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For turbulent boundary-layer flow under a uniform free-stream speed U∞ over a plate

of length L, covered with uniform roughness of nominal sand-grain scale ks, the physical

behaviors underlying two distinguished limits at large ReL ≡ U∞L/ν are explored: the fully-

rough wall flow where ks/L is fixed and the long-plate limit where Rek ≡ U∞ks/ν is fixed.

For the fully-rough limit it is shown that not only is the drag coefficient CD independent of

ReL but that universal skin-friction coefficient Cf and normalised boundary-layer thickness

δ/ks can be found that depends only on ks/x, where x is the downstream distance. In the

long-plate limit, it is shown that the flow becomes asymptotically smooth at huge ReL at a

rate that depends on Rek. Comparisons with wind-tunnel and field data are made.

I. INTRODUCTION

The large Reynolds number limit for internal flows such as turbulent flow through a long,

rough-wall pipe are well characterized through the experiments of Nikuradse [1] and expressed

via the Moody diagram [2]. For pipe and open-channel flow, when the flow is fully developed,

turbulent, and fully rough in the sense that k+s ≡ ks uτ/ν (where ks is the nominal sand-grain

scale, uτ =
√

τw/ρ and τw is the wall drag per unit area for the rough surface) is sufficiently large,

the time-averaged friction factor or skin-friction coefficient becomes asymptotically independent of

Reynolds number at large values, and depends only on the ratio of some measure of the roughness

scale to either the pipe radius or the channel half height. Traditionally the concept of sand-grain

roughness has been utilized for a given surface by determining an equivalent sand-grain roughness

scale for which the skin-friction matches classical experimental sand-grain surface measurements

[1]. For transitionally rough flows, where typically 100 > k+s > 5, the Hama [3] velocity correction

can depend strongly on the surface roughness profile; see Jiménez [4].

There has been less attention to the effects of surface roughness at very large Reynolds number

for canonical external flows such as the zero-pressure gradient flat plate boundary layer in the

presence of uniform or variable roughness. For turbulent flow over a long flat plate of length

L and free-stream speed U∞, calculations of the drag coefficient were reported by Prandtl and

Schlichting [5, 6]. They used a piecewise model of roughness variation with k+s containing regions

corresponding to smooth, transitional and fully rough flow. The large ReL ≡ U∞L/ν limit has

been subsequently considered by several authors [7–10]. Granville [7] found that the integrated drag

coefficient CD ≡ (1/L)
∫ L

0 Cf dx was independent of ReL when this was large. The universality of
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mean-velocity profiles, skin friction, and some integral parameters for boundary layers over a variety

of rough surfaces was studied analytically, assuming fully rough conditions, and experimentally by

Castro [9]. Presently we revisit this flow using an approach that is rather simpler than the methods

of Prandtl and Schlichting and Granville and is designed to provide an analytical interpretation of

interesting and perhaps unexpected flow behavior in the large Reynolds number limit.

II. FLOW OVER A ROUGH FLAT PLATE

We consider flow of a turbulent boundary layer over a flat plate of length L with stream-wise

distance from the leading edge 0 ≤ x ≤ L. The plate surface is covered with roughness whose height

distribution above a mean value z = 0 can be described as a random function of x and span-wise

distance y, that is isotropic and homogeneous. For the purposes of this analysis we consider the

roughness to be characterized hydrodynamically by a single length-scale ks which is identified as

the equivalent sand-grain roughness. In order to obtain an integrated description of smooth to fully

rough wall flow, a Colebrook-type roughness function is used to describe the effects of roughness

from the smooth through the transitional and fully rough-wall flow regimes. A principal parameter

will be ReL. This will be assumed to be sufficiently large that the prior laminar boundary layer

and laminar-turbulent transition regions, typically in the range 0 ≤ Rex ≤ 5×105, can be ignored.

A. Mean velocity profile

We assume that the velocity profile within the boundary layer at any stream-wise station x is

given by the classical log-wake relationship

u

uτ
=

1

κ
log

(z uτ
ν

)

+
Π

κ
W

(z

δ

)

−∆U+

(

ks uτ
ν

)

+A, (1)

where κ is the Kármán constant, z a suitably defined wall-normal distance, A an offset constant,

W the wake function, Π the Coles wake factor [11]. In (1), both uτ and δ are functions of x

and ∆U(k+s ) is a roughness function that quantifies the effect of surface roughness on the mean

velocity profile. Equation (1) does not include a description of the mean velocity variation in the

viscous sub-layer, the buffer layer or a possible roughness sub-layer. The contribution to mass and

momentum transport across the whole boundary layer from these regions is expected to be small

when ReL is large, and so will not be included in the analysis to follow. We assume a Colebrook

form for transitionally rough conditions

∆U+(k+s ) =
1

κ
log

(

1 + β k+s
)

, (2)

When k+s → ∞ the choice β = eκ (A−B) allows matching to the usual fully-rough form ∆U+(k+s ) =

(1/κ) log (k+s ) +A−B.

The length scale δ is defined such that

S ≡
U∞

uτ
≡

√

2

Cf

=
1

κ
log

(

δ uτ
ν

)

+
2Π

κ
−∆U+

(

ksuτ
ν

)

+A, (3)
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whereW (1) = 2 by definition. For simplicity we use a simple model of the wake function W (z/δ) =

2 sin2 [π z/(2 δ)] . Using ksuτ/ν = (ks/x)Rex/S and δuτ/ν ≡ Reδ/S, where Reδ ≡ U∞ δ/ν, Rek ≡

U∞ ks/ν and Rex ≡ U∞x/ν = Rek x/ks, we can solve for Reδ from (3) as

Reδ = S eκ (S−A)−2Π +Rek e
κ (S−B)−2Π. (4)

B. Momentum thickness and Kármán integral relation

The momentum thickness θ is

θ =

∫ δ

0

u

U∞

(

1−
u

U∞

)

dz. (5)

Using (1) in (5) and integrating then gives

Reθ = Reδ(S)F (S) , F =
κS − 2− 3

2 Π
2 +Π(κS −Q)

κ2 S2
(6)

where Q = (2/π)[π + Si(π)] and Si(π) ≡
∫ π

0 [(sin z)/z] dz = 1.85194 and hence Q = 3.17898. As

noted earlier the above ignores the contribution of the viscous sub-layer, the buffer layer and/or a

roughness sublayer.

For a zero pressure-gradient boundary layer, the Kármán integral relation can be written as

dReθ
dRex

=
1

S2
, (7)

where Reθ ≡ U∞ θ/ν. Considering Reθ = Reθ(S(Rex)), using the chain rule for differentiation and

(6), and integrating with Rek and other parameters fixed, we find that

Rex −Rex0
=

∫ S

S0

S′2 d

dS′

[

Reδ(S
′)F (S′)

]

dS′. (8)

The choice S0 = 0 gives a divergent integral. At the cost of considerable complexity, this can be

resolved by matching to a prior laminar boundary layer at some transition point Rex0
= O(105).

Instead, we use a simple cutoff S0 = O(1). Further, the contribution from the limit of integration

S = S0 can also be shown to be small when Rex ≫ O(105). Since this can be expected to have

negligible effect on integrated quantities when ReL = O(108), this will also be neglected. Alter-

native methods for handling the singularity have been used: see for example Castro [9] equation

(3.2).

Integrating (8) with Rek fixed and neglecting the contribution from S = S0, using Rek =

(ks/x)Rex then gives

Rex =
eκ (S−A)−2Π

κ3
K1(S) +Rex

(

ks
x

)

eκ (S−B)−2Π

κ2
K2(S), (9)

K1 = Π2 (3− 3
2 κS) + Π (2 − 2κS + κ2 S2 +Q (2− κS)) + (6− 4κS + κ2 S2), (10)

K2 = (κS − 4−Π(2− κS +Q)− 3
2 Π

2) + (4 + 2ΠQ+ 3Π2) Ei(κS)e−κ S , (11)
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where Ei(x) = −
∫

∞

−x
e−t/t dt is the exponential integral. If κ,A,B,Π are specified, (9) provides

a relation between (Rex, ks/x, S) or alternatively (Rex, Rek, S). Calculations for specific cases

are straightforward. All discussed subsequently were performed using the symbolic manipulator

Mathematica which provides special function capability for accurate calculation of Ei(x). As a

check, some particular cases were calculated using asymptotic forms of Ei(x). Figure 1 shows

resulting solutions from (9) for lines of constant Rek (black curves) and lines of constant ǫ = ks/x

(blue curves) using κ = 0.384, A = 4.17, B = 8.5 and Π = 0.53.

Note that for a homogeneously distributed roughness of unvarying ks along a flat plate, the

black lines denote fixed unit Reynolds number (U∞/ν) and increasing x, while the blue curves

denote fixed x and increasing unit Reynolds number.
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FIG. 1: Local friction coefficient Cf versus Rex for fixed ǫ = ks/x and fixed Rek. Blue solid lines; top

to bottom: ǫ = 10−3, 3 × 10−4, 10−4, 3 × 10−5, 10−5, 3 × 10−6, 10−6. Black lines; top to bottom: Rek =

3× 104, 104, 3× 103, 103, 3× 102, 102, 30. Red curve shows the smooth wall (Rek = 0).

C. Drag coefficient

The drag coefficient for a plate of length L is

CD =
1

L

∫ L

0
Cf dx =

1

L

∫ L

0

2

S2
dx =

2

ReL

∫ ReL

0

1

S2
dRex. (12)
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Using (7) this can be written in the form

CD =
2

ReL

∫ ReL

0

dReθ
dRex

dRex = 2
Reθ(SL)

ReL
, (13)

where we have used θ(x = 0) = 0 and defined SL ≡ S(ReL). Utilizing (6) and again using that

Rek = (ks/L)ReL we obtain an explicit formula for CD

CD = 2
1

ReL

(

SLe
κ (SL−A)−2Π +ReL

(

ks
L

)

eκ (SL−B)−2Π

)

κSL − 2− 3
2 Π

2 +Π(κSL − Q)

κ2 S2
L

.

(14)

III. TWO LIMITING CASES

Two distinct limits are of interest. These are referred to as the fully rough-wall and long-plate

limits respectively. For most practical applications at large but finite ReL = O(108 − 1010) and

typical values of ks/L, the rough-wall limit is of most interest. We consider the kinematic viscosity

ν to be fixed.

A. Fully rough-wall flow

(a)
❄

✻δx

✲✛ x
smooth

U∞

(b)
❄

✻δx

✲✛ xfully
rough

FIG. 2: Schematic demonstrating development of boundary layer along a hull for various different unit

Reynolds number, under (a) smooth and (b) fully rough conditions. Lighter shaded profiles denote higher

free-stream velocities. Homogenously distributed roughness of constant ks is assumed for the fully rough

case. Boundary layer growth is exaggerated and indicative only.

First let Rex → ∞ by increasing the unit Reynolds number U∞/ν at fixed ǫ. Here ǫRex → ∞

and the first term on the right-hand side of (9) can then be neglected. This gives the rough-wall
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limit

1

ǫ
≡

x

ks
=

eκ (S−B)−2Π

κ2
K2(S), (15)

This equation shows explicitly that in the fully rough limit, S is a function of ks/x only, or since

S2 = 2/Cf , the local skin friction coefficient is only a function of ks/x and is independent of Rex.

Solutions to (15) are plotted on figure 1 as blue dashed lines.

Similarly, the rough-wall limit of (4) can be taken by letting ǫRex → ∞ with ǫ fixed to give

δ = ks exp[κ (S −B)− 2Π] or equivalently the well known form,

S =
1

κ

(

log

(

δ

ks

)

+ 2Π

)

+B. (16)

Recall that (15) has already shown that in the rough wall limit, S (and hence Cf ) are invariant with

unit Reynolds number at fixed ks/x (see blue dashed curves on figure 1). Combining this result

with (16), demonstrates that in the fully rough limit, for fixed ks/x, δ/x must also be constant,

i.e.

δ

x
=

δ

ks

(

S

(

ks
x

))

·
ks
x

= G

(

ks
x

)

. (17)

In practise, this suggests that for a flat plate (or say a ship’s hull) homogeneously covered with

roughness of height ks, under fully rough conditions the boundary layer thickness at some fixed

distance downstream from the leading edge (δ), must be invariant with unit Reynolds number.

This result is somewhat counterintuitive, since for the smooth surface we know that δ remains

a function of U∞/ν (Note that for the smooth wall, with ks/x = 0 in (9), we find that S is a

function of Rex, and hence from (3) with ∆U+ = 0 we see that δ is a function of x and Rex).

This result is illustrated schematically for the ship case in figure 2; A smooth hull yields boundary

layer profiles that are a function of freestream velocity (plot a), while under fully rough conditions

the profiles are invariant with unit Reynolds number (b).

This result, while implicit in Granville [7] (who shows that CD depends only on L/ks), is

perhaps not widely known in the broad turbulence research community, but equations (15) and

(16) offer a succinct explicit demonstration of this. It is possible to find proof of this tendency

in the literature. Figure 3 shows data from Squire et al. [12] for smooth and rough surfaces (P36

grit sandpaper). Figure 3(b) shows the boundary layer thickness at x = 21.7 m downstream of

the inlet to the working section (δ21.7) for both the smooth and rough surfaces as a function of

the freestream velocity U∞. Since the rough surface is not altered, these data are at fixed ks/x.

Note that for the smooth surface, the boundary layer thickness at x = 21.7 m, decreases as a

function U∞. However, for the rough surface, once the fully rough limit is approached (k+s is

shown on figure 3a), the boundary layer thickness becomes invariant with unit Reynolds number

(U∞ in this case), confirming the result from (17). As a validation of the formulation presented

here, the blue dashed line on figure 3 shows the corresponding numerical solutions obtained by

letting ks/x = 1.96 × 10−3/21.7 in (9) and (4). It should be noted that the experiments of Squire

et al. [12] are unique in the sense that (i) they studied a high Reynolds number boundary layer
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FIG. 3: (b) Variation of boundary layer thickness at x = 21.7 m with free-stream velocity as reported

by Squire et al. [12] for the Melbourne University High Reynolds Number Boundary Layer Wind Tunnel

HRNBLWT for (star symbols) rough test surface, consisting of P36 grit sandpaper, with a determined

ks = 1.96mm; (circle symbols) smooth surface. Gray curves show fits to the data. Blue dashed curve shows

numerical solutions from (9) and (4) evaluated for ks/x = 1.96× 10−3/21.7 = 9.03× 10−5. (a) shows k+s for

the rough surface corresponding to U∞.

(we note from Figure 1 that Rex ≈ O(107) is required to observe constant Cf at fixed ks/x); (ii)

they used an independent and accurate measurement of Cf using a floating plate drag balance;

(iii) had a sufficiently small blockage k/δ such that assumptions of outer layer similarity (and

assumptions about the logarithmic form of the mean velocity profile) were unlikely to be violated;

(iv) employed testing at fixed x and multiple different unit Reynolds numbers U∞/ν; (v) presented

boundary layer thickness data in tabulated form. However, there are other rough wall studies in

developing turbulent boundary layers where constant Cf as a function of Rex can be approximately

observed. Specifically here we note that Schultz & Flack [13] show Cf becoming nominally constant

with Rex for both their uniform spheres and uniform spheres with grit cases, and in these cases

(particularly the latter), it is clear δ seems to be tending to a constant (in particular when compared

to the variation of δ with Rex for the smooth surface). Similar tendencies are also observed for the

220-grit and 60-grit sandpapers studied in Schultz & Flack [14].

The fact that Cf and δ/ks are both invariant with unit Reynolds number in the fully rough limit

and for fixed ks/x, suggests that all mean velocity profiles under these conditions must collapse

under the scaling z/ks vs. U+. Figure 4 demonstrates this, showing with symbols, the data from

[12] at fixed ks/x (fixed roughness ks = 1.96 mm, x = 21.7 m) in the fully rough state ks & 70,

corresponding to U∞ = 15.2, 20.6, 25.4 & 30.4 ms−1. The boundary layer thickness δ21.7 and k+s
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FIG. 4: Velocity profiles at constant ks/x in the fully rough condition (k+s > 70). Symbols show data from

Squire et al. [12] at x = 21.7 m, for U∞ = 15.2, 20.6, 25.4, 30.4 ms−1 corresponding to k+s > 70. Lines show

the mean profiles from the present calculations at matched conditions. Lighter shaded profiles and symbols

denote higher freestream velocities. Dashed line shows U+ =
1

κ
log

z

k
+B.

corresponding to these freestream velocities are shown previously in figure 3. The solid lines show

the mean profiles predicted from the previous calculations for matched conditions. These profiles

are calculated by using ks/x = 1.96 × 10−3/21.7 into (9), to yield S as a function of U∞, which

can then be used in (4) to obtain δ21.7 and hence into (1) to obtain the mean profiles. The results

in Figure 4 suggest very good collapse under this scaling. The only departures are where expected

in the viscous near wall dominated profile that has not been modelled here.

For, completeness, the integrated drag coefficient for the entire flat plate of length L can be

calculated for the fully rough-wall case by substituting the limit ReL → ∞ into (14) to give

CD = 2

(

ks
L

)

eκ (SL−B)−2Π κSL − 2− 3
2 Π

2 +Π(κSL −Q)

κ2 S2
L

. (18)

The solid lines blue and black curves on Figure 5 show CD as a function of ReL for both constant

Rek and constant ks/L respectively, as calculated from (14). The blue dashed lines show the fully

rough CD as given by (18).

B. Long-plate limit

We now keep Rek = ǫRex fixed and let x → ∞, corresponding to keeping the unit Reynolds

number U∞/ν and ks fixed while increasing the plate length. We refer to this as the long-plate
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FIG. 5: Integrated drag coefficient CD versus ReL for fixed ǫL = ks/L and fixed Rek. Blue solid lines;

top to bottom: ǫL = 10−3, 3 × 10−4, 10−4, 3 × 10−5, 10−5, 3 × 10−6, 10−6. Black lines; top to bottom:

Rek = 3× 104, 104, 3× 103, 103, 3× 102, 102, 30. Red curve shows the smooth wall (Rek = 0).

limit. It was recognized by Prandtl and Schlichting [5] from the trend of their numerical solutions,

but they do not provide supporting analysis. The long-plate limit corresponds to moving along a

hyperbola with fixed Rek in the ǫ − Rex plane: ǫ → 0 while Rex → ∞ with both Rek and the

unit Reynolds number U∞/ν remaining constant. It is then not clear a priori which term on the

right-hand side of (9) becomes dominant when Rex → ∞, and therefore, whether either a smooth

or rough-wall limit is approached. Using that Ei(x) ∼ ex/x when x → ∞, for S ≫ 1, (9) can be

written as

Rex ∼
eκ (S−A)−2Π (1 + Π)S2

κ
+Rek

eκ (S−B)−2Π (1 + Π)S

κ
. (19)

The first term on the right-hand side is quadratic while the second term is linear in S. Hence as Rex
is increased at fixed Rek, S increases such that when S > Rek, the first term become dominant.

This is sufficient to show that a smooth-wall limit is approached. An alternative interpretation

is that k+s ≡ Rek/S decreases monotonically and eventually enters the sub-layer when k+s ∼ 5.

This then corresponds to a boundary layer, flowing over roughness of constant scale ks, becoming

asymptotically smooth when x → ∞ at fixed U∞/ν.

Figure 1 provides clear evidence of this long plate limit. It is noted that all constant Rek curves

(black lines) are tending towards the smooth limit (red curve) at high Rex. However, this limit is

of little practical engineering relevance. If we consider the case of a ship operating at U∞ = 8.7

ms−1 and ν = 8.97 × 10−7 (as considered in [15]), we find that even for Rek = 100, corresponding

to a very moderate fouling of ks ≈ 10µm, for the rough wall Cf to be within 2% of the smooth

wall limit requires Rex ≈ 3.2× 1013 equating to a plate length in excess of 1000 km.
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IV. CONCLUDING REMARKS

Although implicit algebraic expressions are here derived for various quantities relevant to a

turbulent boundary layer over a uniformly rough flat plate under a uniform free stream, the em-

phasis here is on interpreting the behaviour of these quantities under two distinguished limits as

U∞L/ν → ∞: i) ks/L fixed, called the fully rough limit and ii) U∞ks/ν fixed, called the long-plate

limit. Whilst it is well appreciated that the drag coefficient CD approaches a constant in the fully

rough limit, it is perhaps underappreciated that both the local skin-friction coefficient Cf and

the roughness-normalised boundary-layer thickness δ/ks approach universal dependencies on x/ks.

Physically, this behaviour is easily observed when the boundary-layer thickness at a particular

station approaches a constant with increasing free-stream speed, an observation we show to be

corroborated by data in the literature. In the long-plate limit, it is shown that the flow approaches

the behaviour of a smooth wall, essentially because the skin-friction, and hence the friction velocity,

has reduced with downstream distance to a sufficiently small value such that ksuτ/ν . 5. However,

very large Reynolds numbers are required to observe this limit.
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