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Coherent jets containing most of the kinetic energy of the flow are a common feature in observa-
tions of atmospheric turbulence at planetary scale. In the gaseous planets these jets are embedded
in a field of incoherent turbulence on scales small relative to the jet scale. Large scale coherent
waves are sometimes observed to coexist with the coherent jets and the incoherent turbulence with
a prominent example of this phenomenon being the distortion of Saturn’s North Polar Jet (NPJ) into
a distinct hexagonal form. Observations of this large scale jet-wave-turbulence coexistence regime
raises the question of identifying the mechanism responsible for forming and maintaining this tur-
bulent state. The coherent planetary scale jet component of the turbulence arises and is maintained
by interaction with the incoherent small-scale turbulence component. It follows that theoretical
understanding of the dynamics of the jet-wave-turbulence coexistence regime can be facilitated by
employing a statistical state dynamics (SSD) model in which the interaction between coherent and
incoherent components is explicitly represented. In this work a two-layer beta-plane SSD model
closed at second order is used to develop a theory that accounts for the structure and dynamics of
the NPJ. An asymptotic analysis is performed of the SSD equilibrium in the weak jet damping limit
that predicts a universal jet structure in agreement with observations of the NPJ. This asymptotic
theory also predicts the wavenumber (six) of the prominent jet perturbation. Analysis of the jet-
wave-turbulence regime dynamics using this SSD model reveals that jet formation is controlled by
the effective value of β and the required value of this parameter for correspondence with observation
is obtained. As this is a robust prediction it is taken as an indirect observation of a deep poleward
sloping stable layer beneath the NPJ. The slope required is obtained from observations of the mag-
nitude of the zonal wind component of the NPJ. The amplitude of the wave six perturbation then
allows identification of the effective turbulence excitation maintaining this combined structure. The
observed jet structure is then predicted by the theory as is the wave six disturbance. The wave
six perturbation, which is identified as the least stable mode of the equilibrated jet, is shown to be
primarily responsible for equilibrating the jet with the observed structure and amplitude.

I. INTRODUCTION

Coherent structures emergent from small scale turbu-
lence are often observed in planetary atmospheres with
the zonal jets of the gaseous planets being familiar ex-
amples [1–4]. While this phenomenon of spontaneous
large scale jet organization from small scale turbulence
has been extensively investigated in both observational
and theoretical studies [5–19] the physical mechanism
underlying it remains controversial. The prominence of
jets in planetary turbulence is in part due to the jet be-
ing a nonlinear stationary solution of the dynamics in
the limit of vanishing dissipation and therefore not dis-
rupted by nonlinear advection on the time scale of the
large scale shear. However, its being a stationary solu-
tion is insufficient by itself to serve as an explanation
for the observed jets for three reasons. First, strong jets
typically assume a characteristic structure for a given
set of system parameters, while any zonally symmetric
flow is a fixed point of the inviscid dynamics. Second,
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nonlinear stationary states lack a mechanism of mainte-
nance against dissipation and so can not explain the fact
that the observed jets, which are not maintained by co-
herent external forcing such as by an imposed pressure
gradient, persist much longer than the dissipation time
scale. Third, planetary jets commonly appear to be un-
stable; for example, the north polar jet (NPJ) of Saturn
robustly satisfies the Rayleigh–Kuo necessary condition
for barotropic instability in a dissipationless stationary
flow [20, 21], and barotropic instability of this jet has
been verified by eigenanalysis [22].

The aforementioned considerations imply that a com-
prehensive theory for the existence of large scale jets in
the atmospheres of the gaseous planets and in particular
Saturn’s NPJ must provide a mechanism for the forma-
tion and maintenance of the jet from incoherent turbu-
lence, the particular structure assumed by the jet and
its stability. In addition to these the case of the NPJ
also requires that the theory account for the prominent
coherent wave six perturbation that distorts the jet into
a distinct hexagonal form.

The primary mechanism by which the large scale jets of
the gaseous planets are maintained is upgradient momen-
tum flux resulting from straining of the perturbation field
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by the mean jet shear which produces a spectrally nonlo-
cal interaction between the small-scale perturbation field
and the large-scale jet. This mechanism has been veri-
fied in observational studies of both the Jovian and Sat-
urnian atmospheres [23–25], as well as in numerical sim-
ulations [10, 11, 17] and in laboratory experiments [26].
This upgradient momentum transfer mechanism has been
found to maintain mean jets both in barotropic forced dis-
sipative models [11, 27] and in baroclinic free turbulence
models [9, 28] and can be traced to the interaction of the
perturbation field with the mean shear [11, 29–31]. Ex-
citation of the observed small scale forced turbulence in
the case of both the Jovian and Saturnian jets is believed
to be of convective origin [3, 17, 25, 32–34]. For our pur-
poses it suffices to maintain the observed amplitude of
small scale field of turbulence. We choose to maintain
this turbulent field in the simplest manner though in-
troducing a stochastic excitation. The structure of the
stochastic excitations is not important so long as it main-
tains the observed amplitude of turbulence given that the
anisotropy of the turbulence is induced by the mean shear
of the jet.

In this work Saturn’s NPJ is studied using the statisti-
cal state dynamics (SSD) of a two-layer baroclinic model,
specifically a closure at second order in its cumulant ex-
pansion (cf. Ref. [35]). The implementation of SSD used
is referred to as the stochastic structural stability theory
(S3T) system [27]. In S3T the nonlinear terms in the per-
turbation equation for the second cumulant involves the
third cumulant which is parameterized by a stochastic ex-
citation rather than being explicitly calculated while the
nonlinear interaction of the perturbations with the mean
jet are fully retained. For this reason the S3T system
may be described as quasi-linear (QL) in accord with the
fact that quasilinearity is a general attribute of second or-
der closures [36]. S3T has been applied previously to the
problem of jet formation in barotropic turbulence [37–42]
to jet dynamics in the shallow water equations [43] and to
jet dynamics in baroclinic turbulence [28, 44]. The S3T
system employs an equivalently infinite ensemble in the
dynamical equation for the second cumulant and as a re-
sult provides an autonomous and fluctuation-free dynam-
ics for the statistical mean turbulent state which greatly
facilitates analytical study[45].

When applying S3T to the study of zonal jets it is
useful to equate the ensemble mean and zonal mean by
appeal to the ergodic hypothesis. A two-layer model is
employed in order to provide the possibility for baroclinic
and barotropic dynamics both for the jet itself and for the
perturbations that are involved in the equilibration dy-
namics. One reason this is important is that a barotropic,
equivalent barotropic or shallow water model with the ob-
served Rossby radius would not allow the problem free-
dom to adopt barotropic dynamics corresponding to for-
mation of deep jets. In the event we find that the sta-
tistical equilibrium jets are either barotropic or close to
it so that the Rossby radius is not a relevant parameter
[17].

We find that jet formation is tightly controlled by
the effective vorticity gradient, β. As this is a robust
requirement of the dynamics, the observed jet struc-
ture is taken as an indirect observation of this param-
eter. Saturn’s NPJ is similar in structure and ampli-
tude to strong midlatitude jets on the gaseous planets
such as Jupiter’s 24◦ N jet while the planetary value of
βsat(74

◦) = 1.6 × 10−12 m−1 s−1 at the latitude of the
NPJ is too weak to stabilize a jet with the observed ampli-
tude (98.7 m s−1), which poses a dynamical dilemma [20].
Theory and observation can be brought into correspon-
dence by inferring a deep strongly statically stable layer
beneath the jet giving rise to the equivalent of a topo-
graphic β effect. The β used in the model is then the
dyamical superposition of the effects of both the plane-
tary and the topographic components. With this inferred
effective β the observed jet structure accords with the
theory.

While the first cumulant provides the structure of
the jet, the second determines the planetary scale wave
disturbance superposed on the jet. With the inferred
value of β and an incoherent turbulence excitation level
consistent with observation this wave is found to have
wavenumber six and the amplitude required to produce
the observed hexagonal shape of the NPJ. The role of this
wave in the dynamics is to equilibrate the jet with the ob-
served velocity structure and amplitude while providing
the pathway for dissipation of the energy that the jet is
continuously extracting from the small scale turbulence.

Previously advanced explanations for the prominent
wave six perturbation to Saturns’s NPJ are that it arises
as the surface expression of an upward propagating
Rossby wave the origin of which is attributed to a wave
six corrugation of an inferred deep lower layer [21] and
that the wave six results from nonlinear equilibration of
a linear instability of the jet [46, 47]. However, the equili-
brated wave six instability predicts closed vortices which
are not seen in observations of the NPJ.

The nonlinear S3T equilibrium obtained satisfies the
Rayleigh–Kuo necessary condition for barotropic jet in-
stability in both the prograde and retrograde jet and sig-
nificant interaction between the jet and the modes as-
sociated with both these vorticity gradient structures is
seen. Although the Rayleigh–Kuo criterion is not suf-
ficient to ensure instability of a barotropic jet, experi-
ence has shown that, absent careful contrivance of the
velocity profile, satisfaction of this necessary condition
coincides with modal instability. Therefore, finding this
criterion satisfied absent an instability directs attention
toward the mechanism responsible for the implied care-
ful contrivance. In the case of the NPJ this mechanism is
shown in this work to be continuous feedback regulation
between the coherent jet and the incoherent turbulence
that adjusts the jet to marginal stability under conditions
of sufficiently strong forcing by the small scale incoher-
ent components to produce an unstable jet profile. The
widely debated enigma of the stability of the zonal jets
of the gaseous planets and in particular the stability of
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the NPJ in the face of observed strong vorticity gradi-
ent sign reversals is in this way resolved by the jets hav-
ing been adjusted to (in most cases marginal) stability
by perturbation-mean flow interaction between the first
and second cumulants of the S3T dynamics. This mech-
anism of regulation to marginal stability by feedback be-
tween the first and second cumulant is familiar as the
agent underlying establishment of turbulent equilibria in
Rayleigh-Benard convection [36, 48] and in establishing
the baroclinic adjustment state in baroclinic turbulence
[28, 44, 49].
This mechanism of equilibration also has implications

for the problem of identifying how energy transferred
upscale from the excited small scales to large scales in
geostrophic turbulence is dissipated as is required to
maintain statistical equilibrium. Ekman damping asso-
ciated with no slip boundaries is not available in the
absence of solid boundaries and there is negligible dif-
fusive damping at the jet scale. In fact, in the case of the
NPJ, the eddy fluxes, including the eddy damping, are
explicitly calculated for the SSD equilibrium state and
these are found to be dominantly upgradient and there-
fore in toto are responsible for maintaining rather than
dissipating the jets. In model studies hypodiffusion is
commonly used to allow establishment of a statistically
steady state [50, 51]. While hypodiffusion is often em-
ployed without physical justification it can be related to
radiative damping of baroclinic structures [51]. However,
we find that the dynamics of jet formation result in pri-
marily barotropic jet structure so that thermal damping
is not relevant. Instead, in the case of Saturn’s NPJ we
identify the physical dissipation mechanism responsible
for equilibrating the jet to be energy transfer directly
from the coherent jet to a wave six structure followed by
dissipation of the energy by this wave. We note that in
this planetary scale turbulence regime both the upscale
energy transfer maintaining the jet as well as the down-
scale energy transfer to the wave six mode regulating its
amplitude occur directly between remote scales and in
neither case do these involve a turbulent cascade.

II. APPLYING S3T TO STUDY THE SSD

EQUILIBRIA IN A TWO-LAYER MODEL OF

SATURN’S ATMOSPHERE

We wish to choose a model configured to address the
question of whether the planetary jet structure is deep or
shallow; that is, whether it is confined to a shallow sur-
face layer and therefore favors dynamically a baroclinic
structure or if the dynamics favors establishment of a
deep barotropic structure. The simplest model that re-
tains the freedom for the dynamics to exploit both baro-
clinic and barotropic processes and to attain either baro-
clinic or barotropic structure for the coherent component
of the turbulent state equilibria is the quasi-geostrophic
two-layer model. We choose parameters appropriate for
the NPJ of Saturn including planetary vorticity gradi-

ent β = df0/dy, where f0 is the planetary vorticity and
the derivative is taken at the center of the channel at
74◦ N. The channel size is Lx in the zonal, x, direc-
tion, and Ly in the meridional direction, y = Rφ, in
which R is the radius of the planet and φ is the lati-
tude. The layers are of equal depth, H , with the den-
sity of the upper layer, ρ1, being less than that of the
lower, ρ2. The stream function in each layer is denoted
ψj , with j = 1 referring to the top layer and j = 2 to
the bottom layer. The zonal velocities are uj = −∂yψj
and the meridional velocities are vj = ∂xψj (j = 1, 2).
The dynamics is expressed as conservation of potential
vorticity, qj = ∆ψj + βy + (−1)jλ2(ψ1 − ψ2)), in which
λ2 = f2

0/(g
′H), with g′ = g(ρ2 − ρ1)/ρ0 the reduced

gravity associated with the planetary gravitational accel-
eration g and ρ0 is a characteristic density of the fluid,
which is taken here to be (ρ1 + ρ2)/2 (cf. Ref. [52]). The
Rossby radius of deformation for baroclinic motions in
this two-layer fluid is Ld = 1/(

√
2λ).

The quasi-geostrophic dynamics expressed in terms of
the barotropic ψ = (ψ1+ψ2)/2 and baroclinic θ = (ψ1 −
ψ2)/2 streamfunctions is:

∂t∆ψ + J(ψ,∆ψ) + J(θ,∆θ) + β∂xψ =

= −r∆ψ +
√
ε fψ , (1a)

∂t∆λθ + J(ψ,∆λθ) + J(θ,∆ψ) + β∂xθ =

= −r∆λθ +
√
ε fθ , (1b)

where ∆λ
def
= ∆ − 2λ2. Terms fψ and fθ are random

functions with zero mean representing independent vor-
ticity excitations of the fluid by unresolved processes, like
convection, with amplitude controlled by ε. The advec-
tion of potential vorticity is expressed using the Jacobian
J(f, g) = (∂xf)(∂yg) − (∂yf)(∂xg). Equations (1) are
non-dimensional with length scale L = 1000 km and time
scale T = 1 Earth day implying velocity unit 11.5 m s−1.
The coefficient of linear damping is r and this damping
may vary with the scale of the motions when appropri-
ate for probing the dynamics controlling jet formation
and equilibration. In particular, insight can be gained by
examining the regime in which the large scale zonal flow
is damped at a rate rm ≪ rp where rp is the damping
rate of the perturbations. Relatively small damping rate
for the large scale jet compared to the small scale inco-
herent turbulence is expected on physical grounds if the
damping is diffusive so that the rate is proportional to to-
tal square wavenumber. Radiative damping proportional
to θ would correspond to second order hypodiffusion on
the baroclinic component of the jet potential vorticity
but we find the jets are essentially barotropic so that
radiative damping would be ineffective. The NPJ is suf-
ficiently lightly damped that its structure is determined
primarily by nonlinear feedback regulation between the
jet and the incoherent component of the turbulence with
a negligible role for jet-scale damping in the equilibra-
tion process. Simplifying the problem by eliminating jet
damping altogether allows study of a physically realistic
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asymptotic regime in which the equilibrium state is com-
pletely determined by nonlinear feedback regulation. We
verify that inclusion of a small damping rate makes no
substantive change in the jet equilibrium obtained in the
undamped jet limit.

The barotropic and baroclinic streamfunctions are de-
composed into a zonal mean (denoted with capitals) and
deviations from the zonal mean (referred to as perturba-
tions and denoted with primed small letters):

ψ = Ψ+ ψ′ , θ = Θ+ θ′ . (2)

We denote the barotropic zonal mean flow as U = −∂yΨ
and the baroclinic zonal mean flow as H = −∂yΘ. Equa-
tions for the evolution of the barotropic and baroclinic
zonal mean flows are obtained by formimg the zonal mean
of (1):

∂tU = v′q′ψ − rmU , (3a)

∂tD
2
λH = D2v′q′θ − rmD

2
λH , (3b)

in which the overline denotes zonal averaging, D2 def
= ∂2y ,

D2
λ

def
= D2−2λ2, and rm denotes the linear damping rate

of the mean flow. The terms

v′q′ψ
def
= (∂xψ′)(∂2yψ

′) + (∂xθ′)(∂2yθ
′) , (4a)

v′q′θ
def
= (∂xψ′)D2

λθ
′ + (∂xθ′)(∂2yψ

′) , (4b)

are, respectively, the Reynolds stress divergence forcing
of the barotropic and baroclinic mean flow or equiva-
lently the barotropic and baroclinic vorticity flux. Vor-
ticity fluxes are referred to as upgradient if they have
the tendency to reinforce the mean flow, so that e.g.
∫ Ly

0
U v′q′ψ dy > 0; otherwise they are termed down-

gradient.

The evolution equations for the perturbations are:

∂t∆ψ
′ + U∂x∆ψ

′ +H∂x∆θ
′ + (β −D2U)∂xψ

′

−D2H∂xθ
′ = −rp∆ψ′ − J(ψ′,∆ψ′)′ − J(θ′,∆θ′)′,

(5a)

∂t∆λθ
′ +H∂x∆ψ

′ + U∂x∆λθ
′ + (β −D2U)∂xθ

′

−D2
λH∂xψ

′ = −rp∆λθ
′ − J(ψ′,∆λθ

′)′ − J(θ′,∆ψ′)′ ,
(5b)

with the prime Jacobians denoting the perturbation-
perturbation interactions,

J(f, g)′ = J(f, g)− J(f, g) . (6)

Equations (3) and (5) comprise the non-linear system
(NL) that governs the two layer baroclinic flow. As pre-
viously remarked, dissipation of the mean at rate rm and
of the perturbations at a lower rate, rp, in (3) and (5) is
consistent with parameterizing diffusion while retaining
the simplicity of linear damping. More importantly, it
allows us to explore the dynamically interesting regime

rm = 0 in which the equilibration of the jet by nonlinear
interaction with the perturbations is independent of jet
damping.
We impose periodic boundary conditions on Ψ, Θ,

ψ′, θ′ at the channel northern and southern bound-
aries [9, 53]. These boundary conditions can be verified
to require that the temperature difference between the
channel walls remains fixed. In this work we have chosen
to isolate the primarily barotropic nature of jet forma-
tion and equilibration dynamics by taking this temper-
ature difference to be zero. Simulations including baro-
clinic influences arising from temperature gradients below
the threshold required for baroclinic instability, as is ap-
propriate for Saturn, show small changes in the results
[28, 44].
The corresponding quasi-linear system (QL) is ob-

tained by substituting for the perturbation–perturbation
interactions in (5) a state independent and temporally
delta correlated stochastic excitation together with suffi-
cient added dissipation to obtain an approximately en-
ergy conserving closure [54–56]. Under these assump-
tions the QL perturbation equations in matrix form for
the Fourier components of the barotropic and baroclinic
streamfunction are:

dψk
dt

= A
ψψ
k ψk + A

ψθ
k θk +

√
ε∆−1

k Fk ξ
ψ(t) , (7a)

dθk
dt

= A
θψ
k ψk + Aθθk θk +

√
ε∆−1

kλ Fk ξ
θ(t) . (7b)

The variables in (7) are the Fourier components of the
perturbations fields defined through e.g.,

ψ′(x, yi, t) =
∑

k>0

ℜ
[

ψk,i(t) e
ikx

]

, (8)

with ℜ denoting the real part. The states ψk and θk
are column vectors with entries the complex value of the
barotropic and baroclinic streamfunction at the colloca-
tion points yi. The excitations, which represent both the
explicit excitation and the stochastic parameterization
of the perturbation–perturbation interactions in the per-
turbation equations, are similarly expanded so that the
excitation at collocation point yi is given through e.g.,

fψ(x, yi, t) =
∑

k>0

∑

j

ℜ
[

Fk,ijξ
ψ
j (t) e

ikx
]

. (9)

Terms ξψ and ξθ are independent temporally delta-
correlated complex vector stochastic processes with zero
mean satisfying:

〈ξψ(t1)ξψ†(t2)〉 = 〈ξθ(t1)ξθ†(t2)〉 = δ(t1 − t2) I , (10a)

〈ξψ(t1)ξθ†(t2)〉 = 0 , (10b)

in which 〈 · 〉 denotes the ensemble average over forcing
realizations, I the identity matrix and † the Hermitian
transpose. This excitation is homogeneous in the zonal
direction and identical in each layer. In order to ensure
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homogeneity in y the latitudinal structure matrices Fk
are chosen so that their (i, j) entry is a function of |yi−yj|.
The operators Ak that depend on the mean flow U def

=
[U,H ] have components:

Ak(U) =

(

A
ψψ
k A

ψθ
k

A
θψ
k Aθθk

)

, (11)

with entries:

A
ψψ
k = ∆−1

k

[

−ikU∆k − ik
(

β −D2U
)]

− rp + ν∆k ,

(12a)

A
ψθ
k = ∆−1

k

[

−ikH∆k + ikD2H
]

, (12b)

A
θψ
k = ∆−1

kλ

[

−ikH∆k + ikD2
λH

]

, (12c)

Aθθk = ∆−1
kλ

[

−ikU∆kλ − ik
(

β −D2U
)

+ ν∆k∆k

]

− rp ,

(12d)

in which ∆k
def
= D2 − k2, ∆kλ

def
= ∆k − 2λ2. Diffusion

is included in the perturbation dynamics for numerical
stability and its coefficient, ν, is set equal to the square
of the grid interval.

The corresponding S3T statistical state dynamics sys-
tem expresses the dynamics of an equivalently infinite
ensemble of realization of the QL equations (7), with
each ensemble member sharing the same mean U while
being excited by an independent noise process,. This en-
semble of perturbation equations is coupled to the mean
equation (5) through the ensemble mean vorticity fluxes:
〈v′q′ψ〉 and 〈v′q′θ〉. Identification of the ensemble mean
with the zonal mean is made by appeal to the ergodic
hypothesis (cf. Ref. [27]). The appropriate perturbation
variable for this SSD is the covariance matrix, which is
the second cumulant of the statistical state dynamics.
The covariance for the wavenumber k zonal Fourier com-
ponent is defined as:

Ck =

(

C
ψψ
k C

ψθ
k

C
ψθ†
k Cθθk

)

, (13)

where C
ψψ
k = 〈ψkψ†

k〉, C
ψθ
k = 〈ψkθ†k〉, Cθθk = 〈θkθ†k〉. The

ensemble mean vorticity fluxes in (3) are expressed in
terms of the SSD perturbation variable Ck as:

〈v′q′ψ〉
def
=

∑

k

〈v′q′ψ〉k

=
∑

k

k

2
diag

[

ℑ
(

D2C
ψψ
k +D2Cθθk

)]

, (14a)

〈v′q′θ〉
def
=

∑

k

〈v′q′θ〉k

=
∑

k

k

2
diag

[

ℑ
(

D2
λC

ψθ†
k +D2C

ψθ
k

)]

, (14b)

with the diag operator selecting the diagonal elements of
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FIG. 1: Observed NPJ velocity (circles) from Ref. [20].
The observed jet has been symmetrized by reflecting its
southern flank about the jet maximum (solid line with
one standard deviation error bounds).

a matrix and ℑ denoting the imaginary part. The fluxes
are evaluated at each time from Ck as it evolves according
to the Lyapunov equation:

dCk
dt

= Ak(U)Ck + Ck A
†
k(U) + εQk , (15)

with Qk the covariance of the stochastic excitation
(cf. Ref. [27, 44]). The covariances Qk are normalized
so that for each k an equal amount of energy is injected
per unit time so that the excitation rate is controlled
by the parameter ε. The normalization is chosen so that
ε = 1 corresponds to injection of 10−4 Wm−2 kg−1. Note
that because the excitation has been assumed temporally
delta-correlated this energy injection rate is independent
of the state of the system.

We consider two types of excitation. When both lay-
ers are independently excited (this case is indicated with
E1,2) the covariance of the excitation is:

Qk =

(

∆−1
k FkF

†
k∆

−1†
k 0

0 ∆−1
kλFkF

†
k∆

−1†
kλ

)

. (16)

When only the top layer is excited (case indicated E1)
the covariance is given by:

Qk =

(

∆−1
k FkF

†
k∆

−1†
k ∆−1

k FkF
†
k∆

−1†
k

∆−1
k FkF

†
k∆

−1†
k ∆−1

k FkF
†
k∆

−1†
k

)

. (17)

The S3T dynamics for the evolution of the first two
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cumulants of the flow takes the form:

dU

dt
=

∑

k

〈v′q′ψ〉k − rmU , (18a)

dH

dt
= D−2

λ D2
∑

k

〈v′q′θ〉k − rmH , (18b)

dCk
dt

= Ak(U)Ck + Ck A
†
k(U) + εQk , (18c)

with the vorticity fluxes given in terms of the Ck in (14)
and the operators Ak defined in (12).
The S3T system represents the second cumulant with

an infinite perturbation ensemble and it is as a result
autonomous and therefore has the very useful property
for theoretical investigation of providing exact station-
ary fixed point solutions for statistical equilibrium states.
Because the excitation is spatially homogeneous the zero
mean flow, U = H = 0, together with the perturba-
tion field, Cek, satisfying the corresponding steady state
Lyapunov equations, is an equilibrium solution for any
ε (18c) (for the explicit expression of the equilibrium co-
variance see Ref. [57]). However, this homogeneous equi-
librium state is unstable in the S3T system for ε greater
than a critical εc. This critical value of excitation rate
resulting in unstable jet growth in the S3T system can
be found by analyzing the stability of perturbations from
this equilibrium state using the perturbation form of (18)
(cf. Ref. [44]). As ε is increased beyond εc this instability
results in a bifurcation in which finite amplitude jet equi-
librium solutions, Ue = [Ue, He], emerge with associated
covariances Cek that satisfy the time independent equilib-
rium state of (18) for this ε. These equilibria are stable
for a range of ε and satisfy the steady state equations:

∑

k

〈v′q′ψ〉k = rmU
e , D2

∑

k

〈v′q′θ〉k = rmD
2
λH

e ,

(19a)

Ak(Ue)Cek + Cek A
†
k(Ue) = −εQk . (19b)

Remarkably, these equilibria exist even for rm = 0. This
limit is especially useful for theoretical investigation be-
cause the associated equilibria have a universal form:
when rm = 0 it follows from the linearity of (19b) that
if Ue, Cek (for the excited k) is an equilibrium solution
for ε = 1 then the same Ue is an equilibrium solution
with εCek for any ε. It does take longer to reach the equi-
librium state with small ε but the same equilibrium is
eventually established by nonlinear feedback regulation
between the mean and perturbation equations. However,
it is important to note that for large enough ε this equi-
librium solution may itself become S3T unstable.

III. PARAMETERS

The first 56 zonal wavenumbers, k = 2πn/Lx with
n = 1, . . . , 56, are excited in the perturbation dynamics.

These are referred to alternatively as global wavenum-
bers or as waves n = 1, . . . , 56. The simulations use 64
grid points in y with convergence verified by doubling
this resolution. The stochastic excitation has Gaussian
structure in y with Fk chosen so that the (i, j) element

of the excitation is proportional to e−(yi−yj)
2/δ2 , with

δ = 1. Recall that the associated excitation covariances
in the S3T dynamics, Qk, are normalized so that each
wavenumber provides the same energy injection rate and
that with ε = 1 the total energy injection rate over all
wavenumbers is dimensionally 10−4 Wkg−1. We have
chosen for modeling the NPJ a doubly periodic channel
with parameter values: Ly = 104 km, Lx = 8 × 104 km,
βsat(74

◦) = 1.6 × 10−12 m−1 s−1, λ = 10−3 km−1, per-
turbation damping rp = 0.2 day−1 and excitation ε = 1.

IV. UNIVERSAL STRUCTURE AND

AMPLITUDE SCALING OF WEAKLY DAMPED

TURBULENT JETS

The velocity structure of the NPJ is asymmetric pre-
sumably because the jet is influenced by encroachment
of the polar vortex flow on its north side (cf. Fig. 1). For
simplicity we model a symmetric channel and consistently
choose to compare our results with a symmetrized jet
obtained by reflecting the southern half of the observed
jet structure about the jet maximum. This symmetrized
jet together with one standard deviation error bounds as
tabulated in [20] is shown in Fig. 1.
We anticipate that the jet dynamics will be in the small

jet damping regime in which the exact value of rm is ir-
relevant and can be taken to vanish. With the remaining
parameter value given above we find that a barotropic
jet with a single maximum in zonal velocity arises as
an unstable S3T eigenmode. That the jet structure is
barotropic is an important prediction of the SSD that re-
mains valid at finite amplitude. Whether the jets of the
gaseous planets are deep or shallow has implications for
discriminating among mechanisms for jet formation. We
conclude that the dynamics favors deep jets. A further
implication is that imposition of a finite Rossby radius
in a barotropic model would not be physically justified.
Consistent with the barotropic structure of the jets, we
have verified that the Rossby radius has little affect on
the jet dynamics. We wish to study the influence on
the S3T jet and perturbation covariance of the perturba-
tion damping rate, rp, the amplitude of the excitation,
ε, and β. In the limit of small rm the time required to
reach equilibrium depends on rm but the final equilib-
rium jet structure depends to a good approximation only
on the channel width and β. In this regime, the equilib-
rium jet amplitude and structure are nearly independent
of the excitation rate, ε, and the perturbation damping
rate, rp, while the perturbation energy is to a very good
approximation proportional to their ratio ε/rp. The jet
structure obtained in the limit rm → 0 is close to the
observed structure so we exploit the simplicity of this
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FIG. 2: S3T equilibrium jet amplitude, ∆U , as a function of β̃ = β/βsat(74
◦) in the low jet damping regime. ∆U

is the difference between the maximum and the minimum jet velocities. Indicated are values of β̃ for Saturn’s NPJ
(Ly = 104 km) and for Jupiter’s 24◦ N jet (Ly = 1.8× 104 km). The equilibria for this case in which equal excitation
has been imposed in both layers are barotropic and continuous lines indicate these equilibria for rm = 0. Dashed
lines showing these equilibria for rm = 0.001 day−1 differ little indicating the validity of the rm = 0 asymptotic. The
dependence on ε and rp of these asymptotic jets is also very weak and is not shown. The asymptotic scaling of the jet

amplitude ∆U with βL2
y is nearly perfect for β̃ > 3 (marked with an arrow). Also indicated are the planetary values of

β̃sat(74
◦), β̃jup(24

◦), the observed ∆Usat(74
◦) = 98.7 m s−1 from Ref. [20] and the observed ∆Ujup(24

◦) = 170 m s−1

from Ref. [58]. While the observed ∆Ujup(24
◦) (star) is consistent with the planetary value of β as predicted by the

asymptotic theory, the observed ∆Usat(74
◦) (square) requires β̃ = 6.9 for consistency.

limit by studying the jet dynamics with zero mean jet
damping, rm = 0. Departures from the rm = 0 equilib-
rium solution resulting from physically relevant nonzero
jet damping rates are verified to be small (cf. Fig. 2).

With rm = 0 the equilibrium jet velocity varies approx-
imately linearly with βL2

y as shown in Fig. 2 in which the
values of β appropriate for Saturn’s NPJ and for Jupiter’s
24◦ N jet are indicated. As β increases the equilibrium
jet assumes a universal structure with this βL2

y scaling,
as shown in Fig. 3. While Jupiter’s 24◦ N jet corresponds
closely with this universal scaling (cf. Fig. 3c), Saturn’s
NPJ is observed to be substantially stronger at 98.7 m s−1

than the approximately 30 m s−1 (cf. Fig. 2) predicted by
the scaling for βsat(74

◦) = 1.6 × 10−12 m−1 s−1 and the
NPJ channel width of Ly = 104 km. The effective value
of β required to obtain correspondence with the scaling
is βeff = 6.9βsat(74

◦)

The jet equilibrium is established by a robust feedback
regulation arising from interaction between the mean
equation and the perturbation covariance equation. The
mean jet, which is undamped, grows from an arbitrarily
small perturbation in the mean flow at first exponentially
under the influence of the upgradient fluxes induced by
shear straining of the short waves. This growth is progres-
sively opposed and eventually terminated by downgradi-
ent fluxes associated with the arising of this nearly neu-

tral mode as the jet vorticity gradient sign change begins
to be established (cf. Fig. 4). Extensive experience with
simulations has convinced us that this incipient instabil-
ity closely constrains the jet amplitude to allow only rel-
atively small vorticity gradient sign changes to occur. It
is widely recognized that the large vorticity gradient sign
change in the NPJ observations poses a conundrum [20].
Within our model framework this discrepancy between
the observed large vorticity gradient sign change in the
observations of the upper layer of the NPJ can only be
resolved by regarding the observed jet equilibrium as an
indirect observation of a larger effective value of β in the
unobserved lower layer of the NPJ and in fact the S3T
equilibrium jet with an appropriate choice of β, which is
βeff = 6.9βsat(74

◦), is in close agreement with the ob-
served NPJ jet (cf. Fig. 3b). We wish now to establish
the dynamical argument compelling this conclusion.

V. THE EQUILIBRATION MECHANISM

UNDERLYING THE ROBUST SCALING OF

WEAKLY DAMPED TURBULENT JETS

We turn now to study in more detail the mechanism
underlying the universal scaling of the structure and am-
plitude of weakly damped turbulent jets.
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FIG. 3: Universal structure of the S3T equilibrium jets for vanishing jet damping, rm = 0. Panel (a): normalized

equilibrium jet amplitude, ∆U/(βL2
y), as a function of β̃ = β/βsat(74

◦). For large β̃ the S3T equilibrium flows assume

an asymptotic structure and amplitude ∆U/(βL2
y) ≈ 0.085. Panel (b): the observed NPJ from Ref. [20] which has been

symmetrized, scaled and had its mean removed (dotted with error bounds) compared to the scaled S3T equilibrium

jet for β̃ = 6.9 (indicated with a square in Panel (a)). Panel (c): the observed Jupiter 24◦ N jet from Ref. [58] with
has been similarly symmetrized, scaled and had its mean removed (dotted) compared to the scaled S3T equilibrium

jet for β̃ = 2.8 (indicated with a star in Panel (a)) for channel size Ly = 1.8 × 104 km. These barotropic equilibria
are obtained with the two layers equally excited with ε = 1 corresponding to energy injection of 10−4 Wkg−1 and
rp = 0.2 day−1. This figure confirms that these planetary jets correspond to rm = 0 S3T equilibrium solution and

approach the predicted asymptotic structure as β̃ increases.

Note that in an undamped jet at equilibrium the per-
turbation momentum flux divergence vanishes at each
latitude, v′q′(y) = 0 (cf. t = 1000 right panel of Fig. 4).
Moreover, this requirement is independent of the stochas-
tic excitation amplitude, ε. As previously mentioned, for
a given ε, perhaps from observational constraints, the en-
ergy of the perturbation field at equilibrium can be shown
to increase inversely with perturbation damping, rp, to
a good approximation. These considerations imply in-
variant structure at equilibrium in the small rm limit for
both the jet (cf. Fig. 3) and the perturbation turbulence
component with only the amplitude of the perturbation
turbulence component varying and that variation being
as the ratio of excitation to damping, ε/rp.

In addition to its anomalously large amplitude given
the small planetary value of β available to stabilize
it, the NPJ is also remarkable for supporting a promi-
nent wavenumber six perturbation with the amplitude
required to distort the jet into a distinct hexagonal shape.

S3T equilibria comprise both the structure of the mean
jet and the perturbation covariance from which informa-
tion on perturbation structure can be determined. A
temporal sequence showing establishment of the equilib-
rium structure of the NPJ starting from a random initial
condition and assuming the inferred β̃ = 6.9 is shown
in Fig. 4. As is generally found, the upgradient fluxes
are produced by the short waves [43, 59], which in the
case of the NPJ means waves with n > 12. The transfer
of perturbation energy of wave n to the mean is quanti-

fied by κn =
∫ Ly

0
U〈v′q′ψ〉n dy

/ ∫ Ly

0
1
2U

2 dy (day−1) and
plotted in Fig. 4. Conversely, downgradient fluxes are
produced by the long waves with n ≤ 8. The upgradi-
ent fluxes are associated with shear straining of the short
waves which can be regarded as a mechanism resulting
in a negative viscosity in that it produces upgradient mo-
mentum flux proportional to the velocity gradient [30]
as is observed in the atmospheres of both Jupiter and
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1
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(day−1), for times t = 10, 150, 250, 1000 as the S3T equilibrium is established starting from a small random initial
jet structure. Right panels: the latitudinal distribution of the vorticity flux 〈v′q′ψ〉 (solid) (units: 11.57 m s−1 day−1),

the vorticity flux 〈v′q′ψ〉> =
∑56

n=12〈v′q′ψ〉n from zonal waves n ≥ 12 (dashed line), and the vorticity flux 〈v′q′ψ〉< =
∑11

n=1〈v′q′ψ〉n from zonal waves n < 12 (dotted line). The structure of the zonal velocity at the corresponding time

is indicated with a dashed line (amplitude arbitrary chosen to fit the graph). Vorticity fluxes 〈v′q′ψ〉> are upgradient

and are responsible for forming and maintaining the jet, vorticity fluxes 〈v′q′ψ〉< are downgradient opposing the jet
and these are responsible for the jet equilibration. The S3T equilibrium is attained by t = 1000 so that consistently
〈v′q′ψ〉(y) = 0. Energy loss from the jet at equilibrium is concentrated at n = 6 and this energy loss is primarily

balanced by energy input due to waves with n ≥ 8. Parameters: Ly = 104 km, Lx = 8× 104 km, ε = 1 corresponding

to equal energy injection in both layers of 10−4 Wkg−1, rm = 0 , rp = 0.2 day−1 and β̃ = 6.9.

Saturn [23–25]. This shear straining mechanism acceler-
ates both the prograde and retrograde jets. When the
homogeneous turbulence is perturbed by a random mean
jet these upgradient fluxes immediately cause the jet to
grow in the form of the most unstable S3T eigenmode (cf.
time t = 10 in Fig. 4) [37, 44]. As the jet amplitude in-
creases the retrograde jet progressively exceeds the speed
of the slower retrograde Rossby modes and these sequen-
tially obtain critical layers inside the retrograde jet [60].
Approach to and attainment of a critical layer by these
modes is accompanied by increasing modal as well as
non-normal energetic interaction with the jet resulting
in increasing downgradient fluxes opposing the growth
of the S3T jet eigenmode so as to eventually establish a
nonlinear equilibrium. As neutral stability is approached
with increasing jet amplitude these fluxes come into bal-

ance establishing by time t = 1000 the stable fixed point
equilibrium turbulent jet structure and associated pertur-
bation covariance that together constitute a complete so-
lution for the turbulent state at second order as shown in
Fig. 4. The equilibrium shown in Fig. 4 reveals the mech-
anisms responsible for forcing the large scale jet and also
the mechanism of dissipation at large scales that equi-
librates the jet: the jet receives energy from the small
scale incoherent components of the turbulence, rises to
finite amplitude and equilibrates by transferring energy
to the wave six structure, which provides the sink for the
jet energy. Note that in this planetary scale turbulence
regime both the upscale energy transfer forcing the jet
and the downscale energy transfer to the wave six mode
regulating its amplitude are nonlocal in spectral space
and neither involves a turbulent cascade.
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FIG. 5: Top panel: the square of the energy norm
of the resolvent for n = 6, ‖R6(c)‖22, (solid) as a func-
tion of phase speed, c, indicating the maximum energy
amplification over all latitudinal structures f(y) for unit
energy harmonic forcing of the form f(y) eik(x−ct) with
k = 2πn/Lx. Also shown is the square of the energy
norm of the equivalent normal resolvent which would
obtain if the eigenfunctions of Ak were orthogonal (dot-
ted). In the bottom panel is shown the growth rate, σ,
and phase speed, cr, of the modes of Ak for n = 6 (cir-
cles). The dominant response arises in association with
the nearly neutral least damped mode (indicated LDM)
with c = −3.44 and critical layer inside the retrograde
jet. Although the secondary peak in the prograde jet as-
sociated with the mode with phase speed c = 3.32 arises
in association with a prominent sign change in vorticity
gradient the associated modes are not significant in giv-
ing rise to the fluxes responsible for equilibrating the jet.
The equivalent normal response is substantially smaller
than the actual response indicating that non-normal in-
teractions dominate the energetics at all phase speeds
and most importantly at the phase speed of the LDM
where the maximum interaction occurs. Quantities are
non-dimensional and parameters as in Fig. 4.

Further insight into the dynamics can be obtained by
calculating the eigenvalues and the resolvent of the per-
turbation dynamics operator Ak(U) as the jet structure
U evolves toward equilibrium. The eigenvalues reveal the
approach of the retrograde modes’ phase speeds to the
speed of the retrograde jet and the associated decrease
in mode damping rate which is indicative of energetic
interaction with the jet and diagnostic of downgradient
momentum flux by the mode. The resolvent of Ak(U)
provides more information by revealing the response of

6 6.5 7 7.5 8 8.5 9
y

-0.5

0

0.5

1
n = 6

U − c

β −D2U

FIG. 6: Detail near the minimum velocity of the retro-
grade S3T jet at equilibrium with β̃ = 6.9 showing the
critical layer of the LDM, U(y)−cr, where cr is the phase
speed of the nearly neutral LDM of Ak for n = 6. Also
shown is the jet vorticity gradient, β − ∂2yU , as a func-
tion of y. Note that the perturbation-mean interaction
has stabilized the LDM by nearly eliminating the vortic-
ity gradient in the vicinity of this mode’s critical layer
while leaving a small change in vorticity gradient sign be-
tween the mode’s critical layers. Such changes in sign of
the vorticity gradient are a commonly observed feature
of turbulent jets in planetary atmospheres. Quantities
are non-dimensional and parameters as in Fig. 4.

the dynamics to the turbulent excitation at each mode
phase speed, c. We use the energy norm to measure
the response of the dynamics and the non-normality of
the dynamics are defined with respect the energy norm
(cf. Ref. [61]). The resolvent of perturbations with zonal
wavenumber k = 2πn/Lx perturbations is :

Rn(c) = −(ikc I+ Ak)
−1 . (20)

The square norm of the resolvent of Ak(U), which is the
energy spectrum as a function of phase speed for tempo-
rally and spatially delta correlated excitation, is shown
together with the spectrum of the modes of Ak(U) for the
equilibrium jet structure, U, in Fig. 5. There is a dom-
inant nearly neutral Rossby mode with wavenumber six
that is responsible for most of the downgradient momen-
tum flux balancing the upgradient shear straining fluxes
from the short waves (cf. Fig. 4 at t = 1000). This wave
dominates the response of the dynamics to perturbation
when the jet is equilibrated as can be inferred from the
resolvent. This dominance of wavenumber six in the per-
turbation variance extends over a wide range in β and
therefore in equilibrium jet amplitude as shown in Fig. 2.
Note that the phase speed of this mode has been incorpo-
rated into the retrograde jet but that this mode remains
stable consistent with finiteness of the perturbation vari-
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ance. The strong v′q′ fluxes associated with the mainte-
nance of this mode have forced the gradient of the mean
vorticity in the vicinity of its critical layer nearly to zero
as shown in Fig. 6. This nonlinear interaction provides
an example of the mechanisms at play in the complex
feedback stabilization process operating between the first
and second cumulants in the S3T dynamics that results
in establishment of the equilibrium statistical state. It is
useful to regard this interaction as a nonlinear regulator
that continuously adjusts the mean flow to a state that
is in neutral equilibrium with the perturbation dynamics
by enforcing vanishing of the mean vorticity gradient at
the critical layers of the dominant perturbation modes
in the retrograde jet. This consideration explains why
strongly excited jet equilibria in planetary atmospheres
commonly exhibit easily observable changes in sign of
the mean vorticity gradient without incurring instability:
shear straining of the small turbulence components drives
both the prograde and retrograde jets strongly producing
the sign change while the regulator need only equilibrate
any incipient modal instability by enforcing vanishing of
the gradient at the mode critical layer while leaving a
substantial vorticity sign change between the critical lay-
ers in the jet profile. It is important to appreciate the
crucial role of active feedback regulation continually oper-
ating between the first and second cumulants in the SSD
in maintaining the stability of this turbulent equilibrium
jet-wave-turbulence state. If one were simply to postu-
late a jet profile very much like the observed it would be
extremely unlikely to have by chance the vanishing gradi-
ent of vorticity precisely at the critical layers of the mode
required for stability of the jet structure. Viewed another
way, the existence of strong jet equilibria with the struc-
ture seen in planetary atmospheres requires that an ac-
tive feedback regulation be operating to maintain their
stability. Note that the mechanism of vorticity mixing
in the retrograde jets could not result in a negative vor-
ticity maximum as is seen in both observations and our
simulations.

While it is tempting to regard the downgradient mo-
mentum fluxes arising from the dominant mode itself as
being primarily responsible for opposing the upgradient
fluxes by the small waves, the resolvent tells a different
story. Shown in Fig. 5 is both the response of the jet
dynamics to perturbation as a function of phase speed
and the response that would be produced by the modes
assuming they were independent; that is, assuming the
modes to be orthogonal in energy. This so called equiv-
alent normal response reveals that the energetics and
therefore the fluxes associated with the LDM at n = 6
are being produced by non-normal interaction among the
modes rather than by the n = 6 mode by itself. In fact it
is generally the case in systems non-normal in energy that
transient growth of the adjoint of a mode is responsible
for establishing a mode’s equilibrium amplitude when it
is excited stochastically rather than growth of the mode
itself [61].

Because of its dominance the structure of the n = 6
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FIG. 7: The predicted NPJ velocity structure in a polar
rendering of the S3T model channel (the external circle
of the annulus corresponds to latitude 70o and the in-
ner circle to 82o). Panel (a): contours of the total zonal
velocity obtained by adding the S3T equilibrium zonal
mean velocity and the zonal velocity of the first POD
mode obtained from eigenanalysis of the equilibrium per-
turbation covariance at zonal wavenumber n = 6. This
mode accounts for 99.5% of the perturbation energy at
this wavenumber. The amplitude of the wave is obtained
from the associated eigenvalue of the equilibrium pertur-
bation covariance. The jet is barotropic as is the n = 6
wave. Panel (b): contours of the meridional velocity of
the first POD of the perturbation covariance at zonal
wavenumber n = 6. Panels (c) and (d) show respectively
the structure in the top and bottom layer of the least
damped mode (LDM) of Ak at n = 6 (cf. Fig. 5). It is
clear from this comparison that the LDM is barotropic
and the POD has the structure of this mode. Parameters
are as in Fig. 4.

perturbation can be obtained as the first eigenmode of
the perturbation covariance (referred to variously as the
leading proper orthogonal decomposition (POD) or em-
pirical orthogonal function (EOF) mode). This struc-
ture is shown in Fig. 7b and its superposition on the jet
with amplitude obtained as the RMS of its variance as
obtained from the associated POD eigenmode is shown
in Fig. 7a. Consistent with the resolvent diagnostic dis-
cussed above, this mode has nearly the same barotropic
structure as the least damped mode of the linear pertur-
bation dynamics, shown in Fig. 7c,d. The prediction of
the theory that the wave six phase speed be just inside
the retrograde jet is in agreement with observations [20].
The amplitude of the wave six mode is proportional to

ε/rp and we have chosen physically plaussible values for
these unknown parameters, ε = 1 and rp = 0.2 day−1,
corresponding to excitation of 10−4 Wkg−1. However,
other combinations of ε and rp with ε/rp = 5 lead to
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FIG. 8: Top panel: S3T equilibrium jet amplitude, ∆U , as a function of the normalized barotropic β component
β̃ψ = βψ/βsat(74

◦) for Saturn’s NPJ (Ly = 104 km). ∆U1 is the difference between the maximum and the minimum
jet velocities of the top layer. Lines E1,2 indicate equilibria obtained when both layers are equally excited, lines
E1 indicate equilibria obtained when only the top layer is excited. The solid and dashed lines are equilibria with
bottom layer β2 = 2βψ − βsat and top layer β1 = βsat. The dash-dot and dotted lines indicate equilibria in which

both layers have the same βψ, as in Fig. 2. Also indicated are the planetary values of β̃sat(74
◦) and the observed

∆Usat(74
◦) = 98.7 m s−1 from Ref. [20]; boxes indicate the point consistent with the NPJ observations . The arrow

indicates the range of βψ for which the perturbation energy is concentrated in a single nearly neutral wave with phase
speed near that of the jet minimum, which for the NPJ channel corresponds to n = 6. Scaling of ∆U with βL2

y is

highly accurate in this region. Parameters: rm = 0, ε = 1 Wkg−1, LR = 103 km, rp = 0.2 day−1. Bottom panel:
The resulting baroclinicity of the equilibria, measured as the ratio of ∆U2/∆U1 in each layer. Barotropic flows, such
as occur when the excitation and β are the same in both layers (cases E1,2) have ∆U2/∆U1 = 1 (dash-dot line). In
all other cases the equilibria are slightly baroclinic. When the upper layer alone is excited (E1) the upper layer jet is
stronger than the jet in the bottom layer (solid and dotted lines). If both layers are excited and the value of β in the
bottom layer is greater than that in the top layer, the bottom jet is the stronger (dashed line).

equilibria very close to those obtained with these param-
eter values.

VI. THE DEEP STABLE LAYER NPJ MODEL

Our study of the dynamical consequences for jet forma-
tion and equilibration of varying the planetary value of β
reported above has the advantage of allowing the under-
lying mechanisms and the associated scaling to be under-
stood in a simple context. However, the physical mecha-
nism by which an effective value of β differing from the
planetary value enters the dynamics of the NPJ is likely
to be a poleward sloping surface of concentrated down-
ward increase in static stability underlying the deep jet in-
ducing the dynamic analogue of a topographic β effect in
the lower layer. This equivalent sloping lower boundary
could be associated with constitutive, convective and/or
dynamical processes analogous to those which are respon-

sible for maintaining the Earth’s tropopause but lacking
observation it is not possible to identify the specific pro-
cesses responsible.

A topographic β effect results in different values of
effective β in the two layers rather than the same value
in both as was appropriate when varying the planetary
value of β in the theoretical development above. In the
top layer the zonal mean potential vorticity gradient (PV
gradient) is Q1y = βsat −D2U1 + λ2(U1 −U2), with βsat
designated the planetary value of β, and in the bottom
layer it is Q2y = βsat+βh−D2U2−λ2(U1−U2), in which
the planetary value of β has been designated βsat and the
topographic value βh. The equations (1) are modified as
follows:
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ponent β̃h = 8.8 in the bottom layer. This equilibrium
profile is insensitive to variations in ε, rp and λ.

∂t∆ψ+J(ψ,∆ψ) + J(θ,∆θ)

+ ∂xβψψ + βθ∂xθ = −r∆ψ +
√
ε fψ , (21a)

∂t∆λθ+J(ψ,∆λθ) + J(θ,∆ψ)

+ βψ∂xθ + βθ∂xψ = −r∆λθ +
√
ε fθ , (21b)

with the barotropic, βψ, and baroclinic, βθ, defined as:

βψ
def
= βsat + βh/2 , βθ

def
= βsat − βh/2 . (22)

The S3T system is modified accordingly. From (21a)
we see that the effective value of β seen by waves with
primarily barotropic structure such as the planetary wave
n = 6 that is implicated in the dynamics of the NPJ
equilibration is the sum of the planetary value βsat and
half the topographic value, βh. Results similar to those
shown in Fig. 2 for the case of equal β in both layers are
shown in Fig. 8 for the case of a topographic β effect with
β = βsat + βh in the bottom layer and β = βsat in the
top layer. Even with equal excitation of the background
turbulence in both layers (E12 case) both the jet and the
waves become slightly baroclinic as seen in Fig. 8 and the
jet in this case obtains a higher equilibrium amplitude in
the lower layer consistent with the higher effective value
of β there. However, when excitation is restricted to the
top layer (E1 case in Fig. 8) the jet in the top layer is the
stronger.

FIG. 10: For the deep stable layer NPJ model shown in
Fig. 9: NPJ structure in a polar rendering of the channel
(the external circle of the annulus corresponds to latitude
70o and the inner circle to 82o). Panel (a): contours of
the total zonal velocity as obtained by adding to the S3T
equilibrium zonal mean velocity the zonal velocity of the
first POD of the equilibrium perturbation covariance at
zonal wavenumber n = 6 which accounts for 99.7% of the
perturbation energy at this wavenumber. The amplitude
of the wave is obtained from the associated eigenvalue
of the equilibrium covariance. The jet and the n = 6
wave are slightly baroclinic. Panel (b): contours of the
meridional velocity of the first POD of the perturbation
covariance at zonal wavenumber n = 6. Panels (c) and
(d) show respectively the structure of the least damped
mode (LDM) of Ak for n = 6 (indicated in Fig. 11) in the
top and bottom layer (left and right panels respectively).
The POD has the structure of this mode and both are
slightly baroclinic. For ε = 0.7, other parameters as in
Fig. 9.

Assuming only the top layer is excited a topographic
β component in the lower layer of βh = 8.8βsat =
1.44× 10−11 m−1 s−1 when combined with the planetary
βsat(74

◦) results in consistency with the NPJ upper layer
observations as indicated in Fig. 8. With a layer depth
equal to one scale height on Saturn, H = 42.1 km, the
required lower layer slope is

hy =
βhH

f
=

(14.4× 10−12 m−1s−1)× (42.1× 103 m)

3.1× 10−4 s−1

= 2× 10−3 ,

implying a density surface dynamically equivalent to the
bottom boundary sloping downward toward the pole over
the channel width of 10 000 km from 74.5 km to 93.9 km
(measured from the top boundary). We remark that
the prominent 24◦ N jet of Jupiter conforms with the
lightly damped jet scaling using the planetary value of



14

-3 -2 -1 0 1 2 3 4 5
10-1

100

101

102

103

104

105

106
‖R

6
(c
)‖

2 2

-3 -2 -1 0 1 2 3 4 5

cr

-2

-1.5

-1

-0.5

σ

LDM

Umin Umax

FIG. 11: For the deep sloping stable layer NPJ model
equilibrium shown in Fig. 9: in the top panel is shown
the square of the energy norm of the resolvent for wave
n = 6, ‖R6(c)‖22 (solid), together with the equivalent
normal response (dotted) as a function of phase speed,
c. The dominant response arises from the nearly neutral
least damped mode (indicated LDM) with c = −2.14
and critical layer inside the retrograde jet. Note the sec-
ondary peak caused by the non-normal excitation of the
mode with c = 2.93 and critical layer inside the pro-
grade jet (see Fig. 13). In the bottom panel is shown
the growth rate, σ, and phase speed, c, of the modes of
Ak for n = 6 (circles). The equivalent normal response
is substantially smaller than the actual response indicat-
ing that non-normal interactions dominate the energetics
at all phase speeds and most importantly at the phase
speed of the LDM where the maximum interaction oc-
curs. Quantities are non-dimensional and parameters as
in Fig. 9.

βjup(24
◦), as shown in Fig. 3 which result verifies pre-

vious findings [44]. This suggests that the stable lower
layer inferred to underly Saturn’s NPJ is peculiar to the
anomalous thermal and dynamical conditions observed
near Saturn’s Pole.

The S3T jet structure in the upper layer with the pa-
rameter values given above, which were chosen to model
the NPJ, is shown in Fig. 9. A polar representation of
the jet and the associated n = 6 wave is shown in Fig. 10.
The jet equilibration process is essentially similar to that
described in the previous section in which the planetary
value of β was varied. As in the previous case, most of
the perturbation variance is concentrated in the nearly
neutral wave six which has a critical layer inside the ret-
rograde jet as can be seen in the resolvent response of the

FIG. 12: For the deep sloping stable layer NPJ model
equilibrium shown in Fig. 9: establishment of the n =
6 LDM by its optimal excitation in energy structure.
Shown is the evolution of the optimal as indicated in
the top layer streamfunction. Upper panel: the optimal
perturbation at t = 0 with energy density E = 1. Mid-
dle panel: the evolved optimal at t = 0.5. Bottom panel:
the evolved optimal at t = 10 at which time it has as-
sumed the structure of the LDM with energy E = 14.
Contours indicate non-dimensional values of the stream-
function. Also shown is the equilibrium jet (solid), which
has been scaled to fit, and the phase speed of the LDM
(dashed). While the amplitude of the LDM is concen-
trated in the prograde jet, its optimal excitation is con-
centrated near its critical layer in the retrograde jet. The
non-normality of the dynamics is indicated by both the
large excitation of this stable structure and the substan-
tial structural change during the evolution of the optimal.

n = 6 wave shown in Fig. 11. Again, this nearly neutral
wave with critical layer inside the retrograde jet and with
primarily non-normal energetics is in large part respon-
sible for producing the upgradient flux to exactly cancel
the downgradient flux produced by the waves n ≥ 8 re-
sulting in establishment of the turbulent equilibrium. In
Fig. 12 is shown three snapshots of the temporal devel-
opment of the optimal initial condition for exciting the
LDM demonstrating the dominance of non-normal dy-
namics in the establishment of this mode. It is interesting
to note that the optimal excitation of this mode, which
is its adjoint [61, 62], is initially concentrated in the ret-
rograde jet (cf. Fig. 12). As in the previous example and
as is required for neutrality, the PV gradient in both the
upper and lower critical layers (Qy1 and Qy2) is elimi-
nated, primarily by fluxes arising from the non-normal
dynamics, as shown in Fig. 13.
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FIG. 13: For the deep sloping stable layer NPJ S3T equilibrium shown in Fig. 9: top layer velocity, U1 (solid), bottom
layer velocity, U2 (dashed), corresponding top layer PV gradient, Qy1 (dash dot) and bottom layer PV gradient, Qy2
(dot). Also indicated is the phase velocity of the LDM with wavenumber n = 6 that is the dominant perturbation
in producing downgradient fluxes. Note that this LDM has eliminated the PV gradients in the vicinity of its critical
layers in the top and bottom layers indicated by γ1. Elimination of the PV gradient at the critical layer is responsible
for suppressing instability of this LDM. The strong reversal in Qy1 at the center of the retrograde jet resulting from
the upgradient vorticity fluxes produced by the n > 8 waves remains as this region of PV gradient reversal is not
opposed by the LDM which has been stabilized by elimination of the PV gradient at its critical layers. Such reversals
are commonly observed in planetary atmospheres.
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FIG. 14: The dimensional curvature of the predicted NPJ velocity structure of the top layer jet of the S3T equilibrium
shown in Fig. 9 (solid) plotted against the curvature obtained from the raw data of Ref. [20] (dashed line). Also
indicated is the relatively insignificant planetary βsat(74

◦). Although noisy the data suggests both the curvature
reversal in the vicinity of the prograde jet, which the theory predicts to be related to the subdominant prograde mode
with non-dimensional c = 2.93 that is responsible for the secondary maximum in the resolvent response in Fig. 11,
and also the dynamically significant second maximum of the curvature in the retrograde section of the jet (at 71o N)
predicted by the theory to lie between the critical layers of the dominant n = 6 wave with non-dimensional phase
speed c= -2.14.
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The potential vorticity gradient reversals seen in
Fig. 13, which are observed in both Jupiter and Sat-
urn and predicted by the S3T equilibria, provide a probe
of the dynamical processes at work in the equilibration
of these large amplitude jets. As previously discussed
in connection with the planetary β variation example,
a strong reversal of Qy1 near the minimum of the ret-
rograde jet results from upgradient vorticity fluxes pro-
duced by the n > 8 waves. The resulting region of po-
tential vorticity gradient reversal is not opposed by the
LDM which enforces its own stabilization by eliminating
the PV gradient in the vicinity of its critical layers leav-
ing an extensive region between these critical layers in
which the potential vorticity gradient is negative, making
the flow over the whole domain violate the Rayleigh–Kuo
necessary condition for instability (the relevant criterion
for the two-layer model is the Charney-Stern criterion,
but this reduces to the Rayleigh–Kuo criterion for nearly
barotropic flows). It should be noted that violation of
the Rayleigh–Kuo criterion does not guarantee the insta-
bility of the flow and so on a logical level the violation
of the Rayleigh–Kuo criterion observed in most jets on
Jupiter and Saturn does not present a conundrum, ex-
cept for the fact that in almost every case in which the
Rayleigh–Kuo condition is violated the flow is found to
be unstable. It is demonstrated in this paper that the
process of adjustment to statistical equilibrium actively
modifies the equilibrium jets that violate the Rayleigh–
Kuo condition to neutrality by placing the critical layer
of the incipient unstable wave in coincidence with the lo-
cation at which the mean potential vorticity vanishes, in
this way equilibrating the instability.

Note that the bottom layer PV gradient has also been
eliminted in the region between the critical layers of the
n = 6 wave. However, in this case with excitation lim-
ited to the top layer the shorter waves do not penetrate
adequately into the bottom layer to produce sufficiently
strong upgradient fluxes to form a PV gradient reversal.

Reversals in PV gradient in the retrograde jet are as-
sociated with positive curvature of the mean flow. The
predicted curvature of the mean flow in the top layer is
plotted in Fig. 14 against raw observations from Ref. [20].
Discussion tends to center on the maximum at the wings
of the prograde jet which is responsible for supporting
modes associated with the secondary maximum in the
resolvent at phase speeds inside the prograde jet seen in
Fig. 11. However, the modes associated with this pro-
grade jet PV reversal are insignificant in the dynamics.
The dynamically significant PV gradient reversal is that
between the critical layers of the dominant n = 6 wave.
Neither of these features is well resolved in the data but
we believe that better observations of the PV in the ret-
rograde jets would resolve the dynamically significant re-
versal between the n = 6 critical layers.
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FIG. 15: Normalized energy spectrum, Ek/max(Ek),
supported by perturbations to a finite β approximation
of the universal jet as a function of zonal wavenumber
kLy, where Ly is the width of the approximate univer-
sal jet. Ek is the perturbation energy maintained at k
when the universal velocity profile, shown in Fig. 3, is
stochastically excited with equal energy injection rate at
each wavenumber. The perturbation energy spectrum
has a strong peak at kLy = 4.66. Waves n = 4, . . . , 8
in Saturn’s northern polar jet (with Ly = 103 km and
k = 2πn/Lx with Lx = 80 × 103 km) are indicated
with circles. Waves n = 6, . . . , 10 in Saturn’s southern
polar jet (with Ly = 1.2 × 103 km and k = 2πn/Lx
with Lx = 130 × 103 km) are indicated with diamonds.
Waves n = 14, . . . , 22 in Jupiter’s 24oN jet (with Ly =
1.8× 103 km and k = 2πn/Lx with Lx = 407× 103 km)
are indicated with squares.

VII. DISCUSSION

Statistical state dynamics at second order predicts that
a stochastically excited two layer fluid in a meridionally
confined channel with vanishing meridional temperature
gradient and jet scale dissipation supports barotropic jets
that asymptotically approach a universal structure as the
channel length Lx → ∞ and β → ∞. The velocity of
this universal jet scales as βL2

y. Saturn’s 74oN jet, Sat-
urn’s 70o S jet and Jupiter’s 24oN jet closely approximate
this universal structure. Associated with this barotropic
mean jet is a universal equilibrium covariance satisfying
the non-dimensional barotropic component of (19b):

Ã
ψψ

k̃
(Ũ)Cψψ

k̃
+ C

ψψ

k̃
Ã
ψψ†

k̃
(Ũ ) = −ε̃Qψψ

k̃
, (23)

with

Ã
ψψ

k̃
= ∆̃−1

k̃

[

−ik̃Ũ∆̃k̃ − ik̃
(

1− D̃2Ũ
)]

− r̃p , (24)
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FIG. 16: S3T equilibrium jets for channels with Lx =
66.85× 103 km, Lx = 74× 103 km, Lx = 94.2× 103 km
and Lx = 127 × 103 km. The jets are very close to the
universal profile, despite the differences in their stability
and supporting perturbation structures as shown in Fig.
17 and Fig. 18. In all cases Ly = 10 × 103 km, β̃ = 6.9,
rm = 0 and rp = 0.2 day−1.

in which length is scaled by Ly, time by 1/(βLy) and

velocity by βL2
y, so that k̃ = kLy, D̃

2 = L2
yD

2, ∆̃k̃ =

D̃2 − k̃2, Ũ = βL2
y, r̃p = rp/(βLy) and ε = ε/(βLy). In

the limit β → ∞ both r̃p and ε̃ can vanish while their
ratio, ε̃/r̃p, is finite. A finite β approximation to this
universal energy spectrum of the perturbation field asso-
ciated with this universal jet structure is shown in Fig.
15. It has a single peak at k̃ = 4.66 that arises in associ-
ation with a neutral wave with phase velocity inside the
retrograde jet. The universality of the profile and of the
resonant response is predicated on assuming a zonally un-
bounded channel, Lx → ∞. Channels with finite zonal
extent make available to the dynamics only a discrete set
of zonal wavenumbers. If quantization conditions allow
a wave or waves with k̃ = 2πnLy/Lx ≈ 4.66, where n is
a discrete wavenumber in the periodic channel of length
Lx, then the wave(s) with n nearest to 4.66Lx/(2πLy)
will equilibrate at highest amplitude. Given that jets
with near universal structure are observed at different lat-
itudes in the outer planets (e.g. the northern and south-
ern polar jets on Saturn and the 24oN jet on Jupiter)
we are led to predict that observation of the pertur-
bation field at these locations will reveal the resonant
Fourier components associated with the predicted reso-
nant wave(s), although these waves may be incoherent or
weak if the jet forcing is weak. Predictions of the reso-
nant wavenumbers for Saturns NPJ, SPJ and Jupiter’s
24oN jet are indicated in Fig. 15. Moreover, in the case
of jets that are located near the pole, the decrease in the
length of the latitudinal circle, Lx, results in substantial
separation of the allowed modes on the resonant curve
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FIG. 17: Maximum modal growth rate as a func-
tion zonal wavenumber kLy for the S3T equilibrium jets
shown in Fig. 16. These jet equilibria are obtained for
channels with Lx = 66.85× 103 km, Lx = 74 × 103 km,
Lx = 94.2 × 103 km, Lx = 127 × 103 km. Circles indi-
cate the growth rates for the perturbations with zonal
wavenumbers that satisfy the quantization condition in
each channel. In all cases the equilibrium jet is hydrody-
namically stable at these wavenumbers, but not necessar-
ily stable at all wavenumbers, as for example in the case
of Lx = 74, which has been chosen so that there is no
wavenumber at the peak of the resonant response where
a strong instability exists. For Lx = 66.85× 103 km the
jet maintains strongly the wave five in the channel for
which kLy = 4.695 is close to the resonant peak. For
Lx = 74× 103 km the jet maintains strongly both waves
five and six for which kLy are respectively 4.24 and 5.1,
which are removed further than a half-width from the
resonant peak (the energy at wave 6 is half that at wave
5). For Lx = 94.2 × 103 km the jet maintains strongly
wave seven in the channel for which kLy = 4.67 is close
to the resonant peak. Finally, For Lx = 127×103 km the
jet maintains strongly waves nine and ten (with energy
at wave 10 slightly higher than the energy of wave 9) for
which kLy are respectively 4.45 and 4.94. Parameters as
in Fig. 16.

which favors prominent appearance of the mode nearest
to resonance.
We next investigate the impact of quantization of the

zonal wavenumbers associated with variation in channel
length, Lx, on the S3T equilibrium jet and the excitation
of the resonant or near resonant waves. We choose to
compare the equilibria in channels with Lx = 66.85 ×
103 km and Lx = 94.2× 103 km in which waves 5 and 7
are exactly resonant with the equilibria in channels Lx =
74× 103 km and Lx = 127× 103 km in which two waves
are near resonant. The equilibrium jet is found to be
little modified (see Fig. 16). In all cases the equilibrated
profile is hydrodynamically stable for perturbations at
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FIG. 18: Comparison of the normalized energy spec-
trum, Ek/max(Ek) supported by the equilibrium jets of
Fig. 16 to the energy spectrum supported by the approx-
imation to the universal profile. Parameters as in Fig.
16.

the allowed wavenumbers (see Fig. 17) and the resonant
or near resonant waves are strongly maintained as shown
in Fig. 18.
S3T integrations have demonstrated that the equili-

bium jets are only weakly dependent on energy input
rate, on the vertical structure of the forcing and on the
dissipation time scale of the small scale structures. We
show further here that equilibrium jets with approximate
universal structure are also insensitive to variations in
the amplitude of the excitation of the resonant waves
associated with jet equilibration. The amplitude of the
resonant wave(s) is regulated so that at equilibrium they
dissipate the energy transferred to the jet by the smaller
scales. Consequently, as shown in Fig. 19, as the dissipa-
tion, rp, of the small scales is decreased while holding the
energy input rate constant, the large scale resonant waves
responsible for regulating the jet to equilibrium approach
neutrality so that their amplitude increases sufficiently to
produce jet damping equal to the energy input rate from
the small scale waves, while the mean jet amplitude re-
mains essentially unaffected. In the calculations shown
in Fig. 19 we have chosen to excite each of the waves
n = 1, · · · , 12 with energy input 1% of the energy input
in each of the waves n > 12 in order to demonstrate
that the same equilibrium jet profile is obtained if the
large waves were negligibly excited. This is because these
waves obtain their energy primarily through non-normal
interaction with the jet.
The amplitude of the primary resonant wave is that

required to dissipate the energy coming into the jet from
shearing by the jet of the small scale waves. This am-
plitude is proportional to the small scale wave excitation
and inversely proportional to the dissipation rate of the
resonant wave. Observations of the NPJ reveal this am-
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FIG. 19: Dependence of the S3T equilibrium jet and
associated wave six amplitude and decay rate on the dis-
sipation rate rp of the small scale waves. Shown in (a) is
the decay rate of the least damped mode 6 as a function
the dissipation time td = 1/rp(day) imposed on waves
n > 10. Waves n ≤ 10 are dissipated with td = 5 day.
This figure shows that as the dissipation rate of the small
scale waves with n > 10, which are responsible for produc-
ing the upgradient fluxes forcing the jet, decreases, and
the energy at these scales consistently increases, wave six
approaches neutrality while its energy, shown in (b), in-
creases. The corresponding equilibrium barotropic jet for
td = 2.5, 5, 10, 50 day of the n > 10 waves is shown in (c).
This figure shows the insensitivity of the equilibrium jets
to the small scale wave dissipation rate. In these simu-
lations the energy input to each of the waves n ≤ 10 is
1% of the energy input to each of the waves with n > 10.
Other parameters Lx = 80× 103 km, Ly = 10× 103 km,

β̃ = 6.9, rm = 0.

plitude and the SSD theory allows us to predict parame-
ter values compatible with these observations. However,
observations of the wave also reveal its coherence which
further constrains parameter values. The SSD theory
developed above exploits the assumption of an infinite
ensemble of perturbations so that the fluctuations of the
perturbations have been suppressed by the Central Limit
Theorem. This simplification is necessary for the theoret-
ical development but by relaxing this infinite ensemble
assumption we can obtain predictions for the variance of
wave six fluctuations as a function of system parameters
and thereby further constrain these parameters. While
we do not have data on the temporal variations of the
flow fields at wave six, we do know from photographs
of the NPJ that wave six is coherent and slowly vary-
ing. We can constrain the values for the energy input
at the smaller scales and their dissipation by going be-
yond the structure of the flow at statistical equilibrium
to actual simulations of the stochastically forced QL equa-
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FIG. 20: Snapshot of the flow in the upper layer ob-
tained from a stochastic simulation of the QL equations
with parameters that reproduce the observations. In this
polar plot the external circle of the annulus corresponds
to latitude 70o and the inner circle to 82o. Shown are:
contours of the total top layer zonal velocity, u1, (a), the
meridional velocity, v1, (b), and a time series of the ki-
netic energy of the non-zonal component, Ep, and of the
mean flow, Em. The flow is close to barotropic. The
temporal evolution of this simulation can be seen in the
movie in Supplemental materials. The vacillation in the
mean and perturbation energy, the perturbation compo-
nent of which is predominantly concentrated at wave 6,
reveals a compensating exchange of energy between wave
6 and the mean flow, which can be identified with the
least damped S3T mode of the jet equilibrium excited
by the fluctuations of the QL simulation (see Fig. 21).
In these simulations the large scales waves (n ≤ 10) are
dissipated at rate rp = 0.005 day−1 while small scales
waves (n > 10) are dissipated at rate rp = 0.05 day−1.
The total energy input is 1 Wm−2 distributed equally
among waves n > 10 (the energy input to each of the
waves n ≤ 10 is 10−4 of the energy input to each of the
waves with n > 10). Other parameters Lx = 80×103 km,

Ly = 10× 103 km, β̃ = 8.6, rm = 0.

tions (7) coupled with the mean equations (3) in order
to determine parameters consistent with the observed co-
herence of the hexagonal pattern. Although other pa-
rameter choices could be made we obtained agreement
with observations of the steadiness of wave six using the
simple two layer model with β̃ = 8.6. A snapshot of the
fields obtained from such a simulation is shown in Fig.
20 and the evolution of the upper level fields in this sim-
ulation can be seen in the movie included in the Supple-
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FIG. 21: Oscillations resulting from perturbation to the
S3T zonal jet equilibrium for the parameters in Fig. 20.
Shown is the time evolution of the perturbation energy
fluctuation from the equilibrium value, δEp, (solid) and
fluctuation of the mean energy as a departure from its
equilibrium value, δEm. The equilibrium covariance of
the S3T jet equilibrium was perturbed with a random
perturbation sufficiently small to render the dynamics of
relaxation to the S3T equilibrium linear. The decaying
oscillations in the energy are shown after an initial ad-
justment has occurred. The frequency of the oscillations
matches the oscillations shown in the QL simulation in
Fig. 20 and the oscillations in this figure are interpreted
as revealing the least damped S3T mode about the S3T
equilibrium which are being stochastically maintained by
the fluctuations in the QL simulation.

mental Materials[63]. The simulation spans 60 days and
the movie is seen in a frame of reference which rotates
with the maximum retrograde speed of the jet at S3T
equilibrium. The wave 6 phase speed is almost equal to
this speed and it can be seen in the movie to be both sta-
tionary and also coherent. There are small fluctuations,
caused by the random excitation in the QL simulation,
in both the perturbation energy (mainly wave 6) and the
energy of the mean flow. These oscillations are compen-
sating and it is interesting to note that they can be given
an analytical interpretation: they are the least damped
S3T mode about the S3T equilibrium, which is excited
by the fluctuations in the QL simulation. Indeed, this
decaying mode can be identified by using an S3T sim-
ulation, which is free of fluctuations, in which the S3T
equilibrium is perturbed and the approach to equilibrium
is plotted, as shown in Fig. 21. A similar identification of
the latent jet fluctuations seen in the oceans as the S3T
damped modes of the uniform equilibrium excited by the
fluctuations was proposed in Constantinou et al [64].
This movie shows a simulation of the QL dynamics

of the NPJ. A flow structure corresponding to a single
ensemble member of the S3T dynamics is shown in a
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polar projection of the upper layer winds. Plotted are
contours of the total zonal velocity field (upper left panel)
and of the meridional velocity field (upper right panel).
The frame of reference is the minimum of the jet zonal
velocity. The external circle of the annulus corresponds
to latitude 70o and the inner to latitude 82o. The flow
is nearly barotropic. The lower panel shows the time
evolution of the non-zonal energy, Ep (in red with values
at the left ordinate axis) and the zonal mean energy, Em
(in blue with values at the right ordinate axis). The time
scale is the Earth day. Parameters are given in figure 20
in the manuscript.

VIII. CONCLUSION

Large-scale coherent structures such as jets, meander-
ing jets are characteristic features of turbulence in plan-
etary atmospheres. While conservation of energy and
enstrophy in inviscid 2D turbulence predicts spectral evo-
lution leading to concentration of energy at large scales,
these considerations cannot predict the phase of the spec-
tral components and therefore can neither address the
central question of the organization of the energy into
jets with specific structure nor the existence of the coher-
ent component of the planetary scale waves. In order to
study structure formation additional aspects of the tur-
bulence dynamics beyond conservation principles must
be incorporated in the analysis. SSD models have been
developed to study turbulence dynamics and specifically
to solve for turbulent state equilibria consisting of coex-
isting coherent mean structures and incoherent turbulent
components which together constitute the complete state
of the turbulence at second order. In this work a second
order SSD of a two-layer baroclinic model was used to
study the jet-wave-turbulence coexistence regime in Sat-
urn’s NPJ. This second order SSD model, referred to as
the S3T model, is closed by a stochastic parameterization
that accounts for both the neglected nonlinear dynamics

of the perturbations from the zonal mean as well as the
excitation maintaining the turbulence. The equation for
the zonal mean retains its interaction through Reynolds
stress with the perturbations.

In this model a jet forms as an instability and grows at
first exponentially eventually equilibrating at finite ampli-
tude. Exploiting the simplicity of the asymptotic regime
in which the jet is undamped makes it possible to ob-
tain a universal jet structure and jet amplitude scaling.
Given that the associated jet structure and its amplitude
scaling is robust in the SSD model we conclude that the
observed structure of the NPJ can only be maintained
as an equilibrium state with a value of β greater than
the planetary value. This requirement implies existence
of a topographic beta effect with a specific predicted
value. Incorporating the implied poleward decreasing
stable layer depth into the model results in the model
producing the observed jet structure. In the model a sta-
ble retrograde mode of the Rossby wave spectrum with
wavenumber six becomes neutrally stable as the jet am-
plitude increases under Reynolds stress forcing by the
small scale turbulence increased and by inducing strong
non-normal interaction with the jet this wave six arrests
its growth via perturbation Reynolds stresses. This com-
posite structure equilibrates in the form of a hexagonal
jet in agreement with the NPJ observations. Among the
correlates of this theory is the predicted existence of the
observed robust vorticity gradient reversals in both the
prograde and retrograde jets as well as the location and
structure of these reversals.
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