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We report on an experimental study of the large-scale flow (LSF) and of Reynolds numbers in
turbulent convection in a cylindrical sample with height equal to its diameter and heated locally
around the center of its bottom plate (locally heated convection or LHC). The sample size and shape
were the same as those of Narezo Guzman et al. [J. Fluid Mech. 787, 331 (2015); 795, 60 (2016)]
(NG). Measurements were made at a nearly constant Rayleigh number as a function of the mean
temperature, both in the presence of controlled boiling (2-phase flow) and for the superheated fluid
(1-phase flow). Superheat values Tb − Ton up to about 11 K (Tb is the bottom-plate temperature
and Ton is the lowest Tb at which boiling is observed) were used. The LSF was less organized than
it is in (uniformly heated) Rayleigh-Bénard convection (RBC) where it takes the form of a single
convection roll. LSF-induced sinusoidal azimuthal temperature variations (such as are found for
RBC) could be detected only in the lower portion of the sample, indicating a less organized flow in
the upper portions. Reynolds numbers were determined using the elliptic model (EM) of He and
Zhang [Phys. Rev. E 73, 055303(R)]. We found that for our system the EM is applicable over a
wide range of space and time displacements, as long as these displacements are within the inertial
range of the temporal and spatial spectrum. At three locations in the sample the results showed
that the vertical mean-flow velocity-component is reduced while the fluctuation velocity is enhanced
by the bubbles of the 2-phase flow. Enhancements of velocity fluctuations up to about 60% were
found at the largest superheat values. Local temperature measurements within the sample revealed
temperature oscillations which also were used to determine a Reynolds number. These results were
generally consistent with the mean-flow EM results, and showed a 2-phase-flow enhancement of up
to about 30%.

I. INTRODUCTION

Boiling usually involves the process of heterogeneous
vapor-bubble nucleation, where the bubble formation in
a heated liquid is initiated by microscopic foreign ob-
jects such as suspended dust particles or by chemical or
geometric inhomogeneities at the heated surface. Here
we are concerned with boiling in a liquid contained be-
tween two parallel horizontal plates, with the lower one
heated to a temperature Tb above a characteristic tem-
perature Ton where vapor-bubble formation first starts
when nucleation centers are present. The upper surface
was cooled to Tt well below Ton. In the absence of boil-
ing this system is well known as Rayleigh-Bénard convec-
tion (RBC) where the fluid undergoes vigorous turbulent
single-phase flow (for a general introduction to RBC, see
e.g. [1] or [2]; for more detailed reviews see e.g. [3–5]).

In RBC a large-scale circulation (LSC) (see e.g. [6–
10]) co-exists with intense smaller-scale fluctuations of
the temperature and the velocity. In the case of samples
with nearly equal horizontal and vertical size the LSC
takes the form of a single convection roll, with up-flow
and down-flow on opposite sides of the sample near the
side wall. The dynamics of the LSC is driven by the
smaller-scale fluctuations, and thus the LSC amplitude
and azimuthal orientation θ0 vary irregularly in time [11–
15]. The time-averaged temperature in the interior (bulk)

of the fluid varies only weakly with vertical and horizon-
tal position [16–22], and two boundary layers (BLs), one
below the top and the other above the bottom plate, sus-
tain most of the applied temperature difference [23–26].
Hot thermal plumes emanate from the bottom and cold
ones emerge from the top BL. They are carried by, and by
virtue of their buoyancy in turn drive, the LSC [3, 4, 27].

In a recent study it was found that the excess heat
transport due to the formation of liquid droplets (“rain”)
under a solid top plate confining a RBC sample of vapor
was very reproducible [28]. For this and other reasons the
authors concluded that the droplet formation occurred
via homogeneous nucleation in the top BL and did not
involve nucleation centers on the top surface per se. In
contrast, the same study showed that boiling over the
heated bottom plate of a RBC sample of liquid was very
irreproducible and initiated by heterogeneous nucleation.
The irreproducibility is attributable to the uncontrolled
microscopic nature of the roughness of the macroscopi-
cally smooth top surface of the bottom plate. The irre-
producibility of heterogeneous nucleation interferes with
a systematic, quantitative study of the boiling process.

The irreproducibility problem mentioned above was
overcome recently by Narezo-Guzman et al. [29, 30] (to
be referred to as NG). The top surface of the bottom
plate of their sample was that of a thin silicon wafer.
Etched into the wafer was a triangular lattice of cylin-
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drical holes that were 100 µm deep and had a diameter
of 30 µm. The holes, when filled with vapor while the
sample above them was almost entirely liquid, acted as
reproducible nucleation centers of vapor bubbles. When
the holes were filled with liquid, no nucleation took place
and the super-heated single-phase RBC flow could be
studied for comparison with the same externally applied
parameters such as the excess bottom-plate temperature
Tb−Ton (known as the “superheat”) and the temperature
difference ∆T = Tb − Tt across the sample.

Initial experiments by NG [29] with a silicon wafer sup-
ported and heated over its entire area by a copper plate
revealed that nucleation took place also at the corner
where the sidewall meets the bottom plate (see Fig. 1
below). For this reason the authors then used a compos-
ite bottom plate. It consisted of a 10 cm diameter silicon
wafer, but only the central circular area of 2.54 cm diam-
eter was supported by a copper anvil where heat was ap-
plied to the sample. This system differs significantly from
RBC where the entire bottom plate is heated, and we
shall refer to it as locally-heated convection (LHC). Since
only the center of the bottom plate is heated, the corre-
sponding conductive heat flux of the LHC cell is different
from that of the classical RBC system [29, 30]. The lat-
tice of nucleation centers extended only over the heated
central area. The remainder of the wafer was supported
on its underside by a plastic disc that reached from the
anvil to the sidewall. The low conductivity of the plastic
allowed a horizontal temperature gradient to develop in
the bottom plate. Thus, the junction of the bottom plate
and the sidewall was well below Ton and did not lead to
nucleation even when the 2.54 cm diameter central area
was well above Ton. The high conductivity of the sup-
porting copper anvil allowed nucleation at a controlled
nearly uniform temperature. The excess heat transport
[29] due to boiling was measured as a function of the su-
perheat and of the nucleation-center lattice-spacing, and
many aspects of the bubble nucleation and dynamics [30]
were studied using high-speed videography.

One of the conclusions of NG [30] was that the large-
scale flow (LSF) in LHC differs in a major way from that
in RBC, and that it is significantly enhanced by the buoy-
ancy of the rising bubbles. Much of the heat-transport
enhancement due to boiling was found to be due to this
enhanced flow with only a relatively small fraction due
to the latent heat carried by the bubbles. In the present
paper we report on a study in the presence and absence
of boiling for the same sample geometry as that used
by NG. However, our sample contained a much larger
number of local temperature probes that enabled us to
obtain information about the LSF structure and about
the local mean-flow velocity U (see Eq. 5 below) and fluc-
tuation velocity V (Eq. 7 below) and their corresponding
Reynolds numbers (Eqs. 6 and 8 below).

The system parameters and experimental details are
provided in Sect. II and Sect. III respectively.

Local temperature measurements were made at ten lo-
cations within the bulk of the sample (see Table I). The

corresponding temperature auto- and cross-correlation
functions were used to obtain local values of U and V
using the predictions of the elliptic approximation (EA)
of He and Zhang [31] (for a recent review see Ref. [32])
and the assumption that temperature behaves as a pas-
sive scalar [33, 34] and exhibits self-similarity scaling in
the inertial range [35]. We discuss the application of the
EA results to our data, and summarize the EA predic-
tions [31, 36–38] relevant to our work in Sect. IV.
We carried out heat-transport measurements (Sect.

VA) the results of which largely agreed with those of
NG and thus showed that the insertion of local tempera-
ture probes into the sample did not significantly alter this
global property. Results for the LSF reported in Sect.
VB indicate that the flow structure for LHC is more dis-
organized than it is for RBC, and that this structure is
significantly influenced by the vapor-bubble injection into
the bulk. The results for the Reynolds numbers ReU and
ReV corresponding to U and V are given in Sect. VC.
Several other Reynolds numbers can be defined based on
oscillation frequencies observed within the sample. The
results for them are given in Sect. VD1 and VD2.
The paper concludes with a discussion and summary

of the most important results.

II. CONTROL AND RESPONSE PARAMETERS

We studied convection in cylindrical cells of diameter
D and height L. The horizontal bottom plate was heated
to a temperature Tb and the parallel top plate was cooled
to a temperature Tt. When ∆T = Tb−Tt is not too large,
fluid properties can be assumed to be constant and the
Oberbeck-Boussinesq approximation applies [39, 40]. In
that case the Rayleigh number

Ra =
αg∆TL3

νκ
(1)

and the Prandtl number

Pr =
ν

κ
(2)

specify the state of the system. Here g is the gravitational
acceleration, and α, κ and ν are the isobaric thermal ex-
pansion coefficient, the thermal diffusivity, and the kine-
matic viscosity at the center temperature. In addition,
the aspect ratio

Γ ≡ D/L (3)

specifies the geometry of the cylindrical sample.
A global response of the system to the applied temper-

ature difference is the heat flux from the bottom to the
top plate as expressed by the Nusselt number

Nu =
QL

Aλ∆T
(4)

which relates the overall heat-current density Q/A to the
purely conductive heat flux λ∆T/L in the absence of
convection (λ is the thermal conductivity of the fluid).
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As discussed in the Introduction, in our system only a
central circular area Ah smaller than A was heated while
the cooling area at the top plate Ac was equal to A. In
Eq. 4 we used Ah, as was done also by NG [29].
Another system response is a turbulent flow with a

vertical velocity component u(t) which has a mean value

U = 〈u(t)〉 (5)

(〈...〉 denotes the time average). This mean velocity will
vary with the location within the sample. In RBC where
the LSC corresponds to a single convection roll it vanishes
at the sample center and its absolute value reaches a
maximum near (but not too near) the sidewall (see, for
instance, Ref. [8]). It is described by the dimensionless
Reynolds number

ReU =
UL

ν
. (6)

The local velocity, in addition to having a non-zero
mean value almost everywhere, is also highly fluctuating.
Thus another quantity of interest is the root-mean-square
fluctuation velocity

V = 〈[u(t)− U ]2〉1/2 (7)

and the associated Reynolds number

ReV =
V L

ν
. (8)

In RBC V is much more uniform throughout the sample
than is U .
Reynolds numbers also can be defined in terms of the

periods or frequencies of several experimentally accessible
signals. One of these is the period T ac of oscillations in
the temperature time-series measured with thermistors
imbedded in the sidewall. In addition, the period T sl of
a lateral displacement of the LSC circulation plane (the
sloshing mode) can be deduced from a Fourier analysis
of eight azimuthally distributed sidewall temperatures.
Finally, an oscillation frequency f0 can be determined
from temperature time series determined locally within
the fluid. These Reynolds numbers are give by

Reac =
L2

νT ac
, Resl =

L2

νT sl
, Ref0 =

L2f0
ν

. (9)

It is found that Resl, Reac and Ref0 are equal to each
other within experimental error.
We shall describe locations within the sample by the

vertical distance z or z/L from the bottom plate and by
the radial location

ξ ≡ 1− r/R (10)

where r is the horizontal distance from the vertical center
line and R = D/2 is the sample radius.

FIG. 1. Schematic drawing of the apparatus.

III. EXPERIMENTAL PROCEDURE

1. The apparatus

The apparatus is shown schematically in Fig. 1 and
was described before by NG [29]. The cylindrical cell in
which the convection took place was located in a dry can
and was surrounded by air. All empty spaces within the
can were filled with foam to prevent convection of the air
and to thus reduce radial heat flux out of the cell. The
temperature of the sapphire top plate was held constant
by a circulating-water bath of temperature T ∗

t . The out-
flow of the circulating water surrounded the can, thus
providing a constant-temperature environment. A cop-
per cylinder with a diameter Dh = 2.54 cm was glued
to the center of the silicon bottom plate and was heated
to a temperature T ∗

b . Because T ∗

t and T ∗

b are the tem-
peratures of the plates at the outside of the cell, a small
correction was made to obtain the temperatures of the
bottom plate Tb and top plate Tt in contact with the fluid
(see NG [29]).
The central heated area of the bottom plate coincided

with an area of the silicon wafer covered by cylindrical
cavities with a diameter of 30 µm and a depth of 100 µm,
arranged on a triangular lattice. The center-to-center
distance between two neighboring cavities was l = 600
µm, resulting in a total of N = 1570 cavities. Bubble
formation at the cavities is illustrated in Fig. 2 by a
snapshot taken from above.
We used two cells (A and B) described in detail below

in Sect. III 2 and III 3. They were of the same size and
shape but had different arrangements of local tempera-
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FIG. 2. Image of bubble formation at bottom-plate cavities
as viewed from the top (from NG [29]). Bubbles form only at
the cavities on a triangular lattice.

ture probes. They had a height L = 88.3 mm and an
aspect ratio Γ = 1.00.
The applied temperature difference was nominally con-

stant, but actually ranged from about 15.8 K to about
16.8 K. The bottom temperature was varied from about
29.9◦C to about 41.7◦C so as to cover a range of super-
heat values. The nominally constant Rayleigh number
varied from about 1.7× 1010 to about 2.0× 1010.
The mean-flow Reynolds number ReU in RBC varies

with position and thus comparison between various mea-
surements is complicated. However, in the bulk of
RBC the fluctuation Reynolds number ReV depends only
weakly on position and comparison with other work is
more direct. Thus we mention here that ReV was mea-
sured for RBC over a wide range of Pr and Ra by Lam
et al. [43]. Their data could be represented by ReV =
0.84Ra0.40Pr−0.86. For our typical value Ra = 1.85×1010

and our Pr close to 8 this yields ReV ≃ 1800.

2. Cell A

As described elsewhere (see e.g. Ref. [13]), twenty four
thermistors were located in blind holes in the sidewall of
cell A, with each of them yielding a local temperature
measurement. Groups of eight were each equally spaced
azimuthally at the three heights z/L = 0.25, z/L = 0.50
and z/L = 0.75. These vertical locations will be iden-
tified as k = b,m, and t respectively. Relative to an
arbitrarily chosen origin the thermistors were located at
azimuthal positions θt,i = (2i + 1)π/8, i = 0, ..., 7 in
the counter-clockwise direction when viewed from above.
The blind holes had a depth of 5.3 mm, which made the
distance between the thermistors and the fluid as small
as possible. This cell had no thermistors located in its
interior.
The analysis for cell A was based on twenty four si-

multaneous temperature time-series obtained from the
twenty four thermistors for each set of external con-
straints (superheat value, 1- or 2-phase flow). The time
series consisted of typically 2 × 104 data points for each
thermistor at time intervals of δt ≃ 1.9 s, thus covering

FIG. 3. Photograph of a type 111-104HAK-H01 (0.36 mm
diameter) thermistor mounted through its 0.9 mm diameter
ceramic rod. Adapted from Fig. 2 of Ref. [21].

a time span of more than 10 h.

3. Cell B

As for cell A, cell B had eight thermistors at the same
azimuthal positions and in blind holes in the sidewall at
the mid-height z/L = 0.50 (but not at z/L = 0.25 and
0.75). In addition there were ten Honeywell type 111-
104HAK-H01 thermistors inside the fluid at the locations
given in Table I. As shown in Fig. 3, they were mounted
on ceramic rods with a diameter of 0.80 mm as described
in Refs. [21, 22, 41]. We did not observe measurable
effects of bubble-probe interactions. The rods were in-
serted through holes, also of nominally 0.80 mm diame-
ter, in the 6.4 mm thick plexiglas side wall. While the
vertical hole locations in the wall were known with high
accuracy, there were two possible contributions to the un-
certainties of the vertical thermistor locations. One came
from any tilt of the rods relative to a line orthogonal to
the cylinder axis. We believe this to be very small, prob-
ably no more than 0.2 mm on the sample axis (ξ = 1.00)
and much less near the side wall (ξ = 0.125). Another
possible contribution came from the suspension of the
thermistors by their 0.10 mm diameter platinum leads
(see Fig. 3). Because of the fragile nature of these leads
the vertical position of the thermistor center is estimated
to be uncertain by about 0.3 mm. Thus the total uncer-
tainty is close to 0.5 mm. Similarly we estimate that the
uncertainty of the distance δz between adjacent thermis-
tors is about 0.7 mm. This number will be used below
for the error bars in Fig. 7.
As indicated in Table II, there were three sets, each

consisting of three thermistors. For each set there was a
vertical distance of about 5.1 mm between the lower and
middle thermistor and about 6.3 mm between the mid-
dle and upper thermistor. Thus three cross-correlation
functions could be obtained from each set, as indicated
in Table II. The middle thermistor of the two sets on
the vertical center line (i.e. ξ = 1.00) was located at
z/L = 0.25 and z/L = 0.50. The third set was located
near the sidewall at ξ = 0.125, with its middle thermistor
at z/L = 0.50. Finally, a single thermistor was located
on the center line (ξ = 1.00) at z/L = 0.75.
For cell B the time interval of consecutive tempera-

ture measurements was δt = 0.06 s. In that case a single
data segment could gather 50000 data points per ther-
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TABLE I. The identifiers ID, and the radial and vertical loca-
tions, of the internal thermistors in cell B. The sample height
was L = 88.3 mm and the radius was R = 44.13 mm. The
angle θt (in rad) is the azimuthal location, measured in a
counter-clockwise direction when viewed from above, of the
insertion of the thermistor.

ID R − r (mm) ξ z (mm) z/L θt

V0-1 44.15 1.00 17.0 0.192 0

V0-2 44.15 1.00 22.1 0.250 0

V0-3 44.15 1.00 28.4 0.322 0

V0-4 44.15 1.00 39.1 0.443 0

V0-5 44.15 1.00 44.1 0.500 0

V0-6 44.15 1.00 50.5 0.572 0

V1-4 5.52 0.125 39.1 0.443 π

V1-5 5.52 0.125 44.1 0.500 π

V1-6 5.52 0.125 50.5 0.570 π

V0-7 44.15 1.00 66.2 0.750 π

TABLE II. The identifiers ID1 and ID2 of thermistor pairs
used to evaluate the time intervals τp and τd. The spacings
between the members of the pairs are δz, and the mean ver-
tical locations of the pairs are z̄/L.

Set ID1 ID2 ξ δz (mm) z̄/L θt

1 V0-1 V0-2 1.00 5.1 0.221 0

1 V0-2 V0-3 1.00 6.3 0.286 0

1 V0-1 V0-3 1.00 11.4 0.272 0

2 V0-4 V0-5 1.00 5.0 0.472 0

2 V0-5 V0-6 1.00 6.4 0.536 0

2 V0-4 V0-6 1.00 11.4 0.508 0

3 V1-4 V1-5 0.125 5.1 0.472 π

3 V1-5 V1-6 0.125 6.4 0.536 π

3 V1-4 V1-6 0.125 11.4 0.508 π

mistor, corresponding to about 50 minutes. At each su-
perheat twenty such segments were measured, and cor-
relation functions and spectra were calculated from each
segment and averaged over all twenty.

4. Working fluid and bubble nucleation

The working fluid was NovecTM-7000 manufactured by
3MTM. Its physical properties are well documented [44].
It was chosen because it has the experimentally conve-
nient relatively low boiling temperature Tφ ≃ 34◦C at
atmospheric pressure. The fluid in the cell was connected
to a reservoir placed at an elevation of 1.16 m above the
bottom plate. The surface of the fluid in the reservoir
was exposed to atmospheric pressure, and at the bot-
tom plate provided a hydrostatic pressure of 16.0 ± 0.3
kPa in addition to atmospheric pressure. The properties

needed to evaluate Ra, Pr, Nu, and Re were evaluated at
the measured center temperature Tc (for details see [29]).
The Prandtl number was close to eight for all measure-
ments.
The filling procedure of the cell and the measurement

protocol were described in detail by NG [29]. During
all of our measurements the bubbles emanating from the
bottom plate re-dissolved before reaching the top plate;
thus no vapor layer ever formed above the liquid. Our
goal was to better understand the flow profile in 1- as
well as in 2-phase flow and to measure the corresponding
Reynolds numbers for different values of superheat, while
keeping the thermal forcing ∆T constant.
The data presented in the paper are all well-converged.

However, unavoidably there are also systematic errors.
For those connected with the sample-filling process, etc.,
the scatter of the data provides an estimate on the error
of the measurements.

IV. PREDICTIONS AND TESTS OF THE

ELLIPTIC APPROXIMATION

A. Range of applicability of the elliptic

approximation

The EA [31] is a second-order Taylor-series expansion
of the correlation function C(τ, δz) in space and time
about C(0, 0) = 1. Thus it is a controlled approximation
valid for sufficiently small time and space increments τ
and δz. It shows that, for small τ and δz, contours of
equal correlation in the τ − δz plane are ellipses. In the
derivation of local velocities from temperature correlation
functions it is assumed that temperature behaves as a
passive scalar; this is the case in the bulk of RBC as
shown in Refs. [33, 34]. The EA is valid in turbulent
systems with strong fluctuations, such as RBC, where
the Taylor frozen-flow approximation (see, e.g. [45]) is
not applicable.
As can be seen from Figs. 4 and 6, the maximum val-

ues of the cross-correlation functions are well below unity.
Thus one might expect that the EA would fail for data
such as those in these figures. However, He and Zhang
[31, 36] argued that the applicability of the EA extends
to exceptionally large values of τ and δz because of the
Kolmogorov similarity hypothesis which implies that, in
the inertial range of δz and τ , the contours of equal cor-
relation should remain elliptic with the same axis ratio
and orientation as those found by the EA. The relevant
predictions of the EA are determined entirely by the axis
ratio and orientation; thus these predictions should be
applicable over the entire inertial range even though the
value of the correlation function on a given contour is
well below unity and for that reason may differ signif-
icantly from that predicted by the EA. Their analysis
[36] of channel-flow data from numerical simulation sup-
ported their argument. There they found that even data
with a maximum value of C(τ, δz) as small as about 0.4
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FIG. 4. The auto-correlation function (circles, red) and cross-
correlation function (squares, blue) for Tb−Ton = 10.6 K and
2-phase flow of thermistors V1-5 and V1-6 (δz = 6.4 mm, see
Tables I and II). The auto-correlation function is the average
of those at the two locations. The time intervals τp = −0.266
s and τd = 0.407 s are illustrated by the arrows.

conformed to the predictions of the EA. We shall refer
to the extension of the EA predictions to this extended
range of space and time as the elliptic model (EM).

B. Predictions of the elliptic approximation

Detailed derivations and summaries of relevant EA
predictions were given in Ref. [41] and the supplemen-
tary material of Ref. [42]. Here we summarize the results
needed to evaluate the present measurements.
It follows from the EA that C(δz, τ) can be written as

a function of a single variable zE:

C(δz, τ) = C(zE , 0) . (11)

Here zE is the re-scaled length

zE =
√

(δz − Uτ)2 + (V τ)2 (12)

where U is a component of the mean- flow velocity (Eq. 5)
and V is the root-mean-square deviation from U (Eq. 7).
Further predictions of the EA are given in terms of two
time intervals τp and τd that are obtained from the auto-
correlation functions at two points in space (which, for a
homogeneous system are equal to each other) and the cor-
responding cross-correlation function. Figure 4 shows an
example. As illustrated, τp is the location along the time-
delay axis of the maximum of the cross-correlation func-
tion, while τd is the time at which the auto-correlation
functions have decayed to the same value as that of the
cross-correlation function at τ = 0.
For δz small enough for the EA predictions to be ap-

plicable τp and τd are proportional to δz:

τd = α0δz, τp = αpδz . (13)

10−1 100
10−2

10−1

100

f  ( Hz )

P
( 

f )
 /

σ
2   (

 s
 )

FIG. 5. The normalized temperature power spectrum
P (f)/σ2 as a function of the frequency f in Hz for Tb−Ton =
10.6 K and 2-phase flow at the sample center. The solid line
is a power-law fit with the exponent fixed at -5/3. The verti-
cal dotted line indicated an estimate of the lower limit of an
inertial range at about 0.4 Hz.

In terms of αp and α0 the EA predicts that

Veff ≡
√

U2 + V 2 = 1/α0 , (14)

U = αp/α
2

0 , (15)

and

V =

√

1− (αp/α0)2

α0

. (16)

We used Eqs. 15 and 16 to determine U and V . The
results for U and V and Eq. 12 were used to compute
zE.
Based on the EA one can derive a space-time equiva-

lence which makes it possible to obtain the spatial tem-
perature spectrum E(k) from the temporal temperature
spectrum P (f). The equivalence is obtained by trans-
forming the time coordinate to the spatial coordinate ac-
cording to

z = Veff τ (17)

where Veff is given by Eq. 14.

C. Expected range of applicability of the EM for

the experimental conditions of this study

We show in Fig. 5 the normalized power spectrum of
the temperature measured at the sample center (other
locations yield consistent results but are less definitive
because of the appearance of a peaks in the spectrum
from the sloshing and/or torsional modes in the lower
decade of the inertial range). One sees that there is no
wide range of the frequency over which a unique power
law gives a good fit. This is due primarily to the onset
of viscous dissipation already at frequencies somewhat
below one Hz. However, as indicated by the solid line,
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there is a range over which the Obukhov-Corrsin spec-
trum [46, 47] with an exponent of -5/3 fits the data. De-
viations from this power law at low frequencies occur be-
low about 0.4 Hz, and this frequency might be used as an
estimate of the lower limit fI of the inertial range. A sim-
ilar analysis, but using an exponent of -7/5 as suggested
by Bolgiano and Obukhov [48, 49] yields a similar, albeit
slightly lower, value of about 0.3 Hz. Similar results are
obtained for all of our runs. Thus we estimate that in
our experiment the inertial range covers time intervals
smaller than 1/fI = τI ≃ 2.5 s.
For the example of Fig. 5 the EA analysis yielded

Veff = 9.5 mm/s (for all of our runs we found Veff & 6
mm/s), thus indicating (Eq. 17) that the inertial range
in this case would extend up to about δzI = τIVeff ≃ 24
mm. If the arguments of He and Yang regarding the
range of applicability of the EA are valid, then we would
expect that our values of δz . 12 mm and our results for
|τp| . 0.9 s and τd . 1.8 s are small enough.

D. Tests of the applicability of the elliptic

approximation to our measurements

Several previous experiments used the EA predictions
to derive velocities from correlation-function measure-
ments [37, 38, 41, 50, 51]. Some of these have demon-
strated the applicability of the EA predictions to time
and space increments τ and δz well beyond those ex-
pected for a second-order expansion of C(τ, δz). Here we
examine the applicability of the EA predictions to our
measurements.

1. Correlation functions and homogeneity

One of the assumptions of the EA is that the sample is
homogeneous over the distances between the probes used
in the measurements. Thus, one obvious requirement is
that the two auto-correlation functions used to determine
τd (see Fig. 4) should coincide. In real experiments the
homogeneity assumption will generally not be satisfied
exactly, and the issue then becomes whether deviations
from it are sufficiently small for the EA to yield useful
results for U and V .
In Fig. 6 we show examples for two locations in our

sample (see Table II) of auto-correlation functions C(τ, 0)
and cross-correlation functions C(τ, δz) for 2-phase flow
with a superheat of 7.82 K. Results at the third location,
for other superheat values, and for 1-phase flow are sim-
ilar. From the auto-correlation functions one sees that
there are significant deviations from homogeneity. It is
difficult to estimate the errors introduced by this. In the
determination of τd (see Fig. 4) we used the average of
the two auto-correlation functions that corresponded to
the cross-correlation function under consideration. The
average of the two values of τd obtained by using the
two auto-correlation functions separately had essentially

τ ( s )
−2 −1 0 1 20

0.2

0.4

0.6

0.8

1
z/L = 0.192
z/L = 0.250
z/L = 0.322

( a )

Set 1

ξ  = 1.00

−2 −1 0 1 2

z/L = 0.443
z/L = 0.500
z/L = 0.572

( b )

Set 2

ξ  = 1.00

C
i,j

τ ( s )

FIG. 6. Examples of correlation functions. In each set the
upper three curves are the auto-correlation functions at the
locations z/L and ξ given in the figure (see also Table I). The
lower three curves (red) are the three corresponding cross-
correlation functions. In (a) they are for (see Table II) z̄/L =
0.221 and δz = 5.1 mm (solid line), z̄/L = 0.286 and δz = 6.3
mm (dashed line), and z̄/L = 0.272 and δz = 11.4 mm (dotted
line). In (b) they are for z̄/L = 0.472 and δz = 5.0 mm
(solid line), z̄/L = 0.536 and δz = 6.4 mm (dashed line), and
z̄/L = 0.508 and δz = 11.4 mm (dotted line). All results are
for 2-phase flow and Tb − Ton = 7.82 K.
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FIG. 7. Plots of τp (squares) and τd (circles) as a function of
δz. (a), (b), and (c) are for 2-phase flow and Tb − Ton = 7.82
K (run 1511203). (d) is for 1-phase flow and Tb − Ton = 8.45
K (run 1512075). The data yield (a): αp = −0.002, α0 =
0.117 s/mm; (b): αp = 0.044, α0 = 0.189 s/mm; (c): αp =
−0.064, α0 = 0.088 s/mm; (d): αp = −0.075, α0 = 0.131
s/mm.

the same value. This procedure cannot be expected to
completely cancel errors due to spatial inhomogeneity be-
cause this inhomogeneity introduces odd terms into the
Taylor-series expansion of C(τ, δz), and the effect of these
terms is difficult to estimate. We do not think that these
errors are very large because the overall analysis gave
consistent results over the entire range of Tb − Ton, of
δz (see Fig. 7), and for 2-phase and 1-phase flow (see
Sect. VC below).
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FIG. 8. Examples of plots of correlation functions Ci,j(τ, δz)
as a function of zE (Eq. 12). The values of i and j are given in
the figure. All data are for 2-phase flow and Tb − Ton = 7.82
K.

2. The dependence of τp and τd upon δz

An important test of the applicability of the EM is
the dependence of τp and τd upon the displacement δz;
these time intervals should be proportional to δz (Eq. 13).
Representative results are shown in Fig. 7. The horizon-
tal error bars correspond to the uncertainty of δz, which
are evaluated from the estimated absolute errors of δz
that is approximately 0.7 mm (see Sect. III 3). Contri-
butions from measurement errors to the uncertainties of
the time intervals are negligibly small (less than 0.01 s);
but systematic errors due to the spatial inhomogeneities
discussed above may be significant but are difficult to
estimate. The data are generally consistent with the ex-
pected proportionality to δz, thus supporting the appli-
cability of the EA results to relatively large time and
space intervals which are, however, well within the in-
ertial range indicated by the temperature spectra (see
Fig. 5).
It is interesting to note that the deviations from the

fitted straight lines in Figs. 7 (c) and (d) are very similar.
These measurements correspond to the same spatial lo-
cations, but (c) is for 2-phase and (d) is for 1-phase flow.
This suggests that the errors are due primarily to errors
of δz and only to a lesser extent to errors of τp and τd.

3. The dependence of the correlation functions upon zE

Another test of the EA is based on a central result of
the EA which shows that C(δz, τ) can be written as a
function of a single variable zE . Having determined U
and V from Eqs. 13 to 16 and data such as those in Fig.
7, we can obtain zE as a function of τ and δz from Eq. 12.
Figure 8 shows results corresponding to the correlation
functions in Fig. 6. The deviations from homogeneity
are seen in the plots of the auto-correlation functions
(solid symbols). However, the results for the three cross-
correlation functions fall within the range of the auto-
correlation functions and suggest that deviations from a
unique curve for all functions are likely to be caused by
the small inhomogeneity of the sample over the measure-
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FIG. 9. (a) The Nusselt number for 1-phase flow (Nu1ph, open
symbols) and 2-phase flow (Nu2ph, solid symbols) and (b) the
ratio Nu2ph/Nu1ph as a function of the superheat Tb − Ton.
Circles (blue): Cell A. Triangle: Cell B. Squares (red): NG
[29].

ment distance rather than a failure of the EA.

V. RESULTS

A. Heat transport

The only differences between the two samples A and
B on the one hand and those of NG [29] on the other
were the numbers and locations of thermistors. To check
whether this difference impacted the heat transport, Nus-
selt numbers were measured for both cells in the 1-phase
and 2-phase flows. The results are compared with those
of NG in Fig. 9. For both cells they fall within the spread
between the different data sets of the earlier work.

B. The large-scale flow

1. Qualitative nature of the large-scale flow

Shadowgraph flow-visualizations by NG [30] indicated
that, in the presence of bubbles (2-phase flow), there was
a large-scale flow (LSF) at least in the lower portion of
the sample. It carried hot plumes, emitted mostly by
the thermal boundary layer just above the central heated
part of the bottom plate, to one side where the plumes
then rose near the side wall toward the top plate. This
is illustrated in Fig. 10 (a) and more clearly by Movie
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3 of Ref. [30]. Cold plumes generated similarly under
the entire top plate tended to move toward the other
side of the cell where they descended; but their signature
became weaker as the bottom plate was approached and
it is not clear whether the plume motion was indicative
of a closed-loop large-scale circulation (LSC) in the form
of a single convection roll.
In the absence of bubbles (1-phase flow) hot plumes

were rising more or less vertically from the bottom plate
and their motion did not reveal any evidence of a LSF.
Cold plumes did suggest some lateral LSF just under the
top plate, but their descent through the bulk did not
reveal any evidence for a closed LSC roll. This is shown
in Fig. 10 (b) and more clearly in Movie 4 of Ref. [30].

2. Quantitative measurements of the large-scale flow

We searched for a LSF using the thermistors immersed
in the sidewall. Each set of eight thermistors, azimuthally
distributed uniformly around the circumference, yielded
temperatures Tk,i, i = 0, 1, 2, ..., 7 at a given measure-
ment time. The function

Tf = T0,k + δk cos [iπ/4− θ0,k] (18)

was fit to them, separately at each height k = b,m, t and
at each measurement time. The least-squares adjusted
parameters T0,k, δk, and θ0,k describe an azimuthally
uniform background temperature, a “temperature am-
plitude” of the LSF, and the azimuthal orientation of a
large-scale up-flow respectively (see e.g. Refs. [11, 13]
for more details).
Results for 〈δk〉/∆T are shown in Fig. 11 as a function

of the superheat. One sees that any coherent structure
leading to an azimuthal cosine variation, if present at
all, is strongest near the bottom of the sample (k = b,
circles, red). However, at the Rayleigh numbers Ra ≃
2× 1010 of the experiment measurements for (uniformly
heated) RBC at the same Pr and Γ = 1.00 [52] give
〈δk〉/∆T ≃ 0.017, which is significantly larger than the
data in Fig. 11 for LHC. The indication of an azimuthally
varying structure for k = b (z/L = 0.25, 〈δb〉/∆T ) is
consistent with the visualization shown in Fig. 10(a) for
2-phase flow, but Fig. 10(b) for 1-phase flow in general
gives no indication of an LSF. Indeed, we see from the
results for 〈δb〉/∆T and 1-phase flow (open circles, red)
that 〈δb〉/∆T values near those for 2-phase flow (solid cir-
cles, red) are reached only in some of the runs, and not for
instance for superheats of -0.6 K and 5.3 K. Inspection of
the time series for 1-phase flow and superheats of -0.6 K
and 5.3 K suggests that the data are statistically reliable
(i.e. not seriously affected by inadequately long averag-
ing times). We believe that they are suggestive of multi-
stability; but a more detailed investigation of this issue
would be desirable. The overall indication of a poorly de-
fined LSF, especially for single-phase flow, is consistent
with the flow visualization illustrated in Fig. 10 and the

(a)

(b)

FIG. 10. Shadowgraph images taken from the side for (a)
2-phase and (b) 1-phase flow (from NG [30]). They show a
horizontal average over the entire width of the sample. The
tiny dark dots in (a) (hardly visible) rising through the center
are the bubbles. The corresponding movies in the supplemen-
tary material of Ref. [30] reveal a more detailed picture of the
flow dynamics.

corresponding movies in the supplementary material of
Ref. [30].

A useful additional indicator of the LSF strength is
based on a Fourier decomposition of the Tk,i at a given
k [53–55]. This yields the Fourier coefficients Ak,j (the
cosine coefficients) and Bk,j (the sine coefficients) where
j = 1, ..., 4 identifies the N = 4 Fourier modes accessible
with eight temperatures. The “energy”

Ek,j(t) = A2

k,j(t) +B2

k,j(t) (19)

for each mode, as well as the sum Ek,tot(t) of the four
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FIG. 11. The scaled temperature amplitude 〈δk〉/∆T of the
LSF. Circles (red), diamonds (green), and squares (blue) cor-
respond to the lower (k = b), middle (k = m), and upper
(k = t) set of thermistors in cell A respectively. The triangles
(green) are for k = m of cell B. Open symbols: 1-phase flow.
Solid symbols: 2-phase flow.

energies, were calculated. The parameter

Sk = MAX

[

(N〈Ek,1〉/〈Ek,tot〉 − 1)

(N − 1)
, 0

]

(20)

was proposed by Stevens et al. [54] as a useful indicator
of the LSF strength and coherence. A value of Sk close to
unity corresponds to a LSF where the cosine wave is well
defined and dominates over fluctuations. Smaller values
of Sk suggest a strongly fluctuating LSF structure, and
it was suggested in Ref. [54] that Sk . 0.5 is indicative
of no dominant coherent structure with a characteristic
length scale close to the sample height.
Results for Sk are shown in Fig. 12 as a function of

the superheat Tb − Ton. As in Fig. 11, the open (solid)
symbols are for 1-phase (2-phase) flow. One sees that for
cell A only the lower part of the sample (k = b, circles,
red) yielded values of Sm close to one as expected for
a coherent structure extending over the diameter of the
sample, and then reliably only for 2-phase flow (solid cir-
cles, red). Consistent with the 〈δb〉/∆T results (Fig. 11),
the 1-phase data yielded Sm close to one only for some
of the runs. At higher levels in cell A (k = m and t) the
measurements provide no support for a coherent struc-
ture. One concludes that there is no coherent convection
roll as is found in RBC (which leads to Sk ≃ 1 at all
levels, see e.g. [52])), and only up-flow at a particular
azimuthal orientation and near the sample bottom which
dissipates at larger heights.
The results for Sm of cell B (triangles, green in Fig. 12)

differ significantly from those of cell A (measurements for
k = b and t were not made in B, see Sect. III 3). Even
at the mid-plane (k = m, z/L = 0.50) the azimuthal
structure is well defined for both 1-phase and 2-phase

0 4 8 12
0

0.5

1

Tb − Ton (K)

S
k

FIG. 12. The parameter Sk (Eq. 20) describing the strength of
the LSF. Circles (red), diamonds (green), and squares (blue)
correspond to the lower (k = b), middle (k = m), and upper
(k = t) set of thermistors in cell A respectively. The triangles
(green) are for k = m of cell B. Open symbols: 1-phase flow.
Solid symbols: 2-phase flow.

flow, with Sm close to one. This surprising result sug-
gests that the formation of a coherent structure in cell
B is enhanced by the obstructions due to the thermistors
that were inserted into the sample (cell A had no inter-
nal thermistors), while one might have expected the op-
posite. We note, however, that the amplitudes 〈δm〉/∆T
for B (Fig. 11, triangles, green) are smaller than those for
A and of similar size to 〈δm〉/∆T for A where the results
for Sm (Fig. 12) indicate the absence of a well defined
structure. Compared to RBC for the same Ra and Γ [52]
we see that 〈δm〉/∆T for B is smaller by a factor of nearly
three.

C. Reynolds numbers based on the elliptic model

1. General remarks and results

We used the elliptic model (EM) of He and Zhang
[31, 36] to determine the mean-flow velocity U (Eq. 5)
and root-mean-square fluctuation velocity V (Eq. 7) from
simultaneous temperature time-series taken at several in-
ternal locations of cell B at time intervals of 0.06 s (see
Sect. III 3). The relationships derived from the EM
that are relevant to our analysis were summarized in
Sect. IVA. In Sect. IVC we discussed the ranges of
time and space displacements τ and δz over which we
expect the EM to be applicable based on the assumption
of Kolmogorov self-similarity. In Sect. IVD we presented
several tests of the applicability of the EM under the con-
ditions of our experiment. These tests do not reveal any
major problems with using the EM to analyze our data.
The measurement locations were at the same radial po-

sition and separated vertically by distances δz (see Table



11

Tb − Ton (K)
0 4 8 12

0

1000

2000

3000

R
e U

 o
r 

R
e V

ξ = 0.125, <z/L> = 0.50

0

1000

2000

3000

R
e U

 o
r 

R
e V

ξ = 1.00, <z/L> = 0.50

0

1000

2000

3000

R
e U

 o
r 

R
e V

ξ = 1.00, <z/L> = 0.25

(a)

(b)

(c)

−10

−5

0

5

10

U
 o

r 
V

 (
m

m
/s

)

−10

−5

0

5

10

Tb−Ton (K)

U
 o

r 
V

 (
m

m
/s

)

0 4 8 12

−10

−5

0

5

10

Tb − Ton (K)

U
 o

r 
V

 (
m

m
/s

)

(d)

(e)

(f)

ξ = 0.125, <z/L> = 0.50

ξ = 1.00, <z/L> = 0.50

ξ = 1.00, <z/L> = 0.25

FIG. 13. (a), (b), and (c): Reynolds numbers ReU (circles, red) and ReV (squares, blue) as a function of the superheat Tb−Ton.
(d), (e), and (f): Mean-flow velocity U (circles, red) and root-meant-square fluctuation velocity V (squares, blue) as a function
of the superheat Tb − Ton. Open symbols: 1-phase flow. Solid symbols: 2-phase flow. Horizontal dashed lines (blue): ReV for
RBC. Solid lines: Fits of a quadratic equation to the data. Short dashed lines (red): Fits of a straight line to the two points
with the largest Tb − Ton.

I). The velocity determinations required obtaining two
time intervals τp and τd from measurements at pairs of
nearby locations (see Fig. 4); these pairs and their δz
values are listed in Table II. Each velocity determination
was based on three sets of τp, τd, and δz, with each set
derived from measurements at three vertical positions as
indicated in Table II and described in Sect. IVA. The
sets are associated with averaged locations z̄/L and ξ
equal to 0.25 and 1.00 for set 1, 0.50 and 1.00 for set
2, and 0.50 and 0.125 for set 3 (the precise and detailed
locations follow from Table II). The measurements thus
are of the time-averaged vertical velocity and velocity-
fluctuation components U(z̄/L, ξ) and V (z̄/L, ξ) (Eq. 7).
The velocities were converted to Reynolds numbers ReU
(Eq. 6) and ReV (Eq. 8) using the kinematic viscosity ν
at the measured center temperatures Tc.

Results for ReU , U,ReV , and V are shown in Fig. 13.
The circles (red) are for ReU and U , while the squares

give the results for ReV and V . The top pair (a) and (d),
middle pair (b) and (e), and bottom pair (c) and (f) are
for sets 1, 2, and 3 respectively. The left column gives
the Reynolds numbers, while the right one shows the cor-
responding velocities in mm/s. It is helpful to show the
velocities as well as the Reynolds numbers because U can
be negative [see Fig. 13(f)] or even pass through zero as
Tb−Ton changes [see Fig. 13(d)] while ReU ≥ 0. In order
to facilitate the comparison between 1-phase flow (open
symbols) and 2-phase flow (solid symbols), we fitted a
quadratic polynomial to the 1-phase data and show the
fits as solid lines in the figure.

2. Discussion of 1-phase flow

Let us first consider the case of 1-phase flow (open
symbols). As expected, neither ReU (open circles) nor
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ReV (open squares) shows a significant dependence on
the superheat because Ra does not change significantly
(see Sect. III 1). Comparison of ReU with other measure-
ments for RBC is not easy because ReU depends strongly
on the position in the sample. For RBC it is largest in
the bulk near the side wall while it vanishes at the sample
center. For our case of local heating with cooling over the
entire top plate, we find that ReU ≃ 800 [Fig. 13(b)] and
that there is up-flow [U ≃ 2.5mm/s > 0, Fig. 13(e)] at
the sample center. This is consistent with the movie of
NG [30] and Fig. 10(b) which show more or less vertically
rising plumes distributed broadly in the horizontal direc-
tion rather than a closed single-cell LSC. Consistent with
this flow, the data closer to the bottom plate and on the
sample center line for ReU and U do not change much,
as indicated by the results for set 1 shown in Fig. 13(a)
and (d).
Closer to the side wall the 1-phase results for set 3

[ξ = 0.125, Fig. 13(c) and (f)] indicate a significant down-
flow (U ≃ −4 mm/s < 0). This is not unexpected be-
cause there must be down-flow at least at some azimuthal
locations when there is up-flow through the central part
of the sample.
As is the case for RBC, the results for the fluctuation

velocity V and ReV in 1-phase flow do not depend very
much on the location within the sample. Averaged over
all measured superheats, one has V = 6.63 mm/s and
ReV = 1780 for set 1 (ξ = 1.00, z̄/L = 0.25), V = 5.90
mm/s and ReV = 1585 for set 2 (sample center, ξ =
1.00, z̄/L = 0.50), and V = 6.26 mm/s and ReV = 1682
for set 3 (near the side wall, ξ = 0.125, z̄/L = 0.25).
These results are quite close to the result ReV ≃ 1800
estimated for RBC at the same Ra and Pr (see Sect. III 1)
and shown in Figs. 13 (a), (b), and (c) by the horizontal
dashed lines (blue).

3. Discussion of 2-phase flow

For 2-phase flow the data in Fig. 13 reveal a number
of remarkable features. We note that the rising bubbles
(solid symbols) at sufficiently large superheat modify not
only the mean-flow velocity U and ReU , but also the fluc-
tuation velocity V and ReV . Further, the influence of the
bubbles does not begin as soon as they are formed when
Tb −Ton exceeds zero; rather there is a finite onset value
δT2ph of Tb − Ton below which the rising bubbles have
no influence at the measurement positions of the present
work. This is most clearly seen from the results for U in
(d), (e), and (f). The results for the onset of enhance-
ment of V are not as clear; but within our resolution the
onset is the same as it is for U . There seems to be an
exception or complication for set 2 [Fig. 13 (b) and (e)]
where the result for V at a superheat of 7.9 K is lower
in the 2-phase system than it is for the corresponding 1-
phase flow even though based on all other data we would
have expected an enhancement. We have no explanation
for this outlier. The onset shift is largest (with δT2ph a
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FIG. 14. The ratio ReV,2ph/ReV,1ph as a function of the su-
perheat Tb − Ton.

little over 5 K) along the center line in the lower part of
the sample. At the sample center we find δT2ph ≃ 4 K,
while near the sidewall δT2ph seems to be close to zero.
For Tb−Ton > δT2ph, the amplitude of U is reduced by

the bubbles of 2-phase flow for the set 1 and set 2, and
along the centerline (where it was positive for 1-phase
flow) even changes sign; whereas the amplitude of U in
set 3 increases with superheat. It is not possible to say
whether this effect is due directly to bubble influence,
or indirectly to changes in the large-scale flow structure
induced by the bubbles.
The fluctuation velocity V (as well as ReV ), on the

other hand, is enhanced by the bubbles of the 2-phase
flow [except for the anomaly mentioned above and seen
in Fig. 13 (b) and (e)]. This effect is consistent with
direct numerical simulations with bubble injection [56–
59] which also found that velocity fluctuations were en-
hanced in 2-phase flow, with the enhancement increasing
with increasing rate of bubble injection. Note that in
these simulations the vapor-bubble nucleation-process is
not modeled. Instead, a certain and controlled number
of nuclei is imposed. These then grow or shrink, depend-
ing on the local conditions. The experimentally observed
enhancement of velocity fluctuations stands in contrast
to the reduction of temperature fluctuations found by
Narezo Guzman et al. [29]. The diminished tempera-
ture fluctuations may be attributed to a smoothing of
the temperature field due to the enhanced mixing by the
larger velocity fluctuations. This reduction of the tem-
perature fluctuations by the bubbles was found also in
numerical simulations [59], where the temperature field
became much less intermittent in the presence of the va-
por bubbles due to the smoothing of sharp temperature
fronts.
In Fig. 14 we provide a more quantitative comparison

of ReV in 1-phase and 2-phase flow by showing the ra-
tio ReV,2ph/ReV,1ph as a function of the superheat. At
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the larger superheats one sees that the relative fluctua-
tion enhancement is similar at all three locations in the
sample, and reaches values as large as 60% or so.

D. Reynolds numbers from frequency

measurements

It has long been known from single-point determina-
tions in RBC samples of the temperature or the velocity
[8, 9, 60–67] that the dynamics of turbulent RBC includes
oscillations with a characteristic frequency which seems
to be related to the turnover time of the LSC (see, how-
ever, [68, 69]). One can use this frequency to determine
Reynolds numbers Reac, Resl, or Ref0 (see Eq. 9). It
turns out that all three are equal to each other within ex-
perimental resolution; thus the three measurements may
be regarded as alternative experimental methods to study
the same phenomenon.
It is now known that the origin of these oscillations in

RBC can be found, at least over a wide parameter range,
in both a torsional and a sloshing mode of the LSC. The
torsional mode is a time-periodic twist of the circulation
plane of the LSC that consists, at a given moment, of
a rotation in opposite azimuthal directions in the top
and the bottom half of the sample [70, 71]. The sloshing
mode is a periodic vertically and radially uniform lateral
displacement of the circulation plane [72–74]. These two
modes have the same frequency.
In our case of LHC we found that a well developed

LSC extending as a single convection roll over the entire
volume of a Γ = 1 sample does not seem to exist (see
Sect. VB). Thus it would not have been surprising if lo-
cal temperature oscillations also were absent. This, how-
ever, is not the case, and in the remainder of this section
we report on such frequency measurements. Even though
the results have common features with those for RBC,
their interpretation in terms of a torsional and sloshing
mode obviously has to be done with caution.

1. Reynolds numbers from correlation functions

In this section we present measurements of a fre-
quency using the sidewall thermistors. We used the auto-
correlation functions

C̃k,k
i,i (τ) = 〈[Tk,i(t)− 〈Tk,i〉]× [Tk,i(t+ τ) − 〈Tk,i〉]〉

(21)
with the normalization

Ck,k
i,i (τ) = C̃k,k

i,i (τ)/C̃k,k
i,i (0) (22)

calculated from the temperature time series Tk,i(t) of the
thermistors in the sidewall. They reveal an oscillatory
signal very similar to that found in RBC [75]. The eight
correlation functions corresponding to i = 0, ..., 7 at a
given k can be averaged to yield C̄k,k(τ). An example
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FIG. 15. (a): Azimuthally averaged auto-correlation function
for the largest superheat Tb − Ton = 10.4 K and 2-phase flow
in cell A for k = b. (b): Points: The second derivative of
the averaged auto-correlation function for k = b in (a) with
respect to τ . Line: Fit of Eq. 23 to the data.

from cell A is shown in Fig. 15a. The data clearly reveal
oscillations also for our case of LHC.

The oscillatory contribution to C̄k,k(τ) is weak, and it
is difficult to extract a reliable frequency directly from
the data. As noted in Ref. [75], the oscillations become
more obvious in the second derivative of C̄k,k(τ). This is
shown in Fig. 15b. The function

d2C/dτ2 = c1 exp(−τ/T bg) cos(2πτ/T ac) (23)

provides a reasonable fit and gives both the oscillation
period T ac and the exponential decay time T bg of the
oscillations. Using T ac, Reac is given by Eq. 9.

Results for Reac at the lower plane k = b of cell A
are shown in Fig. 16 as circles (blue) and as a function
of the superheat. Results for k = m and k = t differ
by less than 1 % from the k = b values and are not
shown. The data indicate that Reac of 1-phase flow (open
symbols) is enhanced significantly by the bubbles of the
2-phase flow (solid symbols). At the larger superheat
values this enhancement reaches values up to about 25
%. We note, however, that this is much smaller than
the 60 % enhancement found for the bubbles of ReV (see
Sect. VC3 and Fig. 14).
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FIG. 16. Reynolds numbers as a function of the superheat
Tb − Ton. Circles (blue): Reac at the lower plane k = b
of cell A. Squares (red): Resl based on the sloshing-mode
oscillations at the lower plane k = b of cell A. Diamonds
(green): Ref0 from temperature oscillations in the interior of
cell B. Triangles (purple): ReU for ξ = 0.125, z̄/L = 0.50
from Fig. 13 (c). Open symbols: 1-phase flow. Solid symbols:
2-phase flow.

2. Reynolds numbers from the sloshing mode

As discussed at the beginning of Sect. VD, the LSC in
turbulent RBC undergoes both torsional oscillations and
a periodic lateral displacement referred to as the slosh-
ing mode. The antisymmetric sine terms in a Fourier
decomposition of the eight sidewall temperatures at a
given height can characterize the off-center displacement
inherent in this mode [74]. The corresponding sinusoidal
Fourier amplitudes are given by

Dn =

8
∑

i=1

{[T −T0− δ cos(θi− θ0)] sin[n(θi− θ0)]} . (24)

The contribution D2 6= 0 corresponds to a temperature
profile that is tilted in the azimuthal direction so that the
temperature extrema, located at θh and θc, come closer
together, corresponding to a slosh displacement. In the
absence of a sloshing mode θh and θc are separated by
π. Thus it is convenient to define the slosh displacement
angle as θ′ = (θh − θc − π)/2. It satisfies the equation
[74]

δ sin θ′ = 2D2 cos(2θ
′) . (25)

We calculated θ′ only at the lower plane k = b of cell
A because we found no coherent azimuthal variation at
the other levels (see Fig. 12). The power spectrum of θ′

is shown in Fig. 17. In addition to a broad contribution
due to the driving of the LSC dynamics by the turbulent
background [14, 76], it reveals a remarkably sharp peak
at the sloshing frequency fsl. A similar spectrum was
obtained also from the time series for D2 and yielded the
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FIG. 17. The power-spectral density of the displacement an-
gle θ′ at the lower plane k = b in cell A for 2-phase flow at a
superheat Tb − Ton = 10.4 K.

same fsl. The period Tsl = 1/fsl was used with Eq. 9 to
calculate Resl. The results are shown as squares (red) in
Fig. 16. As expected from measurements for RBC, they
agree very well with the results for Reac (see Sect. VD1)
that are shown as circles (blue) in the same figure.

3. Reynolds numbers from local temperature oscillations

The power spectra derived from the internal ther-
mometers of cell B are shown in Fig. 18 for the largest
superheat Tb − Ton = 10.62 K in 2-phase flow. Spec-
tra obtained for 1-phase flow looked very similar. The
spectra for the thermistors near the wall [ξ = 0.125, Fig.
18 (b)] all show a strong peak at the same frequency
f0 = 0.062 Hz (left vertical dotted line), and a second
weak peak at the second harmonic 2f0 = 0.124 Hz (right
vertical dotted line). The peaks in the spectra on the
cell axis [ξ = 1.00, Fig. 18 (a)] are smaller, but still quite
discernible for the thermistors close to the bottom and
top plate. Near the sample center they are only barely
visible.
The data show that there is a unique frequency f0 =

0.062 Hz at all locations where the spectral peak can
be identified. It is used to calculate the corresponding
Reynolds number Ref0 from Eq. 9. These results are
shown as diamonds (green) in Fig. 16. They agree well
with those for Reac and Resl, in the 1-phase as well as
the 2-phase state.

VI. DISCUSSION AND SUMMARY

We reported on measurements that characterize boil-
ing in a cylindrical sample of fluid with Pr ≃ 8 and as-
pect ration Γ = 1.00 heated from below. The sample
geometry was the same as that of NG, except that we
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FIG. 18. Power spectra for cell A at the locations within the
fluid given in Table I. These results are for 2-phase flow and
Tb − Ton = 10.62 K. (a): Spectra along the sample centerline
(ξ = 1.00). (b): Spectra near the side wall (ξ = 0.125). In
both cases the lowest line (blue) is for the lowest thermistor
at that radial location, and the higher ones are successively
shifted upward by a factor of ten. The vertical dotted lines
correspond to f0 = 0.062 Hz and 2f0 = 0.124 Hz.

installed nine internal thermometers for local tempera-
ture measurements in one sample (cell B, Sect. III 3)
and 24 thermometers mounted in the sidewall of another
(cell A, Sect. III 2); NG only had two internal devices.
The additional thermometers made it possible to measure
temperature-oscillation frequencies, as well as Reynolds
numbers using temperature correlation-functions and the
elliptic model (EM) of He and Zhang [31]. Only a cen-
tral circular area of 2.54 cm diameter of the bottom plate
(of 8.83 cm diameter) was heated and was covered by a
lattice of controlled bubble-nucleation centers. This ge-
ometry differs from RBC where the entire bottom plate is
heated; we refer to it as locally heated convection (LHC).
Heat-transport measurements were made in both 1-

phase and 2-phase flow. They yielded Nusselt numbers
which agreed with those of NG, thus indicating that
global properties were not changed much by the inser-
tion of additional thermometers.
Using the sidewall thermometers, we studied the large-

scale flow in the turbulent system. The LSF did not con-
sist of a single well-developed convection roll as in RBC.
In the bottom portion of the sample there was a flow
structure that yielded a dominating sinusoidal azimuthal
temperature variation as in RBC. This sinusoidal mode
was stronger for 2-phase flow than for 1-phase flow, but
in both cases weaker than for RBC. At the mid plane
and in the top portion this mode did not dominate and
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FIG. 19. The relative increase of Reynolds numbers in 2-phase
flow compared to 1-phase flow as a function of the superheat.
Circles (blue): Reac. Diamonds (green): Ref0 . Squares (red):
Resl. Triangles (purple): ReV for z̄/L = 0.25, ξ = 1.00 from
Fig. 14.

higher Fourier modes contained more energy. This find-
ing indicates a mean-flow structure that is much more
complex and disordered than the single-roll mean flow in
RBC.
We measured temperature cross-correlation functions

(CCFs) using temperature probes separated vertically by
up to 12 mm. They were used to determine both mean-
flow velocities U and fluctuation velocities V [31, 33–35]
using the elliptic approximation (EA) of He and Zhang
[31, 36]. The applicability of the EA to our system is sup-
ported by the agreement of our resuts with several gen-
eral results of the EA (Eqs. 11, 12, 13). They yielded in-
ternally consistent results and fluctuation Reynolds num-
bers that agree within ten percent or so with those mea-
sured by other means for RBC (see Sect. VC2).
We found that the EA predictions were valid even in

cases where the maximum value of the CCF C(δz, τ) was
as small as 0.2 or so. One would not expect a priori that
the elliptic approximation, a second-order series expan-
sion of C(δz, τ) about C(0, 0) = 1, would be valid in such
a case. Our result supports the relevance also for ther-
mally driven convection of the assertion by He and Zhang
[31, 36], based on the Kolmogorov similarity hypothesis,
that the results of the EA should be valid for all time and
space displacements within the inertial range. Indeed we
showed that all our values of δz and τ were within the
inertial range of our measured fluctuation spectra.
We saw that three methods of determining Reynolds

numbers from frequency measurements (Reac, Resl, and
Ref0) all give the same results within our resolution, both
in 1-phase and in 2-phase flow. This strongly suggests
that the measured frequencies have the same origin, as
they are believed to do in RBC. In RBC we would ar-
gue that they all come from the synchronous torsional
and sloshing modes of the LSC; but in our case of LHC
we found that a well developed large-scale flow does not
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exist. Thus the agreement between the three Reynolds
numbers is remarkable and its origin needs further eluci-
dation.
The comparison of the frequency-based Reynolds num-

bers with those derived from the velocities obtained from
the elliptic model is more complex. Since in RBC the fre-
quencies are believed to correspond to an inverse turnover
time of the LSC, the comparison should be made with
ReU rather than ReV . But since U varies strongly with
position within the sample, its maximum value near (but
not too near) the side wall should be used. Based on this
consideration, we made the comparison using ReU of 1-
phase flow at z̄/L = 0.50, ξ = 0.125 (Fig. 16). There was
good agreement between ReU and the frequency-based
Re. This agreement is somewhat surprising because U
depends on the LSF structure and orientation. As dis-
cussed above, the LSF structure of LHC is not the same
as that of RBC.
For all three frequency-based Re the same enhance-

ment due to the bubbles of 2-phase flow is found (Fig. 19);
it reaches values near 20 or 30 % at the largest super-
heats. Any enhancement of ReU due to the bubbles is not

meaningful since in addition to any direct flow-speed en-
hancement the bubbles of 2-phase flow also alter the LSF
structure and orientation and thereby indirectly change
U . The enhancement of ReV (Fig. 14 and Fig. 19) at the
larger superheats is larger than that of the frequency-
based Re, and reaches values in excess of 60 %. This ef-
fect is consistent with direct numerical simulations with
bubble injection [56–59].
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