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Intermittency of small-scale motions is an ubiquitous facet of turbulent flows, and predicting
this phenomenon based on reduced models derived from first principles remains an important open
problem. Here, a multiple-time scale stochastic model is introduced for the Lagrangian evolution
of the full velocity gradient tensor in fluid turbulence at arbitrarily high Reynolds numbers. Unlike
previous phenomenological models of intermittency, in the proposed new model the dynamics driving
the growth of intermittency due to gradient self-stretching and rotation are derived directly from the
Navier-Stokes equations. Numerical solutions of the resulting set of stochastic differential equations
show that the model predicts anomalous scaling for moments of the velocity gradient components
and negative derivative skewness. It also predicts signature topological features of the velocity
gradient tensor such as vorticity alignment trends with the eigen-directions of the strain-rate.

The phenomenon of small-scale intermittency, universal across a wide range of turbulent flows [1], represents a
long-standing challenge to developing a theory for fluid turbulence that is based on first principles, i.e. derivable from
the Navier-Stokes equations [2–5]. The manifestation of intermittency is that fluctuations in velocity gradients or
increments become more extreme and violent [6, 7], exhibiting longer (fatter) tails in their probability distribution,
with increasing Reynolds number or shrinking observation length scale. Such extreme events can affect phenomena
ranging from flame extinction, droplet breakup and heavy particle clustering in turbulent flows.
The refined similarity hypotheses [2, 3] and the multifractal formalism [4, 8, 9] have provided a conceptual framework

for understanding intermittency, and various types of phenomenological descriptions such as cascade models [4, 9, 10],
shell models [11], and stochastic Markov processes for velocity increments across scales [12] have been constructed
to be consistent with the energy cascading mechanism. Using adjustable parameters, these models can describe
empirical intermittency exponents. However, connecting these models and their intermittency exponents with the
incompressible Navier-Stokes equations through a systematic derivation has proved to be an elusive goal. The only ab

initio intermittency prediction is for the Kraichnan model for passive scalars in a random (prescribed) velocity field
[13].
Intermittency at the small scales of turbulence can be described using the scaling of velocity gradient moments with

Reynolds number, such as 〈|∂u/∂x|m〉 ∼ (〈ǫ〉/ν)m/2Re
α(m)
λ , where Reλ =

√
15u′2/

√
ν〈ǫ〉 is the Taylor-scale Reynolds

number, u′ the turbulent root-mean-square velocity (turbulent kinetic energy is 3
2u

′2), ν the fluid’s kinematic viscosity
and 〈ǫ〉 the flow’s mean dissipation rate. Intermittency can be observed as deviations from α(m) = 0. We remark
that Reλ represents a ratio of time scales between the slowest and fastest motions of the turbulent flow, Reλ ∼ T/τK ,

where T ∼ u′2/〈ǫ〉 is the large-eddy turnover time and τK =
√
ν/〈ǫ〉 is the Kolmogorov time [14].

The velocity gradient tensor, Aij = ∂ui/∂xj , encompasses both the strain-rate (local deformation rate) and vorticity
(local rotation rate), providing a rich quantitative description of the local flow conditions. The gradient of the Navier-
Stokes equations for incompressible flow reads:

d
dtAij = −

(
AikAkj − 1

3ApqAqpδij
)
− P

(d)
ij + ν∇2Aij , (1)

where P
(d)
ij = ∂i∂jp− 1

3∇2p δij is the deviatoric part of the pressure Hessian tensor, p is the pressure divided by density,

and d
dt represents the material time derivative following fluid particles in the flow. Treating (1) as a nine-component

dynamical system (eight degrees of freedom since Aii = 0 due to incompressibility) greatly reduces the computational
effort and complexity of the Navier-Stokes system. This approach, however, requires a closure approximation for the
pressure Hessian and viscous Laplacian terms [15] since these are non-local; they cannot be expressed in terms of the
local values of Aij . Nonetheless, the closed term −AikAkj and the isotropic effect of pressure (∇2p = −ApqAqp) in
(1) contain much of the interesting physics contributing to turbulent dynamics, such as the stretching and tilting of
vorticity, ωi = ǫijkAkj , by the strain-rate tensor, Sij =

1
2 (Aij +Aji) [16–18].

Various closure models have been developed, e.g. based on prescribing log-normality of pseudo-dissipation [19], the
tetrad inertia tensor evolution [20], fluid deformation approximations [21–23], and Gaussian field statistics [24, 25].
So far, however, such closures have only been successful for low-to-moderate Reynolds numbers (Reλ ≤ 150) and
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fail to reproduce realistic build-up of intermittency at arbitrarily high Reλ [26]. A velocity gradient shell model [27]
was a first attempt to extend this type of modeling to high Reynolds numbers, but it was based on a generic non-
linear energy-preserving inter-shell coupling term without clear basis in the underlying dynamical equations. Here,
we propose a new low-dimensional model of turbulence that can describe intermittency growth at arbitrarily high
Reynolds numbers. In the following paragraph, we review the modeling approach of [25] which applies to relatively
low Reλ dynamics and provides the background for developing the new model for arbitrarily high Reλ explained
afterward.
The dynamics of (1) can be modeled by the stochastic differential equation [24],

dAij =
[
−
(
AikAkj − 1

3ApqAqpδij
)
+ hij

]
dt+ dFij , (2)

where hij = −〈P (d)
ij |A〉+ ν〈∇2Aij |A〉 is unclosed and dFij = bijkℓdWkℓ is the stochastic forcing built on the tensorial

Wiener process with 〈dWij〉 = 0 and 〈dWijdWkℓ〉 = δikδjℓ. Here, boldface indicates tensor quantities and 〈c1|c2〉
denotes the average of c1 conditioned on c2. Modeling is required to specify hij and bijkℓ in terms of known local
quantities. The physically motivated closure we use is based on the recent deformation of Gaussian fields (RDGF)
approach [25] for representing the conditional averages of the pressure Hessian and viscous Laplacian needed for hij

in (2). The model assumes that pressure p and A are slowly varying along Lagrangian fluid trajectories (i.e. constant
for a short time τ) while their spatial gradients (Hessians and Laplacian) can be related to the deformation of the
surrounding fluid, itself determined by the velocity gradient tensor. Further, Gaussian field statistics are assumed
for the initial ensemble on which the deformation during a short time τ is performed. With these assumptions, the
conditional averages can be evaluated analytically, resulting in expressions which depend only on the deformation time
scale τ and the dissipation time scale τK . Furthermore, prescribing the stochastic forcing dFij requires specification of
two diffusion coefficients Ds and Da, for the symmetric and antisymmetric parts, respectively. Three basic constraints
are enforced. The first is the consistency of the model, requiring 〈|S|2〉 = τ−2

K (where |S|2 = 2SijSij). Also,
homogeneous turbulence must satisfy 〈Q〉 = 0 and 〈R〉 = 0 [28] (where Q = − 1

2 trA
2 and R = − 1

3 trA
3). These

conditions determine the three parameters as follows: τ = 0.1302τK, Ds = 0.1014τ−3
K , Da = 0.0505τ−3

K . More details
on this model (that works well for moderate Reλ) can be found in Ref. [25] and the Supplementary Material.
To reach higher Reλ, we interpret the results of the RDGF model described above as if it represented a filtered

velocity gradient 〈A〉filt = Ã at a higher Reynolds number (〈..〉filt and the tilde denote spatial filtering at some length-
scale that need not now be specified). The similarity between velocity gradients at a low Reλ and filtered gradients
at a larger Reλ can be motivated by considering the gradient of the filtered Navier-Stokes equations,

d̃
dt Ãij = −(ÃikÃkj − 1

3 ÃpqÃqpδij)− P̃
(d)
ij + ν∇2Ãij − Σij ,

where Σij = −∂j∂kσik represents the effect of the sub-scale stress σik = ũiuj − ũiũj typically modeled in large-

eddy simulations and d̃
dt represents rate of change along trajectories following the coarse-grained velocity field. With

a constant eddy viscosity model for the sub-scale stresses, the filtered gradient dynamics reduce to (1) with an
enhanced viscosity. Similar modeling steps lead to the original RDGF model but for coarse-grained velocity gradients

and with a (larger) time scale βτK , where β =

√
〈|S̃|2〉/〈|S|2〉 ≫ 1 is a model parameter specifying the extent of the

coarse-graining. In other words, at the large scales one solves Eq. 2 but the model uses as time scale τ1 = βτK .

This model for Ãij provides crucial information for modeling the unfiltered velocity gradient tensor at high Reλ,

namely, the local rate at which energy is passed to smaller scales, Π = −σij S̃ij ≈ νe|S̃|2, where νe is the effective
eddy viscosity for the filtered dynamics. The rate Π must be matched by the locally averaged rate at which energy is

dissipated by the unfiltered velocity gradients within a region of scale comparable to the filter scale, i.e. νe|S̃|2 = ǫ̃ =

ν〈|S|2〉filt. Matching these rates for each trajectory and assuming a constant νe leads to 〈|S|2〉filt = (νe/ν)|S̃|2. This
step shows that the local variance of the inverse time-scale of the small-scale motions is slaved locally to that of the
larger-scale motions. Thus, the characteristic time scale for the small scales should not be a single constant value,
τK , but should be modulated by the characteristic time scales of the larger scale motions. Specifically, a fluctuating

time scale τ2(t) = β−1|S̃|−1 should be used for the full velocity gradient dynamics (1). Therefore, the time-dependent
τ2(t) replaces the constant τK in the RDGF closure for the unfiltered dynamics (2) for this two-time scale model.
Here, β is a fixed ratio of time scales, which can be thought of as ensuring global balance of energy dissipation rates.

Consistency with the model’s weak coupling of small-scale A with coarse-grained Ã requires β ≫ 1, i.e. a large
separation between time scales.
To reach even higher values of Reλ, this second level (n = 2) can itself be thought of as a coarse-grained velocity

gradient with the introduction of a third level evolving at even smaller and faster scales still to be described. In this
way, the procedure outlined above can be iterated an arbitrary number of times to construct a multiple-time scale
model with N levels and Reλ ≈ Reλ,0β

N−1, where Reλ,0 represents the effective Reynolds number of the single-level
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model (Reλ,0 ≈ 60 will be seen to describe the data well). Therefore, the parameters β and Reλ,0 determine the
Reynolds number represented by a given number of levels by setting how quickly the effective Reynolds number grows
with each additional level. The general multiple-time scale model thus consists of a series of 3× 3 tensors A(n) with
time scales τn(t) for n = 1, ..., N . The first level evolves with the modeling and forcing using a constant time scale of
τ1 = βN−1τK ∼ β−1T , where T is the time-scale of eddies at the integral scale of turbulence. All faster levels obtain
their instantaneous, trajectory-specific time scale from the next coarser level using τn(t) = β−1|S(n−1)|−1.
An additional drift term must be added to the equation to account for the fact that the single-level model was

calibrated for an imposed constant time scale τK . Because each n ≥ 2 level has a fluctuating time scale, τn(t), which
takes the place of τK , we must ensure that the consistency constraint 〈|S(n)|2〉 = τ−2

n = β−2|S(n−1)|2 holds. The
single-level RDGF system with constant-in-time τK can be written in the dimensionless form:

d
dt∗A

∗

ij = f∗(A∗), where A∗

ij = AijτK , dt∗ = dt/τK , (3)

and

f∗(A∗) = −(A∗

ikA
∗

kj − 1
3A

∗

kℓA
∗

ℓk) + h∗

ij(A
∗) + dF ∗

ij/dt
∗. (4)

This dimensionless system satisfies 〈|S∗|2〉 = 1 by design. Replacing τK with τn(t), using the product rule to expand
d

dt∗ (A
∗

ij) = τn
d
dt(Aijτn) = τ2n

d
dtAij+Aijτn

dτn
dt , and substituting for the time derivatives, it is straightforward to obtain

f(A, τn) =
1
τ2
n

f∗(A∗)− 1
τn

dτn
dt A. (5)

Thus the RDGF model follows an imposed arbitrary τn(t) signal by by introducing the unsteady constraint term
− 1

τn
dτn
dt A in the equation. Finally, the proposed multiple-time scale Lagrangian RDGF model for the velocity gradient

tensor reads

dA
(n)
ij =

[
−
(
A

(n)
ik A

(n)
kj − 1

3A
(n)
pq A(n)

qp δij

)
− 1

τn
dτn
dt A

(n)
ij + h

(n)
ij (A(n), τn)

]
dt+ dF

(n)
ij (τn), n = 1, 2, 3..N (6)

with τn(t) = β−1|S(n−1)|−1 for n ≥ 2 and τ1 = βN−1τK . The full expressions for h
(n)
ij and dF

(n)
ij , can be found in

the Supplementary Material and are based on the single-time scale model of Ref. [25]. Equation (6) is a system of
stochastic differential equations, representing the dynamics of coarse-grained (1 ≤ n < N) and fully-resolved (n = N)
velocity gradients, with only 9N components yet having its roots in the Navier-Stokes dynamics.
For the numerical results shown in the paper, the stochastic differential equations are advanced numerically for

104 Kolmogorov times using a second-order predictor-corrector method with adaptive time step set by a tolerance of
10−3 relative difference between first and second order schemes at each time step. Each level of each trajectory is
advanced with its own unique time step size. Linear temporal interpolation and central differencing in time was used
to compute τn(t) and dτn/dt information passed between levels, respectively.
We begin by showing results from a three-level simulation with β = 10. Figure 1(a) shows sample time signals for

A
(n)
11 for n = 1, 2, 3. This tensor component is the longitudinal gradient ∂u/∂x commonly studied experimentally.

The coarse-grained velocity gradients vary on longer time scales and act to modulate the amplitude of the finer scale
ones which change rapidly. This generates more extreme events in the faster levels. Next, we evaluate statistical and
scaling properties of the model, and integrate up to N = 5 levels. The PDFs for A11 and A12 are shown in figure
1(b,c) for number of levels from N = 1 to N = 5. The distributions become increasingly heavy-tailed as more levels
are added. The PDF from DNS data [29] with Reλ = 430 is also shown, with its level of intermittency falling between
the results for N = 1 and N = 2.

The skewness factor of the longitudinal component, defined as Sk = 〈A(N)
11

3
〉/〈A(N)

11

2
〉3/2, and flatness factors

F1 = 〈A(N)
11

4
〉/〉/〈A(N)

11

2
〉2 (and similarly for A

(N)
12 ) of the longitudinal and transverse components are evaluated from

numerical integration of the model for various N . Results are shown and compared against DNS and experimental
results in figure 2 using Reλ = 60βN−1 where β = 10 is chosen to match the observed level of intermittency growth
for one additional level compared to the DNS and experimental trend with Reλ. Thus, Reλ ≈ 6 × 105 is reached
with only 5 levels. Note that in figure 2(a,b) the negative of the skewness is shown, proving that the model predicts
negative skewness consistent with the energy cascade. Values near Sk ≈ −0.5 are obtained for moderate Reλ ∼ 102

and rising in magnitude at higher Reλ.
To use the model for any desired value of Reλ in-between those given by integer N , one may construct a model for

a non-integer effective number of levels Neff, which can obtained by shrinking the effective ratio of time scales between
the first and second levels. This is accomplished by writing τ2(t) as a mixture with fraction γ from the fluctuations
of the first level, while a fraction 1− γ is contributed by a non-fluctuating time scale:

τ2(t) =
[
γβ2|S(1)|2 + (1− γ)β−2(N−2)τ−2

K

]
−1/2

. (7)
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Figure 1. (a) A sample A11 signal from three adjacent levels of the same trajectory in a three-level model. Top: coarsest level,
n = 1; middle: next-coarsest level, n = 2; Bottom: fully resolved velocity gradient, n = N = 3. (b,c) Probability density
functions of A11 (b) and A12 (c) for N = 1, 2, 3, 4, and 5 (colored solid lines) compared with DNS data at Reλ = 430 (dotted
line). Also shown is a model with Neff = 1.85 (dashed line).

Note that this mixing of time scales is only done between the first and second levels, while subsequent levels proceed
as normal with τn(t) = β−1|S(n−1)|−1 for n = 3, ..., N . To relate the mixture fraction 0 < γ ≤ 1 to Neff, we have

found the following scaling to work well: γ = [Neff − (N − 1)]2/3. Thus, for a given Reλ, one may obtain an effective
(non-integer) number of levels Neff = 1+logβ(Reλ/60). Then, using ⌈Neff⌉ levels (⌈..⌉ is the ceiling function), one can
effectively shrink the time-scale ratio between the first and second levels. The appropriateness of this correspondence
between Reynolds number and levels in the multiple-time scale description is verified by running the model for a
desired Reλ = 430 to compare with DNS. For this case we find Neff = 1+ log10(430/60) = 1.85 and thus must choose
N = ⌈Neff⌉ = 2 levels and γ = 0.852/3 = 0.90. The dashed line PDF in figure 1(b,c) shows excellent agreement with
the DNS data at that Reynolds number.

The anomalous scaling properties of the model results can be explored via the higher-order standardized moments,

µm = 〈|A11|m〉/〈A2
11〉m/2 ∼ Re

α(m)
λ . These moments are evaluated from the model up to m = 10 yielding log-log plots

with excellent scaling, as those shown in figure 2(a,b) (that corresponds to m = 4). The slopes can be measured,
leading to α(m) shown in figure 2(c) as filled circles. Results clearly deviate from the non-intermittent case α(m) = 0.
In order to compare with earlier cascade models, α(m) can be related to existing velocity increment scaling exponents,
ζp, using Nelkin’s transformation [4, 30], i.e. α(m) = 2p(m)− 3m, where p(m) is the unique solution to ζp + p = 2m.
The measured α(m) up to m = 10 corresponds to about p ≈ 16. For β = 10, the multiple-time scale RDGF model
gives similar scaling exponents as those of the She-Leveque model [10], the p-model [9], and the lognormal model
with µ = 0.2 for smaller m. Choosing a lower ratio of time scales, β = 6, effectively increases the intermittency
in the model closer to the µ = 0.25 lognormal curve for m ≤ 6, although still within the variations in scaling
exponents from the various DNS studies that are observed especially at the higher moments. Increasing the ratio of
time scales, e.g. β = 20, has the opposite effect in decreasing the level of intermittency. The model parameter β
controls the intermittency (anomalous scaling exponents, α(m)) in the results by changing the effective increase in
Reλ corresponding to adding one level. The increase in moments, µm, when adding one level is insensitive to β.

In extending the models to higher Reλ by adding more levels, the statistical properties of local topology are
maintained from the original (single-level) model. For instance, figure 3(a) shows the PDFs for alignment between
the vorticity vector and the strain-rate eigenvectors ordered by decreasing eigenvalue, Λi. The vorticity’s preferential
alignment parallel to the intermediate strain-rate eigenvalue direction and orthogonal to the minimal eigenvalue
direction is reproduced. In figure 3(b), the PDF of s∗ = −3

√
6Λ1Λ2Λ3/(Λ

2
1 + Λ2

2 + Λ2
3)

3/2 [34] is shown. The model
produces these same PDFs for any arbitrary number of levels. Furthermore, figure 3(c,d) compares the joint PDF of Q
and R for N = 2 with DNS at Reλ = 430. The model predicts this joint PDF well. As the number of levels increases,
the outer iso-contours expand as rare events become more likely, while the signature teardrop shape is maintained.

In summary, a low-dimensional model for Lagrangian time evolution of the velocity gradient tensor in fluid turbu-
lence has been proposed. It differs fundamentally from prior shell models and other empirically-motivated models of
intermittency because the gradient self-stretching and rotation A

2 term vital to the energy cascade and intermittency
development is derived directly from Navier-Stokes. In the new approach, each level effectively contains a wide band
of dynamical frequencies (β = 10 compared to 22/3 in Ref. [27] and typical of other shell models). The exact represen-
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Figure 2. (a,b) Skewness (a) and flatness (b) factors of velocity gradient components as a function of Reλ compared with DNS
data. Filled circles (A11 skewness and flatness) and squares (A12 flatness) represent the results of the multi-level model. DNS
data from Refs. [25] (�,◦); [31] (△); and a compilation of experimental data from [6] (+). Smaller filled symbols represent
the multi-level model with non-integer Neff. (c) Scaling exponents α(m) from the multiple-time scale RDGF model with ratio
β = 10 (filled red circles with error bars), compared with lognormal µ = 0.2 (dashed magenta line) and µ = 0.25 (dot-dashed
green line), She-Leveque [10] (continuous blue line), p-model [9] with p1 = 0.7 (black dotted line), and DNS data from Refs.
[31] (▽), [1] (△), and [32] (�), as well as experimental data from Ref. [33] (⊲). The RDGF model with β = 6 is shown as well
(filled green circles with error bars), illustrating the effect of changing β on the predicted scaling exponents.
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Figure 3. (a,b) Probability density functions of alignment of vorticity vector with the jth strain-rate eigenvector ordered by
decreasing eigenvalues (a): Λ1, circles; Λ2, triangles; Λ3, squares; and of s∗ (b). Dashed lines indicate DNS results from Ref.
[29] at Reλ = 430 and solid lines indicate model results that are the same for any N . (c,d) Joint PDFs in RQ invariant space
from the multilevel RDGF stochastic model with β = 10 and Neff = 1.85 (c) and from DNS of Ref. [29] at Reλ = 430 (d).
Logarithmically-spaced iso-contours shown are: 101, 100, 10−1, 10−2, 10−3.

tation of the nonlinear term captures local-in-scale interactions naturally within each level, eliminating the need for
strong, ad hoc coupling between levels. The model yields realistic predictions of intermittency dependence on Reλ and
describes the full tensorial structure of the velocity gradient, reflecting unique signatures and geometric alignments of
velocity gradients in Navier-Stokes turbulence. Given that isotropic turbulence is a prototypical nonlinear multiscale
problem, we anticipate that this type of modeling approach could impact a wide range of related topics in nonlinear
physics.
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