. 5. The instantaneous growth rate of the perturba-
tion state is determined by its projection on the instan-
taneous growth rate ellipsoid. This projection varies in

time due to both the time dependence of the state vec-
tor and the time dependence of the growth rate ellipsoid.
The distributions of the resulting projections for a tur-
bulent simulation over a time period τ = 5000 is shown
in Fig. 6. This figure contains information on both the
extent of the growth rates sampled by the state vector
as well as the frequency with which these values are sam-
pled. The state vector fails to explore the extremities of
the growth rate ellipsoid with most projections being con-
fined around zero growth rate. The information in Fig. 6
is summarized by the cumulative distribution function of
the square projections of the state on the principal axes
of the growth rate ellipsoid shown in Fig. 7. This cu-
mulative distribution function is obtained from Fig. 6 by
forming

F (σ) =

∫ σ

−∞
δ(σ′ − σi)|αi|

2 dσ′

∫∞

−∞
δ(σ′ − σi)|αi|2 dσ′

, (18)

in which each of the points in Fig. 6 is a sample (σi, |αi|
2).

The smooth derivative of the cumulative distribution
function, f(σ) = dF (σ)/dσ, also shown in Fig. 7, is the
probability density function of the perturbation state pro-
jections, |α(σ)|2, on the energy growth rate, σ. Despite
the wide distribution of available growth rates (cf. Fig. 5)
the self-sustained state projects on growth rates narrowly
centered around zero with values primarily in the interval
[−1, 1]. The mean growth rate of the state,

λ =

∫ ∞

−∞

σf(σ) dσ , (19)

vanishes consistent with the perturbation being a compo-
nent of the statistically stable turbulent state trajectory,
i.e. the state trajectory, corresponding to the first Lya-
punov vector (LV1), has been adjusted, together with
and by mutual interaction with the mean flow, to have
zero Lyapunov exponent. An equivalent diagnostic, the
growth rate probability density function, is more easily
obtained directly from the time series of the growth rates
of the individual Lyapunov vectors (LV’s). This proba-
bility density function is shown for LV1, and also for the
decaying second, third and tenth Lyapunov vectors, LV2,
LV3, and LV10, in Fig. 8 in which it can be seen that,
although the probability density function of LV1 peaks
at positive growth rates it has a small negative skew and
its mean growth rate is zero and although LV2 has a
negative Lyapunov exponent, it is similar to LV1 in its
energetics. Energetics of the Lyapunov vectors can be
more closely analyzed by separating the operator of the
linear perturbation dynamics into dynamical and dissipa-
tion components by partitioning it as

A(U) ≡ A(U) +D . (20)

In (20) A(U) is the part of the matrixA(U) that depends
on U and its spatial derivatives and represents dynamic
interaction of the perturbation field with the streamwise
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mean flow, including the transfer of energy between mean
and perturbations, and D is the part of the matrix A as-
sociated with viscous damping. The terms involved in
this separation can be identified in the pre-transformed
perturbation equations (6). With this splitting the rate
of transfer of mean flow energy to a given perturbation,
gA, is given by the normalized projection of that pertur-
bation on the Hermitian matrix A + A†. Similarly, the
rate of dissipation, gD, is given by its normalized pro-
jection on D† + D. The probability density function of
gA for a selection of Lyapunov vectors and the proba-
bility density function of the corresponding decay rates
due to dissipation, gD, shown in Fig. 9, reveals that the
asymptotic decay of Lyapunov vectors of order 2 and
higher is due to enhanced dissipation rather than to in-
ability to gain energy from the mean flow. In fact, mean
flow energy is transferred to LV2 at a greater rate than
it is to LV1 as seen in Fig. 9. In Fig. 10 is shown the
time-mean growth rate of these Lyapunov vectors due
to energy transfer from the mean flow, gA, and the cor-
responding magnitude of their mean energy decay rate
due to dissipation, |gD| (overbar denotes time average).
These average growth and decay rates determine the Lya-
punov exponent of the corresponding Lyapunov vector,
which is given by gA − |gD|. It is interesting to note
that although all Lyapunov vectors, except LV1, are de-
caying, exactly half of the Lyapunov vectors receive en-
ergy from the mean. This property is a corollary of the
“time-reversal symmetry” of the inviscid perturbation dy-
namics that is governed by A. This symmetry of invis-
cid dynamics is the expression of the invariance of the
perturbation evolution equations (6) (in the absence of
dissipation or excitation) to the transformation t → −t
and x → −x. This symmetry implies that if φ(x, t) is
a solution of the inviscid equations (6) without excita-
tion, by necessity φ(−x,−t) is also a solution of (6) and
hence if φ(x, t) grows at the rate λ, φ(−x,−t) grows at
the same rate and by reversing time, φ(−x, t) decays at
rate −λ. This implies that if φ is a Lyapunov vector of
A(U) with Lyapunov exponent λ then φ∗ is also a Lya-
punov vector with Lyapunov exponent −λ. The fact that
fully half the perturbation structures extract energy from
the fluctuating mean flow has important consequences for
the maintenance of perturbation variance in turbulence
as it implies a mechanism for direct non-local in scale
transfer of energy from the externally forced large scale
mean flow to the small scale perturbation components
of the turbulence. This fact invites the conjecture that
the mechanism maintaining the incoherent component of
perturbation energy in S3T turbulence when parameter-
ization of the third cumulant is restored in the S3T dy-
namics is parametric interaction with the mean flow and
that the structure of the turbulent perturbations is pri-
marily determined by the structure of the LV’s. We will
restore stochastic parameterization of the third cumulant
to examine this conjecture further in the next section.

Another implication of the parametric dynamics main-
taining the incoherent perturbation component is that

-15 -10 -5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 5: The probability density function of the
eigenvalues of the instantaneous perturbation operators
A + A† and of twice the real part of the instantaneous
eigenvalues of A for mean states that occur over a time
period τ = 5000. The mean growth rate for both cases
is −1.14 (as the real part of the trace of A is equal
to the trace of (A + A†)/2), the standard deviation of
σ(A+A†) is 1.6 and the range in the specific simulations
is [−18.2, 16.2], while the standard deviation of 2σr(A) is
0.5 and the range is [−2.9, 0.4]. The eigenvalues ofA+A†

correspond to the axes of the energy growth rate ellip-
soid. The extrema of these possible growth rates exceed
that of the instantaneous energy eigenfunction growth
rates as expected for a non-normal system. Remarkably,
only very small positive modal growth rates occur sug-
gesting that the system is constrained to limit the extent
of modal instability.

the decaying Lyapunov vectors undergo large excursions
in energy (cf. Fig. 4). Such large excursions are char-
acteristic of the energetics of stochastic dynamical sys-
tems with multiplicative noise [46, 59, 60]. When a pa-
rameterization for the excitation of Lyapunov vectors by
perturbation–perturbation nonlinearity is included we ex-
pect that a broad spectrum of incoherent perturbations
will be supported by interaction with the mean flow.
Moreover, these structures undergo large excursions and
these excursions have important implications for the dy-
namics of S3T turbulence. We will further explore these
matters but first we wish to examine the dynamics of the
parametric mechanism in more detail.

The linear perturbation dynamics is strongly time de-
pendent with the dynamical operator A and associated
growth rate ellipsoid being modified continuously in time
by fluctuations in the mean streamwise velocity. These
fluctuations cause the dynamics of the interaction be-
tween the mean flow and the perturbation field to exhibit
large excursions in growth rate on short time scales. In
contrast, as shown in Fig. 5, the system adjusts to sup-
port only weak instantaneous inflectional instability. A
time series of the maximum instantaneous modal growth
rate, σr, is shown in Fig. 11. The mean of the max-
imum growth rate is only 0.045 and the growth rate
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FIG. 6: Instantaneous projections of the normalized
state vector on the axes of the ellipsoid of energy growth
rate. Each point has coordinates (σi, |αi|

2) where σi is
the i-th eigenvalue of A+A† and |αi|

2 is the square am-
plitude of the projection of the normalized state on this
principal axis. This figure reveals both the magnitude
of the projection of the state on the growth rate axes
and, by the density of the points, the frequency of the
occurrence of each growth rate.
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FIG. 7: Cumulative distribution function, F (σ), of the
square projection of the normalized perturbation state
consisting of the first Lyapunov vector on the axes of
the growth rate ellipsoid (red). The smooth derivative
of the cumulative distribution function, f(σ), (shown in
blue), is the probability density function of the perturba-
tion state projections |α(σ)|2 on the energy growth rate
ellipsoid.

varies rapidly. Also shown is the time series of the
normalized fluctuations of the maximum streak ampli-
tude Um

s ≡ max(Us(y, z))−min(Us(y, z)) together with
normalized fluctuations of the maximum growth rate,
σ′
r = σr − 〈σr〉. The streak amplitude and the maxi-

mum instability growth rate are substantially correlated
consistent with inflectional instability of the streak. How-
ever, while the state dynamics adjusts to consistently ex-
hibit a small and rapidly varying instantaneous modal
instability, this instability is not itself responsible for sus-
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FIG. 8: The probability density function of the instan-
taneous energy growth rates of Lyapunov vectors LV1,
LV2, LV3 and LV10. The second in growth rate Lyapunov
vector, LV2, is only slightly decaying and has a narrowly
confined distribution similar to that of the first Lyapunov
vector, LV1, while the LV3 and LV10 decay strongly and
sample a wider range of growth rates.
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FIG. 9: Partition of the probability density function
of the instantaneous energy growth rates of Lyapunov
vectors LV1, LV2, LV5, LV10 and LV20 arising from en-
ergy transfer to these vectors from interaction with the
streamwise mean flow (curves on the right) and dissipa-
tion (curves on the left). The probability density function
of the instantaneous growth rates of each Lyapunov vec-
tor, shown in Fig. 8, is the sum of these contributions for
each LV. A substantial number of higher order Lyapunov
vectors robustly extract energy from the mean. In fact,
half the LV’s extract some energy directly from the mean
flow.

taining the perturbation variance. Shown in Fig. 12 is
the autocorrelation and crosscorrelation of streak ampli-
tude and maximum modal growth rate. The streak and
modal instability are correlated with essentially zero lag,
as expected for inflectional mode instability, but both of
these quantities decorrelate in approximately ten time
units which is inconsistent with emergence of the modal



12

100 101 102
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

FIG. 10: Mean contribution to the energy growth rate
of the Lyapunov vectors due to energy transfer from the
mean flow, gA as a function of Lyapunov vector index.
Also shown is the magnitude of the mean decay rate of the
Lyapunov vectors due to diffusion, |gD|. The Lyapunov
exponent of each Lyapunov vector is the difference be-

tween these two curves. The dashed curve, gfA, shows the
average energy transfer rate from the mean to each of the
orthogonal eigenfunctions of the covariance C under ex-
ternal excitation (the SFLV’s of the stochastically main-

tained perturbation field) and the dashed curve, |gfD|, the
average decay rate of each of the SFLV’s. This figure
shows that a substantial subset of SFLV’s have neutral
energetics and therefore are maintained at finite ampli-
tude by transfer of energy from the mean flow induced
by the energy neutral parameterization of perturbation–
perturbation nonlinearity (the asymptotic rank of C is
about 50).

instability which has an approximate e-fold time of 20
(cf. Fig. 11). That modal growth does not account for
maintenance of the perturbation variance is confirmed
in Fig. 13 in which is shown a time series of the energy
growth rate of the perturbation field together with the
energy growth rate that would occur if the state were
projected on the eigenvectors of the instantaneous opera-
tor, A, with each advanced at the rate of the correspond-
ing real part of the eigenvalue of A. Although it can
be seen from Fig. 11 that the instantaneous mean flow
is nearly always weakly modally unstable, it can be seen
from Fig. 13 that the contribution to maintaining the
Lyapunov vector of the perturbation trajectory arising
from modal growth is almost always negative with the
time mean value of this equivalent normal contribution
to the energy of the perturbation field being decay at
rate −0.7. In contrast, the non-normal parametric mech-
anism produces robust excursions of both positive and
negative growth rate due to rapidly varying projections
of the perturbation state on the also rapidly varying di-

rections of growth associated with variation of the streak
(cf. Fig. 12). Because the maximum Lyapunov exponent
is zero and equal to the time integral of the instantaneous
growth rates, these positive and negative contributions
average of necessity to zero. The Lyapunov exponent
is zero because the associated Lyapunov vector is con-
tinuously adjusted through interaction with the streak
to have a statistically steady amplitude consistent with
its being a component of the system’s statistically stable
trajectory (cf. Fig. 13). Parametric growth is a general
attribute of dynamical systems with stochastically fluc-
tuating dynamical operators which are of necessity non-
normal with measure zero exception. This statistically
sustained growth arises from the concatenation of non-
normal growth events which dominate over decay events
due to the convexity of the exponential propagator of
the dynamics over the time scale of the operator fluctua-
tion [45, 46]. A characteristic property of stochastic para-
metric growth is the requirement for the parametric vari-
ation of the system to occur on intermediate time scales.
This is because the convexity of the exponential vanishes
at short dynamical operator fluctuation time scales and
the transient perturbation growth vanishes at long time
scales. Fluctuations of the streak and the fluctuation in
the growth rate of LV1 fit a red noise process as shown
in Fig. 14. Consistent with the stochastic parametric
growth mechanism, the correlation time of this red noise
process, τ = 5.0, occurs on an intermediate time scale.
Moreover, this time scale is short compared to the modal
growth time scale so that asymptotic modal growth is
not relevant (cf. Fig. 11).

In this section the energetics underlying the paramet-
ric instability of the Lyapunov vector supporting S3T
turbulence has been studied in detail by analyzing the
intricate interplay between the time dependence of the
Lyapunov vector and the time dependence of the mean
flow that sustains the Lyapunov vector by non-normal
energetic interaction.

V. DYNAMICS OF THE DECAYING

LYAPUNOV STRUCTURES IN THE PRESENCE

OF PARAMETERIZED NONLINEAR

EXCITATION

Consider S3T dynamics (12) under stochastic excita-
tion with covariance Q and linear dissipation at the vari-
able rate Tr(Q)/Tr(C). This dissipation rate is chosen
so that the energy input rate Tr(Q) is equal to the dis-
sipation rate at each time instant so that no net energy
is injected into the perturbation field, consistent with
the property that the third-order cumulant being pa-
rameterized does not contribute in the net to the per-
turbation energy. It is an interesting attribute of even
time-independent non-normal dynamical systems that al-
though this excitation inputs no net energy to the per-
turbations, still a non-vanishing perturbation field can
be sustained by it. This is in contrast to normal sys-
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FIG. 11: Panel (a): The maximum modal growth rate of A(U) over a typical interval in the example system. The
mean of the maximum growth rate over the entire time series is 0.045 and the range is [−0.06, 0.135]. Panel (b): Corre-
sponding time series of the normalized fluctuations of the maximum growth rate, σ′

r = σr −σr, and of the normalized
fluctuations of the maximum streak amplitude Um

s ≡ max(Us(y, z)) −min(Us(y, z)). The streak amplitude and the
maximum instability growth rate are correlated with correlation coefficient r = 0.4 consistent with inflectional in-
stability of the streak. However, while the state is tightly constrained to exhibit small but consistent instantaneous
modal instability, this instability is not responsible for sustaining the perturbation variance.
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FIG. 12: Autocorrelation of streak amplitude, Um
s ≡

max(Us(y, z)) − min(Us(y, z)), and maximum modal
growth rate, σr. Also shown is the cross correlation of
these quantities. The streak and modal instability are
highly correlated as expected for inflectional mode insta-
bility but both of these quantities decorrelate in approx-
imately ten time units which is too short a time for the
modal instability to emerge given its typical time scale
for growth of approximately 20 time units (cf. Fig. 11).

tem dynamics, for in that case the perturbation energy
evolution equation, which is the trace of (12b), obeys:

dTr(C)

dt
= Tr

(

(A+A†)C
)

, (21)

which implies that Tr(C) will asymptotically vanish if A
is normal and has decaying modes. Such a forcing can sus-

tain a non-vanishing covariance of substantial rank when
A is non-normal even should all modes of the system
be damped. That a high-rank perturbation covariances
can be sustained in a turbulent system with a stochastic
parameterization of the third cumulant characterized by
zero energy injection has been previously demonstrated
in the context of a discussion of the statistical state dy-
namics of two-layer baroclinic turbulence [31]. A turbu-
lent state with high rank C is also maintained in the S3T
turbulence of our Couette flow with an energy neutral pa-
rameterization of the third order cumulant, as shown in
Fig. 15. In this simulation we have initialized the S3T
dynamics with a full rank C. The stochastic excitation
parameterization of the third cumulant which injects no
energy is introduced at t = 200. In the absence of ex-
citation the covariance is seen to be in the process of
collapsing to the rank 1 covariance of the first Lyapunov
vector with the remaining Lyapunov vectors decaying at
the rate of their respective Lyapunov exponents. When
the excitation is imposed the covariance rapidly adjusts
to maintain a statistically steady state with finite rank
(in this example the rank is approximately 50). The eigen-
vectors of the finite rank perturbation covariance which
are maintained by energy transfer from the fluctuating
mean (as shown in Fig. 10) are called, in analogy to the
unforced case, the stochastically forced Lyapunov vectors
(SFLV). These SFLV’s inherit the structure of their as-
sociated Lyapunov vectors (LV’s) as can be seen from
Fig. 16 in which the energy norm projections of the LV’s
and SFLV’s are shown as a contour plot. Diagonal domi-
nance in this plot indicates that the stochastically main-
tained Lyapunov vectors are correlated in structure with
the underlying Lyapunov vectors which decay in the ab-
sence of excitation.

In summary this section demonstrates, as implied by
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FIG. 13: Time series of the energy growth rate of the
perturbation field (blue). This growth rate is equal to the
projection of the normalized state onA+A† and its mean
value is the Lyapunov exponent of LV1, which is zero.
Energy growth rate that would occur if the state were
projected on the eigenvectors of instantaneous operator
A and each advanced at the rate of the corresponding
real part of the eigenvalue of A is also shown (red). The
mean value of this equivalent normal growth rate is −0.7.
We conclude that while the instantaneous mean states
are often modally unstable (cf. Fig. 11) the perturbation
state does not project sufficiently on the instabilities to
account for its growth. This result demonstrates that
the perturbation field is sustained by the parametric non-
normal growth process rather than by modal instability.

ω
10-2 10-1 100 101

Φ
(ω

)

10-2

10-1

100

101

102

103

104
LV1

ω
10-2 10-1 100 101

10-2

10-1

100

101

102

103

104

105
Um
s

FIG. 14: Spectral density of the energy growth rate
of the first Lyapunov vector (LV1) and of the maxi-
mum streak velocity time series and their fit to the
Lorentzian 625τ−2/((ωτ)2+1) and 100Um
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with τ = 5.0, respectively. This graph shows that the
instantaneous growth rate of the perturbations are well
approximated by a red noise process and that the streak
fluctuations follow the same red noise process.
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FIG. 15: Evolution of the energy of the first 10 eigen-
functions of the covariance C with the highest energy.
For t < 200 the covariance dynamics evolves without
stochastic excitation and the structures shown are the
first 10 Lyapunov vectors of A(U), of which only LV1

would be sustained while the other Lyapunov vectors
(even LV2) would decay to zero. A stochastic excitation
that imparts no mean energy to the perturbations is in-
troduced at t = 200. Despite the zero energy input by
this parameterization, the non-normality of the time de-
pendent A(U) sustains a perturbation covariance of rank
approximately 50 supported by SFLV structures close to
the corresponding Lyapunov vectors as shown in Fig. 16
and Fig. 17.

FIG. 16: Contour plot of the average absolute value

of the inner product, |SFLV†
i LVj | with i, j = 1, . . . , 10,

between the top 10 SFLV’s (the normalized eigenvectors
of the C under stochastic excitations) and the first 10
LV’s of A(U) with the same streamwise mean flow, U .
This figure shows that the SFLV’s with substantial energy
are correlated in structure with the top LV’s. The level
of excitation is such that if it were imposed on the time
mean flow it would support perturbation energy 1% of
the mean energy of the unperturbed Couette flow.
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FIG. 17: Time averaged fraction of the perturbation
energy accounted by the LV’s and SFLV’s. The SFLV’s
are the eigenfunctions of the velocity covariance, C (the
SFLV set provides the proper orthogonal decomposition
of the flow). The dots indicate the energy accounted for
by the LV’s at a specific time instant. This graph shows
that most of the energy is spanned by a few LV’s con-
sistent with the subspaces spanned incrementally by the
LV’s being very close to those of the SFLV’s (cf. Fig. 16).
The level of stochastic excitation is chosen to maintain
perturbation variance typical of turbulence in shear flow
i.e. so that if it were imposed on the time mean flow
it would support perturbation energy 1% of the mean
energy of the unperturbed Couette flow.

the correllation between the LV’s and SFLV’s shown in
Fig. 16, that the structure of the perturbation variance
in turbulent shear flow is inherited from the Lyapunov
vectors, that perturbation variance in shear flow turbu-
lence can be maintained directly by extraction of energy
from the mean flow, that the structure of the perturba-
tion field can be predicted to be that of the Lyapunov
vectors, and that the contribution of the LV’s to the
perturbation variance can be ordered in the stability of
the LV’s. These implications are corroborated in Fig. 17
in which is shown the perturbation variance fraction ac-
counted for by the SFLV’s (which are identical to the
POD modes for the perturbations) and the LV’s ordered
in mode number. The variance is seen to be concentrated
in the first few LV’s implying that perturbation structure
may be efficiently characterized by making use of these
LV structures.

VI. MECHANISM REGULATING THE

STATISTICAL MEAN STATE OF S3T

TURBULENCE

We turn next to study of the mechanism by which the
state of S3T turbulence is regulated to its observed sta-
tistical mean. The observation that the streak is con-

strained to be marginally unstable (cf. Fig. 5 and Fig. 11)
suggests that the regulation of the turbulent state may
be associated with adjustment to marginal streak stabil-
ity [13]. To study the dynamical mechanism regulating
the turbulence to a statistical steady state we make use
of an analysis of the energetics of the streak (cf. Ap-
pendix. B).

A time series of the Reynolds stress and lift-up term
contributions to the maintenance of the streak energy
are shown in Fig. 18. Of note is that the Reynolds stress
term in the streak energy equation is always negative. In
Fig. 18b is shown the autocorrelation of the streak energy
ǫs, of the perturbation Reynolds stress term in the streak
energy equation, ǫ̇F , and of the contribution of the lift-
up term to maintaining the streak, ǫ̇L, together with the
cross correlation of ǫ̇F with ǫs and of ǫ̇L with ǫs. The
correlation between time series f(t) and g(t) is defined
as

Corr(f, g) ≡
(f − f)(g − g)

√

(f − f)2 (g − g)2
. (22)

The cross correlation between ǫs and −ǫ̇F reveals that
these quantities are correlated with a τ = 5 lead of the
streak energy over the Reynolds stress term. This corre-
lation with short lead time in which streak energy max-
ima are followed by strong Reynolds stress damping indi-
cates a rapidly acting regulation of the streak energy by
the Reynolds stress. The small lead time indicates that
transient growth on the advective time scale rather than
instability growth on the much longer instability time
scale (1/σmax ≈ 20) is involved in this regulation of the
streak energy (cf. Fig. 11). Of note is that the lift-up
contribution to streak energy leads the streak energy by
5 units of time.

The availability of very rapidly growing fluxes that
damp streak energy and that are strongly correlated with
streak amplitude explains the robustness of the turbu-
lent state in S3T: the streak grows relentlessly by lift-
up due to the roll forcing by the perturbations resulting
from the parametric instability of LV1 which would cause
the streak amplitude to diverge were it not for the even
stronger transient growth of projections on the adjoint
modes associated with incipient streak instability, which
strongly damp the streak energy on the advective time
scale, which is short compared to the instability time
scale, producing a tightly controlled equilibrium statisti-
cal state [13].

In summary, this section demonstrates how regulation
of S3T turbulence to its statistical steady state is en-
forced by interaction between the first and second cumu-
lants which completes the analysis of turbulence dynam-
ics in Couette flow at second order in an expansion in
cumulants.
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FIG. 18: Panel (a): Sample time series of the deviations from the time mean of the streak energy, ǫs − ǫs, in an
S3T simulation, of the contribution to the time rate of change in streak energy from mean advection (the lift-up
mechanism), ǫ̇L, which is always positive, and of the perturbation Reynolds stress, ǫ̇F , which is always negative
(cf. Appendix B). Panel (b): Comparison of the autocorrelations of the streak energy ǫs, of ǫ̇F and of ǫ̇L. Shown also
is the cross correlation of these quantities Corr(−ǫ̇F (t + τ), ǫs(t)) and Corr(ǫ̇L(t + τ), ǫs(t)). The cross correlation
between ǫs and −ǫ̇F reveals that these quantities are closely positively correlated with only a τ = 5 lead of the streak
energy over the Reynolds stress term.

VII. CONCLUSION

The S3T system is a statistical state dynamics closed
at second order that has highly simplified dynamics and
naturally self-sustains a turbulent state with restricted
support in streamwise wavenumber so that S3T turbu-
lence is dynamically and computationally an attractive
system for studying the mechanism underlying mainte-
nance of wall-turbulence. S3T system turbulence is in
many aspects realistic and in particular it supports a
realistic self-sustaining process. In this work we have
exploited the simplicity of the self-sustaining process in
S3T turbulence with the stochastic parameterization of
the third cumulant set to zero to study the mechanisms
underlying the maintenance and regulation of turbulence
in this system. The mechanism maintaining the turbu-
lence is a parametric growth process associated with the
time-dependence of the streamwise mean flow streak com-
ponent and consistently the resulting structure of the per-
turbation state is that of the first Lyapunov vector sup-

ported by the time-dependent streak. With inclusion of
a stochastic excitation with zero energy injection param-
eterizing the perturbation–perturbation nonlinearity the
perturbation field is supported by the first Lyapunov vec-
tor augmented by the remaining Lyapunov vectors which
are induced to extract energy from the mean flow by the
parameterized nonlinearity. The structure of the incoher-
ent turbulence perturbations supported by the paramet-
ric growth process is shown to remain close to that of
the Lyapunov vectors of the unforced example. Finally,
the mechanism by which the statistical mean state is de-
termined in S3T turbulence is identified to be a tight
balance between robust streak growth by lift-up due to
the roll forcing by the perturbations which in turn results
from the parametric instability of the first Lyapunov vec-
tor (LV1) and the even stronger damping resulting from
transient growth of the adjoint modes which arise as the
streak grows. These adjoint modes produce growth that
increases rapidly near the stability boundary consistent
with the slight amount of streak instability observed in
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the simulations [13]. These competing processes of ro-
bust streak growth opposed by strong damping produce
a tightly controlled equilibrium statistical state.

Appendix A: Lyapunov exponents and vectors

Consider the time dependent linear dynamical system:

ẋ = A(t)x , (A1)

with x an n dimensional state vector and A a bounded
n× n time dependent matrix. If the state of the system
at time t0 is x(t0), the state of the system at time t is
given by

x(t) = Φ(t, t0)x(t0) , (A2)

where the propagator, Φ(t, t0), is the n × n matrix that
maps the state vector at time t0 to the state vector at
time t.
The Lyapunov exponents are defined to be the various

limits

λ = lim
t→∞

log ‖Φ(t, t0)x(t0)‖

(t− t0)
, (A3)

that can occur as x0 spans the space of all possible initial
conditions. We denote with ‖ · ‖ the norm chosen to
measure the vector magnitude. The Lyapunov exponents
are norm independent and also independent of the initial
time t0. Oseledets’s theorem [47] guarantees that there
are n such Lyapunov exponents λ1 > λ2 > · · · > λn

(under the assumption that there is no degeneracy in the
values of the Lyapunov exponents) that can be obtained
as eigenvalues of the Hermitian positive matrix:

L∞(t) = lim
t0→−∞

log
(

Φ(t, t0)Φ
†(t, t0)

)

2(t− t0)
. (A4)

In the above definition the inner product is taken to be
the dot product which is natural in our examples as our
variables are velocities so the dot product results in a
norm proportional to energy. We refer to the orthog-
onal time dependent eigenvectors u1(t), u2(t), . . . , un(t)
of L∞(t) as the Lyapunov vectors (LVs) of the system.
With the exception of the first, these vectors depend on
the chosen inner product consistent with their being or-
thogonal in that inner product (energy in our case). The
time dependent eigenvector, u1(t), corresponding to the
maximal Lyapunov exponent, λ1, is called the first Lya-
punov vector, LV1.
Vectors proportional to LV1, form subspace E1(t), and

their magnitude changes with time as t → −∞ as
exp(λ1t). LV1 therefore becomes the dominant struc-
ture after a sufficiently long integration of the system
(assuming no degeneracy of the first Lyapunov expo-
nent). Vectors in the subspace E2(t) spanned by u1(t)
and u2(t), except those that are proportional to u1(t),

decay as t → −∞ as exp(λ2t) and u2(t) is referred
to as the second Lyapunov vector, LV2. In this way
the state space is split into a set of nested subspaces
E1(t) ⊂ E2(t) ⊂ · · · ⊂ En(t) such that the vectors that
are in Ei(t) and are not in subspace Ei−1(t) decay as
t → −∞ as exp(λit). This definition of the Lyapunov
vectors was introduced by Lorenz [48] in his studies of
error growth in atmospheric dynamics; see also Farrell
& Ioannou [45] and Wolfe & Samelson [52]. Assuming a
physically based inner product, e.g. perturbation energy
in our case, the orthogonal basis defined by these Lya-
punov vectors provides a physically meaningful orthogo-
nal basis for partitioning the state space of the evolving
perturbations in the sense that perturbation states that
were in the far past in a sphere of unit energy will evolve
at time t into an ellipsoid the principle axes of which lie
in the direction of the LV’s and partition the state space
into subspaces spanned by these vectors which are ranked
in magnitude in the order of their Lyapunov exponents
as exp(λit).

It should be noted that the Lyapunov vector ui(t), with
i > 1, when integrated forward will not in general grow
asymptotically at rate λi (but almost surely at rate λ1).
This fact has two equally important roots. The first is
mathematical: because of the orthogonalization proce-
dure imposed on the Lyapunov vectors at each time step
the components of the temporally evolving state vector
growing at the rate of λi that lie in directions spanned
by previous Lyapunov vectors LV1 through LVi−1 is be-
ing projected out. While the orthogonal LV decompo-
sition retains information on the subspace spanned by
the Lyapunov vectors, it results in loss of the informa-
tion on which structures are growing at the rate of each
Lyapunov exponent at each time, with the exception of
the first [61]. The second root is more physically rele-
vant: from a physical perspective this follows from the
fact that a random vector perturbation has measure zero
probability of having zero projection on LV1 and so any
random perturbation results in growth that is asymptot-
ically at rate λ1. Besides being of profound physical sig-
nificance, this universal property of all physical vectors
asymptotically converging to LV1 poses a problem for cal-
culation of the Lyapunov vectors. In order to obtain the
Lyapunov vectors operationally at all times we integrate
forward the time dependent Lyapunov equation for the
covariance (14) and after a sufficiently long integration
the Lyapunov vectors at time t emerge as the eigenvec-
tors of the covariance matrix C(t). The eigenvectors of
C(t) define the Lyapunov vectors that are orthogonal in
the energy inner product.

In some recent studies calculations were performed to
determine at each time t the vectors that grow when in-
tegrated forward and decay when integrated backwards
at the rate of the corresponding Lyapunov exponent [54].
These vectors, called confluent Lyapunov vectors (CLV),
generalize to time dependent linear systems the eigenvec-
tor analysis of time independent linear systems [51–53].
However, the confluent Lyapunov vectors are not orthog-
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onal in any physical norm. In order to use them to parti-
tion energy growth as we do in our analysis the additional
step of orthogonalizing the CLV’s in energy would have
to be performed, which would serve to recover the LV’s
that we have discussed.

Appendix B: Streak Energetics

The streak component of the mean streamwise velocity,
U , is defined as Us = U − [U ]z, where [ · ]z denotes the
spanwise average. The streak is the part of the stream-
wise velocity with zero x wavenumber but nonzero z
wavenumber Fourier components. By subtracting (5a)
from its spanwise average we obtain an equation for the
evolution of the streak velocity:

∂tUs = −∂y (UV − [UV ]z)− ∂z (UW )

− ∂y ([uv]x − [uv]x,z)− ∂z ([uw]x) + ∆Us/R ,
(B1)

using notation (2), and from (B1) we obtain the fol-
lowing evolution equation for the streak energy, ǫs ≡
∫ 1

−1

[

U2

s /2
]

z
dy:

ǫ̇s = ǫ̇L + ǫ̇F + ǫ̇D , (B2)

where

ǫ̇L = −

∫

1

−1

[

Us (V ∂yU +W∂zU)
]

z
dy , (B3)

is the contribution to the streak energy rate of growth
from advection of mean U momentum by the V and W
velocities. The term

ǫ̇F = −

∫ 1

−1

[

Us∂y ([uv]x) + Us∂z ([uw]x)
]

z
dy , (B4)

is the contribution to the streak energy rate of growth
from the perturbation Reynolds-stress divergence, and

ǫ̇D =
1

R

∫

1

−1

[Us ∆Us]z dy , (B5)

is the rate of dissipation of streak energy.
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