
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Hydrodynamics of back spatter by blunt bullet gunshot
with a link to bloodstain pattern analysis

P. M. Comiskey, A. L. Yarin, and D. Attinger
Phys. Rev. Fluids 2, 073906 — Published 24 July 2017

DOI: 10.1103/PhysRevFluids.2.073906

http://dx.doi.org/10.1103/PhysRevFluids.2.073906


1 

 

Hydrodynamics of Back Spatter by Blunt Bullet Gunshot with a Link to 

Bloodstain Pattern Analysis 

P.M. Comiskeya, A.L. Yarina,*, D. Attingerb 

a Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. 

Taylor St., Chicago IL 60607-7022 

b Department of Mechanical Engineering, Iowa State University, 2529 Union Dr., Ames, IA 

60011-1210 

 

*Corresponding author: ayarin@uic.edu 

 

Abstract 

 A theoretical model describing the blood spatter pattern resulting from a blunt bullet 

gunshot is proposed. The predictions are compared to experimental data acquired in the present 

work. This hydrodynamic problem belongs to the class of the impact hydrodynamics with the 

pressure impulse generating the blood flow. At the free surface, the latter is directed outwards 

and accelerated toward the surrounding air. As a result, the Rayleigh-Taylor instability of the 

flow of blood occurs, which is responsible for the formation of blood drops of different sizes and 

initial velocities. Thus, the initial diameter, velocity, and acceleration of the atomized blood 

drops can be determined. Then, the equations of motion are solved, describing drop trajectories 

in air accounting for gravity, and air drag. Also considered are the drop-drop interactions through 

air, which diminishes air drag on the subsequent drops. Accordingly, deposition of two-phase 

blood-drop/air jets on a vertical cardstock sheet located between the shooter and the target (and 
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perforated by the bullet) is predicted and compared with experimental data. The experimental 

data was acquired with a porous polyurethane foam sheet target impregnated with swine blood, 

and the blood drops were collected on a vertical cardstock sheet which was perforated by the 

blunt bullet. The highly porous target possesses a low hydraulic resistance and therefore 

resembles a pool of blood shot by a blunt bullet normally to its free surface. The back spatter 

pattern was predicted numerically and compared to the experimental data for the number of 

drops, their area, the total stain area, and the final impact angle as functions of radial location 

from the bullet hole in the cardstock sheet (the collection screen). Comparisons of the predicted 

results with the experimental data revealed satisfactory agreement. The predictions also allow 

one to find the impact Weber number on the collection screen, which is necessary to predict stain 

shapes and sizes.  

 

I. Introduction 
 

Bloodstain pattern analysis (BPA) is the physical inspection of bloodstain patterns [1] to 

provide a criminal (or accident-related) investigation with answers to the following questions: (i) 

What physical mechanisms could have caused the patterns? (ii) What were the positions (or 

trajectories) of the persons and objects involved? (iii) When were the bloodstains produced? A 

blood spatter pattern is a collection of bloodstains located on a solid surface produced by 

airborne drops [1], typically occurring in blunt-force (beating) or gunshot cases. In relation to 

question (ii), blood spatters have been interrogated to determine the relative position of the 

alleged criminals with respect to their victims.  However, BPA techniques available to crime 

scene investigators to reconstruct droplet trajectories currently are not based on the latest 
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knowledge of fluid dynamics [2]. For instance, some BPA techniques neglect the contributions 

of air drag and gravity [2]. Those currently used techniques, called the method of strings or the 

trigonometric method, assume that drops travel in straight lines.  In some situations, this 

assumption gives rise to large uncertainties [2, 3] in the determination of the region of origin of a 

blood spatter, and of the relative positions of the persons involved, as in the famous trials of 

music producer Spector and physician Shepard [2]. Also, a sound physical theory describing the 

fluid mechanics of the blood pattern formation is not yet available to BPA practitioners [4]. 

Thus, a lot of the quantitative information from the crime scene such as the number of stains, 

their spatial distribution and their area are left out of current crime scene reconstruction. This 

information should not be neglected because it could help to differentiate between spatter types, 

for example, blood patterns produced in forward spatter and backward, or blunt-force versus 

shooting spatters [5]. It is therefore imperative to develop hydrodynamic models of blood spatter 

[2], as for example [4] where the formation of blood drops was attributed to the Rayleigh-Taylor 

instability. That instability necessarily occurs when denser blood is accelerated towards lighter 

air [6], which is the case when blood deforms following a bullet impact. 

 Once a cloud of blood drops is generated due to a gunshot, its behavior in a sense is 

reminiscent of that of a sprinkler or diesel-engine jets studied previously in [7, 8]. Such jets 

entrain significant volumes of air. The resulting two-phase flow diminishes the aerodynamic 

drag of drops moving behind the leading ones, similarly to the V-formation of a flying flock of 

birds [9]. Then, the prediction of drop trajectories in such jets makes use of the initial drop sizes 

and initial velocities resulting from the Rayleigh-Taylor instability and proceeds, accounting for 

gravity and air drag forces, with the latter being diminished by the drop-drop interaction through 

air mentioned above [7].  It should be emphasized that few other studies account for gravity and 
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air drag (albeit without accounting for the drop-drop interaction) to predict blood spatter patterns 

[10-12], however, they do not consider the physical mechanism of drop formation. 

The recent theory of the back spatter of blood was developed specifically for slender bullets 

[4], e.g. full metal jacket bullets. Here we propose the fluid mechanical theory of blood back 

spatter from blunt bullets. This theory is compared with the experiments also conducted in this 

work. The experiments are described in Sec. II, the theory is presented in Sec. III, results are 

discussed in Sec. IV, and conclusions are drawn in Sec. V. 

 
 

II. Experimental 

 Experiments with back spatter resulting from a blunt bullet impact were performed at the 

indoor shooting range in Izaak Walton League Park in Ames, Iowa, U.S.A. The experimental 

conditions are represented in Fig. 1 and summarized in Table 1. 

 

TABLE 1. Experimental parameters.  

Condition Type and specifications 

Rifle Rock River Arms, LAR-15 16” barrel M-4, .223 cal with Yanki YHM Phantom 
223 suppressor 

Bullet  Hollow Point BEE .224 cal (corresponding to a diameter of 5.7 mm, 45 grain) 

Casing and 
explosive 
loading 

.223 Remington: 

Powder – BLC-2 

Powder weight – 26.5 grains 

Primer – Winchester Small Rifle Primer 

Case – once fired Federal & Winchester 
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Target Polyurethane foam sheet (16 x 23 x 10.5 cm3), wrapped around a cardboard 
piece and held with binder clips  

Fluid Swine blood with ACD anti-coagulant, hematocrit of 41%, drawn two days 
before the experiment, blood heated to 37 2± o C before being clipped in target 
position 

Room 44 5± % Relative humidity 

16.8 1± o C Room temperature 

 

 

 A cardstock sheet (141.4 ×  111.4 cm2) was used to collect the backward spattered drops 

and was located vertically between the muzzle of the gun and the target (see Fig. 1). The bullet 

trajectory was parallel to the ground at a height of 60 cm and after penetrating through the 

cardstock sheet traveled 50 cm until the impact with the target, at which point blood spattered 

backward toward the collecting sheet. A high-density fiberboard pierced with a hole twice the 

diameter of that bullet’s was placed between the gun and the cardstock, to minimize the 

interference of the muzzle gases (a topic of future research) with the back spatter process, which 

can  either modify the drop trajectories, or dynamically deform the cardstock. Two experiments 

were performed under the same conditions. Then the collecting sheet was removed and digitized 

with a 600 DPI scanner. The information on stain location, number of drops, and area (which 

was acquired via pixel density), were all found with a purpose-developed in-house program. The 

in-house program lumped the stain characteristics into a set of bins corresponding to 11 

concentric disk-shaped areas with the following upper radial bounds in centimeters: 2, 4, 6, 9, 12, 

18, 24, 30, 40, 60, and 90.  
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FIG. 1 (a) Schematic of experimental setup with the cardstock used for back spatter collection. 

The X axis is directed from the reader and the coordinate trihedron is located on the floor under 

the center of the target shot by the bullet. (b) Bullet shape.  

 

 
III. Theoretical 

IIIA. Blood flow induced by a blunt bullet impact 

The blunt (hollow point) bullet shown in Fig. 1b has a front edge which resembles a disk. 

The impact duration τ ~ 1 μs, and the impact velocity V0 ≈   1000 m/s, is at least of the order of 

the speed of sound in blood and is supersonic relative to air. Then, the impact pressure 

0 sp ~ V CΔ ρ  where Cs is the speed of sound in blood and ρ is its density.  Essentially, this is the 

situation where pΔ → ∞ , 0τ → , and the impulse ( )
0

pdt O 1
τ

Π = Δ =∫  , with t being time. Such 

situations are characteristic of impact-driven fluid mechanics, where the flows are inevitably 

potential, with the potential /ϕ = −Π ρ  [13-16]. Accordingly, the flow potential satisfies the 

axisymmetric Laplace equation 
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2
2

2

1 r 0
r r r z

∂ ∂ϕ ∂ ϕ⎛ ⎞∇ ϕ = + =⎜ ⎟∂ ∂ ∂⎝ ⎠
,                                                                                                               (1) 

with r and z being the radial and axial coordinates, respectively. The z coordinate is reckoned 

along the axis of symmetry of the bullet, is zero at the free surface, and is positive in the 

direction away from the free surface into the liquid bulk.  

The potential solution of Eq. (1) is finite at the z-axis in the liquid bulk 

 r 0 :  = ϕ < ∞ .                                                                                                                                            (2) 

At the free surface the boundary conditions read 

 0V at 0 r a
z

z 0 :   = ∂ϕ = < <
∂

,                                                                                                                (3) 

 0 atz 0 :  a r ϕ == < < ∞ ,                                                                                                                      (4) 

where a is the radius of the blunt bullet edge.  

In the far-field within the liquid bulk the no-flow boundary condition is imposed 

z :  0
z

∂ϕ∞ =
∂

= .                                                                                                                                        (5) 

 The problem (1)-(5) is singular because of the boundary conditions (2) and (4) (the axis 

of the cylindrical coordinate system, and the radially infinite domain, respectively). As a result, 

being solved using variable separation, it possesses a continuous spectrum ν, with the result 

being expressed in the form of the following Fourier-Bessel integral  

( ) z
00

JD dr eν

∞ −νϕ = ν ν∫ ,                                                                                                                          (6) 

where Dν is a constant, i.e. it does not depend on either r or z. 

Accordingly, the z-component of flow velocity at the moment of impact is   

( ) z
z 00

Dv J r de
z

∞ −ν
ν

∂ϕ= = − ν ν ν
∂ ∫ .                                                                                                        (7) 
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Accordingly, the boundary conditions (3) and (4) with the help of Eqs. (6) and (7) take 

the following form 

( )0 00
J r V fo r aD d r 0ν

∞
ν ν =− <ν <∫ ,                                                                                           (8) 

( )00
J r 0 forD rd aν

∞
ν ν =− < < ∞∫ .                                                                                               (9) 

Introducing ξ=r/a and η=νa, Eqs. (8) and (9) are transformed to the following form 

( ) 2
0 00

J V a ford 0D 1
∞

ν = −η ηξ η < ξ <∫ ,                                                                                   (10) 

( )00
J 0 1D fordν

∞
ηξ η = < ξ < ∞∫ .                                                                                               (11) 

It is easy to check that Eqs. (10) and (11) are satisfied with  

2
0 2

2 cos sinD V aν
⎛ ⎞η η= −⎜ ⎟π η η⎝ ⎠

.                                                                                                               (12) 

Substituting Eq. (12) into Eq. (6), we arrive at the following expression for the flow 

potential at the blunt bullet edge   

( )z 0 0 020

2 cos sin| V a J d      for 0 1
∞

=
⎛ ⎞η ηϕ = − ηξ η < ξ <⎜ ⎟π η η⎝ ⎠

∫ .                                                       (13) 

The integrals in Eq. (13) can be evaluated, which yields  

2 2
z 0 0

2| V a r     for 0 r a=ϕ = − − < <
π

.                                                                                            (14) 

Also, Eqs. (6) and (12) yield the radial and axial velocity components at the free surface 

1< ξ < ∞    

( )r z 0 0 10

2 sinv V cos J d
r

|
∞

=
⎛ ⎞∂ϕ η= = − η − ηξ η⎜ ⎟∂ π η⎝ ⎠

∫ ,                                                                         (15) 
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( )
0z z 0 0 0

2 sinv V cos J d
z

|
∞

=
⎛ ⎞∂ϕ η= = − η − ηξ η⎜ ⎟∂ π η⎝ ⎠

∫ .                                                                       (16) 

Evaluating the integrals in Eqs. (15) and (16), one obtains 

r z 0 0     for av r| = = < < ∞ ,                                                                                                                   (17) 

z z 0 0 2 2

2 a aV arcsin     for a r
r

v
r

|
a

=

⎡ ⎤⎛ ⎞= − − < < ∞⎢ ⎥⎜ ⎟π ⎝ ⎠−⎣ ⎦
.                                                           (18) 

 The latter equation can be found in [15]. Note also that 
0z z

v 0
=

< , i.e. the flow at the free 

surface is directed outward, toward air. The impulsive motions are established on the time scale 

0 ca/ Vτ=  where c is a dimensionless factor. Accordingly, the acceleration of blood at the free 

liquid surface, A, can be evaluated using Eq. (18) as 

( )
2
0

2 2

2 a aarcsin
r

VA r
aca r

⎡ ⎤⎛ ⎞≈ − −⎢ ⎥⎜ ⎟π ⎝ ⎠−⎣ ⎦
.                                                                                               (19)

 The impact velocity that generates the impulsive motions, 0V , is less than the bullet 

approach velocity, aV , because the propagation of the sound wave within the liquid absorbs a 

part of the kinetic energy of the bullet. Accordingly, [16-18] 

0 a 3

1V
1 4 3

V
a ( m)

=
+ ρ

,                                                                                                                               (20) 

where m is the bullet mass. For the bullet used in the experiments, the approach velocity is 

Va≈1000 m/s, while a=0.285 cm, and m=2.916 g, which results in V0= 988.90 m/s. 

  

IIIB. Blood droplet size-distribution and ejection due to the Rayleigh-Taylor instability 
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The surface of splashed blood accelerated toward air is subjected to the Rayleigh-Taylor 

instability [7]. The fastest growing wavelength of such instability defines the characteristic drop 

size, *l , which is understood as its diameter  

( )
( )*
2 w

A r / (
r

3 )

π=
ρ σ

l ,                                                                                                                         (21) 

where σ is the surface tension of blood and w is a dimensionless factor. The factor w appears due 

to the fact that Eq. (21) is an order of magnitude estimate. Due to the action of surface tension, 

the launched blood droplets maintain a spherical shape and are assumed to carry that shape until 

impact. Note that as r → ∞ , the acceleration tends to zero, and thus, * ∞→l . A practically 

relevant cut-off used in this work was maxr 5a= . 

Equations (18) and (21) show that larger, faster drops originate close to the impacting blunt 

bullet while the smaller and slower ones are formed further from it. 

The continuous drop population can be dissected into subfamilies with masses Mi as 

i 1

i

b

i z z 0b
M 2 dv r r+

=
= ρτ π∫ ,                                                                                                                           (22) 

where the limits correspond to a subfamily i, i i 1rb b +≤ ≤ . The integral of Eq. (22) can be 

evaluated with Eq. (18) resulting in 

2 2 2 2 2 2 2 2 2 2
i i 1 i i 1 i i 1 i

i 1 i

1 a aca a b a b a b arcsin b arcsM in a b a a
b

4 b a
2 b+ + +

+

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎡ ⎤ρ − − − − − + − − −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎪ ⎣ ⎦⎩
=

⎪⎭
.                            

(23) 

The dimensionless factor c corresponds to the fact that an order of magnitude of the impact 

time τ is used.  

The number of drops in each subfamily can then be found as 
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i
i 3

*,i

Mn
/ 6

=
ρπl

.                                                                                                                                                        (24) 

 

IIIC. Blood droplet spray propagation 

Calculation of the drop trajectories, using the coordinate frame defined in Figure 1, is 

described in detail in our previous work [4], and is briefly outlined here.  

The continuous spectrum of droplets issued as a result of the Rayleigh-Taylor instability 

were dissected into discrete groups (bins, denoted by numerals i). These bins were considered as 

inter-penetrating continua with air which was entrained into motion by viscous suction due to the 

eddy viscosity. Individual blood droplets from bin i experience air drag expressed using the drag 

coefficient correlation already used for the forensic applications in [2, 4], namely,   

D,i i0.5
i i

6 210.28        for the Reynolds number 0.1 Re 4000
Re

C
Re

= + + ≤ ≤ .                        (25) 

In a dense spray, like those in blood spatter, air entrainment is dominated by the fastest 

moving droplets “leading” the spray (the two-phase jet), whereas the other droplets are moving 

in the aerodynamic wake of the leading ones and experience either no aerodynamic drag, or a 

significantly diminished drag, as was previously shown for sprinkler jets and diesel sprays [7, 8] 

and implemented in the predictions of backward spatter in [4]. The effect of the aerodynamic 

wake of the preceding droplets can be so severe, that the trailing droplets can be even accelerated 

due to it, as it was recently shown in the analysis of high-speed video observations of backward 

spatter caused by gunshots [19]. 

In distinction from [4], only a normal impact of a bullet onto the target is considered, i.e. 

the impact inclination angle δ=0○.  Also, it is assumed that the radius of the impact of the disk-
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like area of a blunt bullet is much smaller than the distances travelled by the spatter drops. As in 

[4], a set of discrete angular positions of the disk where drops are spattered is considered, which 

corresponds to a set of discrete values of the polar angle Φ  in the disk plane. The angular 

positions on the disk begin from 0Φ = , which is the rightmost point of the disk, and increase 

with /12ΔΦ = π  . Then, / 2Φ = π  corresponds to the topmost point of the disk, Φ = π  

corresponds to the leftmost point, etc. Then, according to [4], the initial angle of inclination of 

drop trajectories, ψ , is given by  

( ) ( )arcsin sin sinψ = Δθ Φ⎡ ⎤⎣ ⎦ ,                                                                                                          (26) 

where Δθ  is the angle of the spatter relative to the bullet axis. This angle is discussed in more 

detail in Sec. IV. 

The distances reached by drops in their plane of flight are denoted as Zφ and, as in [4], they 

correspond to the normal distance from the target Z given by the following expression   

( )
( ) ( ) ( )2 2 2

Z Z
co

cos

sin coss
ϕ

Δθ

Δθ + Δθ
=

Φ
.                                                                                      (27) 

In the direction parallel to the target surface these droplets are deposited at points with 

the lateral coordinate X given by 

( ) ( )X Z tan cos= Δθ Φ⎡ ⎤⎣ ⎦ .                                                                                                                 (28) 

In the case of drop deposition on a vertical sampling cardstock located at a known distance 

from the target, the later determines the value of Zφ entering Eq. (27) (and thus, Z), the lateral 

coordinate of the stain is given by Eq. (28), and its final height on the cardstock is directly found 

from the governing trajectory equations of [4].  
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IV. Results and Discussion 
 

The scanned images of the cardstock sheet, which was located vertically at a distance of 

50 cm from the target and perforated by a blunt bullet, were discretized radially from the 

penetration location to the furthest drop into 10 concentric disk-shaped areas of equal width. In 

each ring-shaped segment, the number of stains was counted and summed to find the number of 

stains per segment. Also, the average stain area and the total stain area per segment were found. 

These values were attributed at the location of the mid-radius of each segment. This procedure 

resulted in 10 data points for the number of drops, the average stain area, and the total stain area 

as the functions of the radial coordinate from the blunt bullet penetration location on the vertical 

collector sheet.  

It should be emphasized that the theory of Sec. III attributes formation of blood drops in 

back spatter to the very first moment of the impact of the blunt edge of the bullet onto the target. 

Therefore, the theoretical predictions are unaffected by the following disintegration of the bullet, 

which happens in the experiments. To compare the theoretical data with the results of the 

experiment described in Sec. II, several parameters must first be defined. The following values 

were used in the simulations: the blunt bullet impact velocity 0 98 0V 8.9=  m/s (corresponding to 

a bullet approach velocity of aV 1000≈ m/s), radius of the impact area of the blunt bullet (a 

disk), a=0.285 cm, the spatter spread angle, 15Δθ = ° , the azimuthal discretization in the angular 

direction, /12ΔΦ = π , the height of the impact, H0=56.0 cm, and the dimensionless factors were 

w=0.112 and c=786.6 (for a blunt bullet). In comparison, the latter two factors in [4] were taken 

as w=0.9 and c=0.001 (for a slender bullet). The drop size generated by a gunshot via the 

Rayleigh-Taylor instability should be definitely affected by the bullet shape, which explains 

variation in the value of w [in the same order of magnitude in Eq. (21)]. Also, it should be 
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emphasized that the amount of blood splashed by a blunt bullet is usually larger than that of a 

slender bullet. That is reflected by a different value, much larger, value of c used in the present 

work. Ultimately, the value of c is affected by the bullet shape, as one of the factors, and the 

increased value used here reflects that fact. 

The chosen value of 15Δθ = ° can be substantiated on the basis of several published 

experiments and on our theoretical analysis. The X-ray measurements during impact of metallic 

projectiles in water in [20], revealed a conical cavity trailing the projectile with 10°<Δθ<20°, for 

diameters and supersonic (by air) impact velocities comparable to that of our study. Interestingly, 

[20] reported similar values of Δθ for projectiles with various shapes, such as spheres, cylinders, 

with spherical tips, and blunt cylinders. Similar values of 10°<Δθ<20° were reported in [21] for 

impacts of spheres in water at both low and high Bond numbers. The authors of [22, 23] used 

shadowgraphy to estimate the pressure field in the fluid around the projectile. 

A theoretical justification of the value of Δθ in the present case of a blunt bullet 

atomization of blood can be made as follows. According to Eq. (17) the radial velocity of 

splashed liquid is equal to zero, and thus the initial ejection is expected to be strictly normal to 

the free surface. This is indeed observed in the intact crown-like splashes resulting from drop 

impact onto a liquid surface (cf. Fig. 6 in [24]). However, in the present case the ejected liquid is 

atomized practically from the very beginning, which results in the suction of a significant mass 

of air, which inevitably happens at the periphery of the spattered two-phase blob unaffected by 

any aerodynamic effects caused by a bullet (cf. Fig. 4 in [19]). Accordingly, the ejected drop 

blob essentially forms an axisymmetric two-phase submerged turbulent jet. This fact is 

accounted for in the present model following our previous work [4] in the calculation of the air 

mass entrained by the moving drop-air blob. It should be emphasized that due to the air 
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entrainment the drop-air blob widens to compensate for the decrease of its velocity due to the 

action of the eddy viscosity and sustains the invariant value of the longitudinal momentum flux 

[25]. Accordingly, the asymptotic boundary of the two-phase jet associated with the one-tenth 

longitudinal velocity u in comparison to the corresponding axial velocity value um is given by 

0.1 0.1 Ty a x= η , where 0.1η  is the value of the self-similar coordinate corresponding to the 

boundary and a is the semi-empirical constant of the Prandtl mixing length theory ( Ta =0.045-

0.055) [25]. Since the self-similar velocity profile in the jet cross-section is given by 

( ) 22
mu / u 1 / 8

−
= + η , the value of 0.1η  is found as ( ) 1/2

0.1 8 10 1 4.16⎡ ⎤η = − =⎣ ⎦ . Then, 

0.1 0.1 Ttan dy dx a 0.229Δθ = = η =  (with the value Ta =0.055 being used). Accordingly, 13Δθ = o , 

which is sufficiently close to the value of 15Δθ = °  used in the calculations.  

Note that in [16, 21] theoretical models for the evolution of the splash curtain formed at 

high Weber number are presented, still in the velocity range well below that of a gunshot. Also, 

the work [26] explains theoretically that the cavity shape is identical for various projectile 

shapes, provided that the ratio of their cross-section times drag coefficient over their mass would 

the same, which was verified in [27]. 

Note also, that the case of a backspatter caused by a conical bullet [4] belongs to the class 

of the entry (Wagner) problems where a wedge-like or an axisymmetric body penetration into 

liquid is accompanied by a splashed liquid jet rising over the body generatrix and forming a thin 

sheet prone to atomization. The entry problems, which are essentially different from the 

instantaneous impact problem we are dealing with here, were studied in detail in the following 

works and references therein [15-18, 28-30]. Recently, it was shown experimentally that the 

splashed liquid jet rising over the body generatrix as a consequence of the body entry is 
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displaced from the body surface due to the air gulping, which can further affect liquid 

atomization process in such situations [31].  In typical BPA cases, muzzle gases can also deflect 

the ejected blood drops, as the experimental data discussed in [19] revealed. In particular, the 

effect of the muzzle gases and the underlying bones could cause 90Δθ ≈ ° , as in [32]. In the 

present study however, the influence of the muzzle gases has been made negligible by design of 

the experimental setup. 

  

  

FIG. 2 Predicted and measured number of drops in back spatter at different radial locations 

relative to the bullet path at a vertical cardstock collector at 50 cm before the target. Red circles 

show the theoretical prediction, blue triangles show the data of experiment T13, and green 

diamonds show the data of experiment T14. 
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The experimental data in Fig. 2 reveal a significant difference in the total number of 

droplets between the two sets of experimental data. The reasons for the differences are not clear 

to us at the present time. The experimental trends, however, are similar, and the theoretical 

predictions closely follow the data of the experiment T13. The results reveal a steep rise in the 

number of drops which peak for a characteristic maximum around a distance of about 15-20 cm 

from the location where the cardstock was penetrated by the bullet followed by a gradual 

decrease in the number of drops deposited further on. 

It is important to note that the theoretical Eqs. (17) and (18) predict that the spatter jet 

would be normal to the substrate, while the experiments in Figure 2 show a maximum spatial 

concentration of stains at ~20 cm from the bullet hole. Considering the distance of 50 cm 

between the substrate and the cardstock sheet, this corresponds to a spatter spread angle 

 Δθ = tan-1(20/50)=21°, close to 15Δθ = ° , the value used in the calculations.  

 In normal drop impact the stain is larger than the original drop size by the spread factor ξ 

[33-35] 

0.166

f

f

We0.61
Oh

⎛ ⎞
ξ = ⎜ ⎟

⎝ ⎠
,                                                                                                                                             (29) 

where fWe  and fOh are the final (impact) Weber and Ohnesorge numbers, respectively, 

2
*i i,f f

f f
i,f

l u We
,    W     Oh

R
e

e
ρ

= =
σ

,                                                                                              (30) 

(note that the latter expressions involve two physical parameters of blood: its density ρ=1.06 

g/cm3, and its surface tension σ=60.45 g/s2 [36]). The subscript i in Eqs. (30) indicates each drop 

subfamily (cluster) in the simulations, f stands for final, and i,fRe  is the final Reynolds number 
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for each cluster. Since in the present case of back spatter drop impact on a vertical cardstock 

sheet, the impacts are not normal and therefore the spread factor alone cannot account for the 

arising stain area and a relation with the impact angle must be found. Using the approach 

employed for crime scene reconstruction [37], the relation between the longest size of drop stain, 

L, resulting from an oblique impact, and the stain size after normal impact, *ξl  [cf. Eqs. (21) and 

(28)] can be taken as 

*

sin
L = ξ

α
l

                                                                                                                                                              (31) 

 

 

FIG. 3 Stain formation in oblique drop impact onto a vertical surface.  

 

with the angle α shown in Fig. 3. Accordingly, the effective stain area is evaluated as  

2 2
*A

4sin
π ξ=

α
l

                                                                                                                                                              (31) 

The predicted average stain area on the vertical collector located at 50 cm before the target 

is compared in Fig. 4 to the measured one and the agreement is quite satisfactory. The values of 

*l  in Eq. (31) calculated using Eq. (21) for five clusters are shown in Table 2. It should be 

emphasized that the pore size in the target sponge is of the order 0.1 cm, i.e. is an order of 
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magnitude larger than the drop size *l determined by the Rayleigh-Taylor instability (cf. Table 

2). This means that the pores hardly impose a significant hydraulic resistance.  Nevertheless, due 

to a relatively high surface tension of blood (σ=60.45 g/s2), individual blood jets issued from the 

pores will immediately merge and form an intact layer, as it was observed in the experiments 

with high surface tension liquids in [38]. In distinction from [38], this intact liquid layer is 

subjected to tremendously high acceleration toward air and thus is prone to the Rayleigh-Taylor 

instability which sets an ultimate drop size. Note also, that when a target sponge is covered by a 

tape or silicone (not the case in the present work), the blood spatter can be affected causing an 

uneven distribution of drops [19].     

 

TABLE 2. Characteristic drop cluster sizes calculated using Eq. (21). 

Cluster *l  [mm] 

1 0.1932 

2 0.2242 

3 0.2566 

4 0.2903 

5 0.3254 
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FIG. 4 Comparison of the predicted and measured average stain area on the vertical collector 

located at 50 cm before the target. Red circles depict the theoretical prediction, blue triangles 

correspond to the experiment T13, and green diamonds to the experiment T14. 

 

Figure 4 reveals that, on average, in back spatter, smaller drops land on the vertical 

collector closer to the penetration location of the blunt bullet than the larger ones. It should be 

emphasized that the largest drops land at the furthest locations. The number of drops times their 

average stain area at a certain location yield the total stain area for their respective radial 

locations, which is illustrated in Fig. 5.  
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FIG. 5 Comparison of the predicted and measured total stain area on the vertical collector 

located at 50 cm before the target. Red circles depict the theoretical predictions, blue triangles 

correspond to the experiment T13, and green diamonds – to the experiment T14. 

 

The experimental data sets fall on top of one another in Fig. 5 because T13 has a lower 

total number of droplets yet a larger average stain area, and vice versa for T14. It is interesting to 

note the plateau in the R=35-50 cm range. This plateau is also seen in the theoretical predictions, 

albeit to a lesser extent. The numerical predictions also allow one to find the final impact angle 

and the impact Weber number on the collection screen. This can be done with the same radial 

discretization as Figs. 2, 4, and 5. 
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FIG. 6 Predicted impact angle lumped over consecutive rings on the vertical collector screen 

located at 50 cm before the target. The angle is reckoned from the vertical collector screen 

direction. Red circles depict the theoretical predictions, blue triangles correspond to experiment 

T13, and green diamonds - to the experiment T14. Note that the main discrepancy between 

theoretical and experimental data is for results close to the bullet hole.   

 

The impact angle, α relative to the vertical collector screen depicted in Figs. 6 reveal that 

the larger drop impact such a collector more tangentially than the smaller ones and at a further 

radial distance from the bullet path. Note that the main discrepancy between theoretical and 

experimental data is for the locations close to the bullet hole. This may be due to the 

experimental data collection process where tears of cardstock at the periphery of the bullet hole 
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are interpreted as stains. The final Weber number, averaged over each ring-shaped segment, is 

shown in Fig. 7. 

 

FIG. 7 Dependence of the average final Weber number as a function of the radial coordinate 

predicted numerically. 

 

V. Conclusion 
 

A theoretical model is proposed for predicting bloodstain patterns from back spatter 

resulting from a blunt bullet. The model attributes the back spatter to the Rayleigh-Taylor 

instability of the free surface of blood, and thus extends the previously proposed model for the 

back spatter due to slender bullets. The drop flight through air from the target to the deposition 
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surface (in the present case a vertical sheet of cardstock located between the shooter and the 

target) is predicted accounting for gravity and air drag. The latter incorporated the collective 

effect associated with the drag reduction on the drops following the previous drops in their 

aerodynamic wake. The predicted and measured number of drops, the average stain area, and the 

total stain area as functions of the radial distance from the penetration point on the deposition 

surface are found to be in a fairly good agreement.  Future work will consider the additional 

complexity of the interaction of the muzzle gases with the atomization and spattering processes, 

and also assess the practical implications of these experiments and theoretical predictions for the 

criminal justice system. 
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