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We investigate the scaling of the velocity structure function tensor Dij(r, z) in high Reynolds

number wall-bounded turbulent flows, within the framework provided by the Townsend attached

eddy hypothesis. Here i, j = 1, 2, 3 denote velocity components in the three Cartesian directions

and r is a general spatial displacement vector. We consider spatial homogeneous conditions in

wall-parallel planes while dependence on wall normal distance is denoted by z. At small scales

(r = |r| � z) where turbulence approaches local isotropy, Dij(r, z) can be fully characterized

as a function of r and the height-dependent dissipation rate ε(z), using the classical Kolmogorov

scalings. At larger distances in the logarithmic range, existing previous studies have focused mostly

on the scaling of Dij for r in the streamwise direction and for the streamwise velocity component

(i = j = 1) only. No complete description is available for Dij(r, z) for all i, j and r directions. In

this paper we show that the hierarchical random additive process model for turbulent fluctuations

in the logarithmic range (a model based on the Townsend’s attached eddy hypothesis) may be used

to make new predictions on the scaling of Dij(r, z) for all velocity components and in all two-point

displacement directions. Some of the generalized scaling relations of Dij(r, z) in the logarithmic

region are then compared to available data. Nevertheless, a number of predictions cannot yet be

tested in detail, due to a lack of simultaneous two-point measurements with arbitrary cross-plane

displacements, calling for further experiments to be conducted at high Reynolds numbers.

I. INTRODUCTION

The most basic statistical characterization of turbulence structure is encoded in the two-point correlation or two-

point structure functions of the turbulent velocity field. At small scales, with displacements in the inertial range

of turbulence, a universal form is available from the Kolmogorov scaling [1, 2]. In wall-bounded flows, at scales

comparable to the distance from the wall in the logarithmic region, very significant deviations from local isotropy

develop. We lack a suitably general description of anisotropic energy containing motions and the present work is

devoted to this topic.

Wall-bounded flows, particularly flows at high Reynolds numbers, have been the subject of sustained research

efforts (see e.g. Refs. [3–5] for reviews) and predictive reduced-order models are extensively available in the literature

[6–14]. A fairly established conceptual model for high Reynolds number wall-bounded turbulent flows is the Townsend

attached eddy model [6], in which the logarithmic region is modeled as a collection of self-similar, wall-attached eddies,

whose sizes scale with their distance from the wall (see figure 1). Despite its simple form, this model has been quite

useful. Invoking the attached eddy hypothesis, not only can the logarithmic scaling of the mean velocity profile be

derived, but Townsend [6] also derived the logarithmic scalings for
〈
u2
〉
∼ log(δ/z),

〈
v2
〉
∼ log(δ/z), where u and v are

the velocity fluctuations in the streamwise and spanwise directions, δ is an outer length scale and z is the wall-normal

coordinate. To date, these two generalized logarithmic scalings have received considerable empirical support [15–19].

The attached eddy picture also permits scaling laws including
〈
∆u2

〉
∼ log(rx/z), 〈u(x)u(x+ rx)〉 ∼ log(δ/rx), which

have been confirmed recently in de Silva et. al. [20] and Yang et. al. [21], respectively. Here ∆u = u(x+ rx)− u(x),

rx is a streamwise displacement and x is the streamwise coordinate. In addition to these logarithmic scalings, the

k−1x spectrum in the logarithmic region is also a direct consequence of the presence of wall-attached eddies [22]. More

recently, the attached-eddy model has been extended to account for more detailed observations, including wake effects

and eddy clustering phenomena (see e.g. Refs. [7, 8]), as well as logarithmic scalings of higher order moments [20, 23].
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FIG. 1: Conceptual schematic diagram of the attached eddy model of high Reynolds number turbulent boundary layer flows.

The number of visible eddies on a vertical cut doubles as the sizes of the eddies halve. An attached eddy affects the shaded

region. A realization of the velocity fluctuation at a generic point in the flow field is given by a superposition of the velocity

fields associated with the attached eddies within which the generic point locates. Inclination of the attached eddies leads to a

lag in the velocity signal between two wall-normal locations, as indicated in the sketch.

More generally, the statistics of turbulent flows are fully specified by all N-point M-order correlation functions [24],

or equivalently, the related structure functions. Structure functions were found to be particularly useful for studying

homogeneous isotropic turbulence, where an exact relation holds connecting the third-order structure function to the

second order as a function of the dissipation rate [1]. Furthermore, we remark that knowledge of the scalings of

the structure functions can be used to provide estimates on the coarse-grained velocity gradients, sub-filter stresses,

and higher order sub-scale cumulants [25–27], which has implications for subgrid-scale modeling and large-eddy

simulations, where eddies of any particular scale in wall units become more and more subgrid (unresolved) as the

Reynolds number increases. Moreover, a second order spatial statistical description can be leveraged to model the

full spatio-temporal structure [28, 29] of the flow.

In this work we consider the two-point, second order structure function defined as

Dij(x, r) = 〈(ui(x + r)− ui(x))(uj(x + r)− uj(x))〉 . (1)

For incompressible homogeneous isotropic turbulence, this tensor could be fully specified with a scalar function DLL(r)

(the longitudinal structure function) [2, 24], which in turn only depends on r and the mean rate of dissipation ε in the

inertial range (with the formula being Dij = DLLδij+r/2∂DLL/∂r(δij−rirj/r2), where δij is the second-order identity

tensor). The local isotropic behavior is expected to hold in wall-bounded turbulence for displacements much smaller

than the height z above the wall [20, 30–32]. As the dissipation in the logarithmic region can be evaluated assuming

equilibrium between production and dissipation, the z dependence of the longitudinal structure function is encoded

in ε(z) ∼ u3τ/z. On the other hand for displacements larger than the height (r > z), i.e. for the energy containing

and momentum transporting motions, turbulence becomes anisotropic and inhomogeneous so that simplifications

associated with isotropy are not possible, and the specification of the second-order structure functions becomes less

simple.

Structure functions in wall-bounded flows have been considered from a theoretical viewpoint by Hill [33] and

Cimarelli et al. [34] as part of derivations of a generalized Kolmogorov equation allowing for non-homogeneity and

anisotropy. From an experimental viewpoint, structure functions have been studied in recent works by Davidson [32]

and de Silva et al. [20]. These prior efforts have focussed primarily on the streamwise direction, i.e. the special case

r = (rx, 0, 0) and i = j = 1.

The attached eddy model for energy containing motions in wall-bounded flows is analogous [35] to the eddy hierarchy

cascade models for isotropic homogeneous turbulence [2]. It describes the statistical structure of turbulent motions in a

given range by providing a method for calculating statistics based on randomly distributed wall-attached, momentum-

transferring eddies with a chosen characteristic eddy shape, and a prescribed density depending on distance to the
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wall. As a result it allows for scaling predictions over a certain range of scales in wall-bounded turbulence. While

previously, only scalings of the streamwise velocity component with streamwise displacements were considered in the

attached eddy model, predictions can also be made for other velocity components included in other Reynolds stresses,

as shown by Perry & Marusic [7, 8]. However, for structure functions in arbitrary directions and for all three velocity

components, scaling predictions have not yet been established based on the attached eddy model. Given the success

of the model in the context of streamwise statistics, it is of interest to extend scaling predictions to other directions

and velocity components. This is the main objective of the work presented here.

We develop predictions on the scalings of the full structure function tensor Eq. 1, for x in the logarithmic region and

for relevant ranges of the two-point displacement r such that x + r is also in the log region (see Ref. [36] for detailed

discussion on the extent of the log region). ui, uj are the velocity fluctuations in xi, xj directions; i, j = 1, 2, 3. We

first consider the full specification of a general second-order structure function under the specific conditions that the

wall-normal coordinate is denoted by a unit vector ẑ, and the direction of the free stream velocity is given by a unit

vector û. Because of the translational symmetry on wall-parallel planes, the dependency of Dij on x is reduced to

z = x · ẑ, where z is the wall normal component of x. The two-point displacement vector r may be in any direction.

In general, the symmetric, û, ẑ, and r−dependent tensor Dij may be expressed as

Dij(r, z) = D11(rx, ry, rz, z)ûiûj +D12(..)
(
ûit̂j + ûj t̂i

)
+D13(..) (ûiẑj + ûj ẑi)

+D22(..)t̂it̂j +D23(..)
(
t̂iẑj + t̂j ẑi

)
+D33(..)ẑiẑj ,

(2)

where t̂ = ẑ × û (unit vectors û and ẑ are orthogonal), û, ẑ and t̂ form a rectangular coordinate system, D11, D12,

D13, D22, D13 and D33 are scalar functions of z, rx = r · û, ry = r · t̂, rz = r · ẑ and the friction velocity uτ (or

magnitude of the free-stream velocity). As Dij is symmetric under coordinate system reflection, terms depending on

t̂ have to vanish, i.e. D12 = D23 = 0. Note that according to the theory of homogeneous tensors, a symmetric tensor

that depends on three vector (ẑ, û, r) takes the following form

Dij(r, z) = fδδij + fuuûiûj + fzz ẑiẑj + frr r̂ir̂j

+ fur
1

2
(ûir̂j + ûj r̂i) + fuz

1

2
(ûiẑj + ûj ẑi) + fzr

1

2
(ẑir̂j + ẑj r̂i) ,

(3)

where the f ’s are scalar functions of a number of scalar quantities that can be formed from the vectors r, û, ẑ and

the distance z. As a constraint in this problem, the vectors û and ẑ are perpendicular to each other, introducing

additional conditions. Since the above general tensor requires the specification of 7 instead of 4 scalar functions (as

in Eq. 2), we opt to use Eq. 2.

Throughout the paper, we denote x1, x2, x3 as the streamwise, spanwise and wall-normal coordinates, respectively;

we inter-changeably use u, v, w for the velocity fluctuations in the streamwise, spanwise, and wall normal directions;

x, y, z are interchangeably used for x1, x2, x3. As stated above, the displacement r = (rx, ry, rz), and rz > 0. In

this paper, velocities are normalized by the friction velocity uτ , and normalization with viscous length scale ν/uτ

(where ν is the kinematic viscosity) will be indicated by a + superscript. We only consider velocity fluctuations. As

mentioned before, prior work has focussed mostly on the dependence of D11 upon rx. As can be seen above, for the

full specification of the generalized structure function, we also require expressions for the scalar functions D22, D33,

and D13, all as functions of (rx, ry, rz, z). As shown by Hill [33], incompressibility imposes the following constraint

on the structure function:

∂Dij(r, z)

∂rj
=

1

2

∂

∂x3
〈(ui(x + r) + ui(x))(u3(x + r)− u3(x))〉 , (4)

which involves moments other than the structure functions themselves, and thus we will not exploit incompressibility

as a useful constraint.

In section §II, we summarize the hierarchical random additive process as a model for wall-bounded turbulent

velocity fluctuations in the logarithmic range and in §III show how it can be used to make predictions about the
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general scaling of these functions. We will invoke the simplest possible modeling assumptions and state the resulting

specific predictions. We will then attempt to verify the predicted trends in §IV. Several of the required measurements

are available only from DNS at moderate to intermediate Reynolds numbers so the discussion in §IV cannot be

considered conclusive. We leave open the possibility that once measurements become available at high Reynolds

numbers, the various simplifying assumptions made in the simplest version of the proposed model may need further

refinement.

II. THE HIERARCHICAL RANDOM ADDITIVE PROCESS (HRAP) MODEL

The HRAP is a simplified version of the Townsend attached eddy model, in which the eddy-induced velocity

fields are modeled as random addends. The wall-parallel velocity components at a wall normal distance z include

additive contributions from eddies whose heights are greater than z. Conversely, for the wall-normal component, the

contributions from large eddies whose heights are greater than z are severely blocked by the presence of the wall,

and only contributions from eddies of a size comparable to z count. Accordingly, the HRAP formalism models the

instantaneous streamwise and spanwise velocity fluctuations at a given position and height z as a result of random

additive processes according to

u =

Nz∑
i=1

ai, v =

Nz∑
i=1

bi. (5)

A random addend ai (or bi) represents the velocity increment in u (or v) due to an attached eddy of height ∼ δ/2i,

where δ is the height of the largest wall attached eddy that the boundary layer can admit (typically on the order of

the outer boundary layer thickness). The instantaneous wall-normal velocity fluctuation is modeled as the negative

of the last addend in the construction leading to u

w = −aNz
, (6)

This last step ensures a negative correlation so that the mean momentum flux is constant in the log region

〈uw〉 =

Nz∑
i=1

〈aiaNz 〉 = −
〈
a2Nz

〉
= −

〈
a2
〉
. (7)

A notional attached eddy is sketched in figure 2 and a top view of the modeled flow field is sketched in figure 3. By

relating ai with an attached eddy of height δ/2i, we have discretized the boundary layer logarithmically in the wall

normal direction. The base 2 is arbitrary but convenient and is chosen for consistency with Perry & Chong [37]. We

now make an additional geometric assumption about the aspect ratio of the wall-attached eddies. We assume that

wall-attached eddies at a height h may be characterized by lengths lx and ly in the streamwise and spanwise directions,

respectively. Therefore, an attached eddy of height h affects two points which lie nominally within the lx × ly area of

influence (cf. figure 2). Let us further denote the aspect ratio R = ly/lx as a given, z−independent geometric constant

(for empirical evidence for geometric self-similarity in the logarithmic region, see e.g. recent detailed analyses of DNS

by del Álamo et. al. [38]). In other words, two points such that z < h, z + rz < h, rx < h/ tan(θ), ry < Rh/ tan(θ)

share all addends from eddies of height greater than h. Such a compact representation of eddy-induced velocity

fluctuations allows us to make predictions on the scalings of various flow statistics in the logarithmic region, where

the eddies are self-similar, and the random addends ai are statistically identical, as are the addends bi (see Refs.

[23, 39] for detailed discussion).

We assume that large-scale eddies do not directly interact with small-scale eddies, and that ai, aj , i 6= j are

statistically independent (so are bi, bj , i 6= j). ais and bis are therefore independent random variables, each of which

are identically distributed (but ais and bi possibly have different distributions). Neglecting inter-scale interactions

(or interactions among different heights) must be here considered as a first approximation. Amplitude modulation
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FIG. 2: Conceptual sketch of a notional attached eddy of height z. This eddy extends and affects an area of lx × ly (in

x × y plane). The inclination angle of this eddy is θ. lx = z/ tan(θ). Define R = ly/lx to be the aspect ratio, it follows that

ly = Rz/ tan(θ). Because of the assumed similarity, R, θ are z-independent geometric constants.

flow direction

attached eddies

FIG. 3: Top view of the modeled wall-bounded flow showing a random superposition of notional wall attached eddies. Wall

eddies tend to be stretched in the flow direction. Because eddy population density is inversely proportional to the wall normal

distance, the number of observable eddies on an x− y plane quadruples as the sizes of the eddies halve. Wall-attached eddies

of different sizes are colored differently (color available online).

effects [40, 41] observed in the vicinity of the wall have not yet been explored in detail among scales and eddies in

the log region. To the degree that they occur, these can be considered as a higher-order corrections to the simplest

approximation made here of assuming independence. Futhermore, amplitude modulation is an important process for

odd-order statistics, but for second order statistics, accounting for the effects of modulation or not does not make

a significant difference [42]. At a distance z from the wall, the influence of an attached eddy of size � z becomes

negligible, and therefore the number of random addends in Eq. 5 can simply be obtained by integrating the eddy

population density P (z) ∼ 1/z from z to δ, leading to

Nz ∼
∫ δ

z

P (z) ∼ log(δ/z). (8)

As an example of possible applications of the HRAP model, we compute
〈
u2
〉
,
〈
v2
〉
. Squaring both sides of Eq. 5

leads to 〈
u2
〉

= Nz
〈
a2
〉
∼ log(δ/z) = A1 log(δ/z) +B1,〈

v2
〉

= Nz
〈
b2
〉
∼ log(δ/z) = A1,v log(δ/z) +B1,v,

(9)

recovering the logarithmic scaling for
〈
u2z
〉

and
〈
v2z
〉
. Here, A1, A1,v, B1 and B1,v are constants. The value of A1, the

Townsend-Perry constant, has been determined empirically, yielding A1 ≈ 1.2 − 1.3 [36]. In this work, Eqs. 5, 6, 8

are used to provide estimates for all scalar functions in Eq. 2.
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FIG. 4: Examples of pairs of points in regimes I, II, and III. For two points in regime III (indicated as points III1, III2), III1

shares none of its addends with III2. For two points in regime I (indicated as points I1, I2), I1 share all common addends with

I2 (and then I1 includes an extra addend since it is closer to the wall). For two points in regime II (II1, II2), II1 share part of

the addends with II2 (specifically in this example, addends from eddies of height δ, δ/2). The schematic is in accordance with

figure 1. As is sketched in figure 1, a horizontal line corresponds to an eddy and affects the region below it. While the sketch

is artificially regular for purposes of illustration, in reality the model encompasses more random spatial arrangements of eddies

as in Fig. 3.

III. SCALING OF GENERAL TWO-POINT STRUCTURE FUNCTIONS

We begin by defining the “associated eddy height” corresponding to particular (specified) horizontal displacements

rx and, separately, ry. Specifically, we define

zrx = |rx| tan(θ), zry =
|ry|
R

tan(θ). (10)

The height zrx is the minimum height of an eddy that can simultaneously affect two points with a displacement rx

only in the streamwise direction. In other words, two points separated by a distance rx can only be affected by an

eddy with a height greater than zrx. Similarly, for displacements only in the transverse direction ry, zry is the height

corresponding to an eddy of x-direction length ry/R. For now we are assuming these two heights are smaller than δ.

For arbitrary displacements rx and ry, we define

zc = min{max [|rx| , |ry| /R] tan(θ), δ}, (11)

which is the minimum height of an eddy that simultaneously affects two points at a distance rx, ry in the x, y

directions, given that the boundary layer can not admit eddies higher than δ. We assume that the displacements

are larger than a minimum value so that the velocity fluctuations at the two points differ at least by one addend.

For smaller displacements, the two-points are considered equivalent in the framework of HRAP and the associated

structure function follows the inertial-range scalings.

Applying the HRAP model to determine D11(rx, ry, rz, z), we must determine the number of common addends

shared by the two points. For this purpose we focus on the vertical location of the higher point, at z + rz (rz > 0).

Depending on rx and ry, we can identify three regimes (see figure 4)

I : zc < z + rz,

II : z + rz < zc < δ,

III : zc = δ.

(12)

For two points in regime III, the points share no common eddy, hence

D11 =

〈Nz∑
i=1

a′i −
Nz+rz∑
i=1

a′′i

2〉
= (Nz +Nz+rz )

〈
a2
〉
− 2

〈(
Nz∑
i=1

a′i

)
·

Nz+rz∑
i=1

a′′i

〉

= (Nz +Nz+rz )
〈
a2
〉

= A1 log

(
δ

z

)
+A1 log

(
δ

z + rz

)
+ C3.

(13)
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For two points in regime I, point x share all the eddies that affect x + r (0 < rz), hence:

D11 =

〈Nz+rz∑
i=1

ai +

Nz∑
i=Nz+rz

a′i

−
Nz+rz∑

i=1

ai

2〉

=

〈 Nz∑
i=Nz+rz

a′i

2〉
= (Nz −Nz+rz )

〈
a2
〉

= A1 log

(
z + rz
z

)
+ C1.

(14)

Note that we are excluding from these considerations the transition towards the locally isotropic scaling that occurs

when r = (r2x + r2y + r2z)
1/2 < Czz, where Cz is an O(1) constant. For regime I, typically rx and ry are small and

therefore we must limit rz to be (typically) larger than z. Thus the scaling implied by Eq. 14 is meant to hold for

rz/z & 1. In the limit rz/z . 1, a transition towards the inertial range scaling is envisioned.

For two points in regime II, points (x, y, z) and (x + rx, y + ry, z + rz) share the eddies of height greater than zc,

hence

D11 =

〈Nzc∑
i=1

ai +

Nz∑
i=Nzc

a′i

−
Nzc∑
i=1

ai +

Nz+rz∑
i=Nzc

a′′i

2〉
=

〈 Nz∑
i=Nzc

a′i −
Nz+rz∑
i=Nzc

a′′i

2〉

= (Nz −Nzc)
〈
a2
〉

+ (Nz+rz −Nzc)
〈
a2
〉
− 2

〈 Nz∑
i=Nzc

a′i

 ·
Nz+rz∑
i=Nzc

a′′i

〉

= (Nz −Nzc)
〈
a2
〉

+ (Nz+rz −Nzc)
〈
a2
〉

= A1 log
(zc
z

)
+A1 log

(
zc

z + rz

)
+ C2,

(15)

where a, a′, a′′ are i.i.d. variables. Imposing continuity of D11 with respect to zc, it is clear that the constants C1,

C2, C3 must be equal, i.e.

C1 = C2 = C3. (16)

It is worth noting that, although we have discretized the log region into discrete hierarchical scales and both Nz,

Nz+rz are integers that take only discrete values, because in Eq. 8 the integration is a continous function of z, the

predictions here are continous functions of z and r. Combining Eqs. 12, 13, 14, 15, 16, we have

D11 = A1 log

(
z + rz
z

)
+ C11, zc < z + rz;

D11 = A1 log
(zc
z

)
+A1 log

(
zc

z + rz

)
+ C11, z + rz < zc < δ;

D11 = A1 log

(
δ

z

)
+A1 log

(
δ

z + rz

)
+ C11, zc = δ.

(17)

where C11 is a constant. Defining ze = max [zc, z + rz], a compact form of D11 is as follows

D11 = A1 log
(ze
z

)
+A1 log

(
ze

z + rz

)
+ C11, (18)

where we recall that z and z + rz are assumed to fall in the logarithmic layer, i.e. significantly below δ.

The various regimes are sketched in figure 5 (a). Essentially we seek the minimum height hc of an eddy that can

simultaneously affect the two points under consideration. Because of the tree-like organization of the attached eddies,

the effects of eddies with height h > hc is cancelled (because we are taking the difference between the two points

when evaluating structure functions). Effects of eddies of heights h < hc remain and are reflected separately on two

points, in the form

log

(
hc
z

)
+ log

(
hc

z + rz

)
. (19)
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FIG. 5: (a) A sketch of the various regimes used to evaluate the scaling of D11 under the HRAP simplified attached eddy

model. The definition of zc is cut off at δ, therefore regime III is indicated only at zc = δ. z + rz is required to be in the

boundary layer, i.e. z + rz < δ. (b) Contour levels computed according to Eq. 18 for D11 as a function of zc and z + rz for

z = 0.01δ, using A1 = 1.25 and setting C11 = 2 for purposes of illustration.

It is useful to point out that hc is not necessarily equal to zc since zc is the minimum height of an eddy that could

affect two points with a displacement rx, ry in the x, y directions. The two points could be displaced by a very

small distance in the x-y plane but by a large distance in the vertical direction. In that case, hc becomes z + rz and

we are in regime I. Regime II is straight-forward, where zc = hc. If the two points are so separated that to affect

them simultaneously one needs an eddy of height greater than δ, then we are in regime III. The description stops at

zc = hc = δ (since the boundary layer does not admit any eddy whose height is greater than δ). A sketch of D11 as a

function of zc and z + rz is shown in figure 5 (b). The contour levels are computed according to Eq. 18. The hidden

parameter z is 0.01δ, which is chosen arbitrarily for illustration purposes.

A few asymptotes of Eq. 17 have been investigated previously. For example, taking rz = 0 and rx � δ (and/or

ry � δ), we have zc = δ, ze = δ and we obtain D11 = 2A1 log(δ/z) + C11, i.e. the logarithmic scaling of
〈
u2
〉

=
1
2D11(|r| � δ, z) as a function of z is recovered. Taking rz = ry = 0 and rx in the relevant range (an rx such that

rx > z but a converted wall-normal height rx tan(θ) still in the log region), we have zc ∼ rx, ze = zc ∼ rx and the

scaling
〈
(u(x+ rx)− u(x))2

〉
= 2A1 log(rx/z) + C is obtained [20].

New scaling laws can be obtained from Eq. 17, e.g. taking rx = 0, rz = 0 and ry in the range such that ry & z and

the corresponding wall normal height ry/R · tan(θ) in the log region, we have zc ∼ ry, ze = zc ∼ ry and thus〈
(u(x, y, z)− u(x, y + ry, z))

2
〉
∼ 2A1 log(ry/z), (20)

i.e. a transversal logarithmic scaling similar to the longitudinal one found in de Silva et al. [20]. According to the

HRAP model, the transverse scaling has the same slope 2A1 as the longitudinal one, because geometric parameters

including R, tan(θ) that enter zc, ze can be absorbed into the additive constants without affecting the slope. Or,

taking rx = 0, ry = 0, rz in the range such that z + rz is still in the logarithmic region, we have zc = z + rz,

ze = zc = z + rz and thus 〈
[u(x, y, z + rz)− u(x, y, z)]2

〉
∼ A1 log[(z + rz)/z], (21)

now with slope A1 instead of 2A1—predictions that should be interesting to confirm based on data.

Next the HRAP model can be applied for D22. According to Eq. 5, both u, v are results of additive processes, the

only difference is that for v the addends bi may have different statistics to those of ai. Hence, the scaling behavior of

D22 is similar to those of D11 but involving 〈b2〉 instead of 〈a2〉. Thus, we obtain

D22 = A1,v log
(ze
z

)
+A1,v log

(
ze

z + rz

)
+ C22. (22)
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where A1,v, C22 are constants. Similar scalings including
〈
(v(x, y, z)− v(x, y + ry, z))

2
〉
∼ 2A1,v log[ry/z],〈

(vz+rz − vz)2
〉
∼ A1,v log[(z + rz)/z] are expected as well. Again the prefactors of the streamwise and transverse

logarithmic scalings are the same, but offset constants are possibly different.

The last diagonal term D33 is considered next:

D33 =
〈

(w(x+ rx, y + ry, z + rz)− w(x, y, z))
2
〉

= 2 〈ww〉 − 2 〈w(x+ rx, y + ry, z + rz)w(x, y, z)〉 .
(23)

We have assumed that the streamwise velocity fluctuations at the two points differ at least by one addend (if not,

then the structure function follow the inertial range scalings), therefore the last addend in u(x, y, z), which controls

the wall-normal component w(x, y, z), is statistically independent of the last addend in u(x+ rx, y+ ry, z+ rz), which

controls the wall-normal component w(x+ rx, y+ ry, z + rz). Let us use a for the addends in u(x, y, z) and a′ for the

addends in u(x+ rx, y + ry, z + rz). We have 〈w(x+ rx, y + ry, z + rz)w(x, y, z)〉 =
〈
aNza

′
Nz+rz

〉
= 0, and therefore

D33 = 2 (24)

We have made the approximation that 〈ww〉 = 1 in the log region. That is to say, the normal vertical velocity

structure function transitions from the inertial regime to a constant value (∼ 2) for displacements larger than the

height above the wall. Because the HRAP model predicts a constant value for D33 in the logarithmic region, Eq. 24

does not provide a length scale for the D33 scaling and because D33 ≡ 2 in the logarithmic region, D33 should collpase

by plotting against rx/δ and r/z, at least in the logarithmic range. Therefore the collapse of D33 scaling depends on

the rx range within which a transition from the inertial range scaling to the logarithmic range scaling takes place.

Because this transition occurs at around r ∼ O(z), the length scale for constant scalings like the one in Eq. 24 should

be z and we expect a collapse of data when D33 is plotted as a function of r/z.

Eqs. 18, 22, 24 summarize the scaling behaviors of all three diagonal components of Dij . Next, the off-diagonal

components are evaluated. Given ai, bi are independent variables, we can immediately conclude

D12 = 0, D23 = 0, (25)

also consistent with the requirement of reflectional symmetry. The last term to be evaluated is the shear term, D13:

D13 = 〈(u(x + r)− u(x))(w(x + r)− w(x))〉

= 2 〈uw〉 − 〈u(x + r)w(x)〉 − 〈u(x)w(x + r)〉 ,
(26)

The first term 〈uw〉 = −u2τ = −1. Let us consider the two cross terms. Without loss of generality, we have

assumed rz ≥ 0. Then z + rz ≥ z and Nz+rz ≤ Nz. 〈u(x + r)w(x)〉 = −
〈∑Nz+rz

i=1 a′i · aNz

〉
is directly 0 for

Nz+rz < Nz because addends with different indices are statistically independent; for Nz+rz = Nz, 〈u(x + r)w(x)〉
is −

〈
aNz

a′Nz

〉
, which is also 0 because the streamwise velocity fluctuations at the two points differ at least by one

addend (otherwise the structure function just follow the inertial range scalings). Now let us consider the other cross

term 〈u(x)w(x + r)〉. Again because addends for eddies of different sizes are uncorrelated and because Nz ≥ Nz+rz ,

〈u(x)w(x + r)〉 = −
〈∑Nz

i=1 ai · a′Nz+rz

〉
= −

〈
aNz+rz

a′Nz+rz

〉
. For two points in regimes II, III, this cross term

vanishes because the size of the smallest common eddy is greater than z + rz and aNz+rz
, aNz+rz

are statistically

independent. For two points in regime I, aNz = a′Nz
and the cross term 〈u(x)w(x + r)〉 is -1. Hence, for the range of

r,x discussed in this work,

D13 = −1 zc < z + rz,

D13 = −2 z + rz < zc.
(27)

The discontinuity is because the assumed region of influence of an attached eddy is not a well-behaved function that

decays smoothly to 0, but instead is a function that jumps to 0.
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Eqs. 18, 22, 24, 25, 27 are the complete description of the scalings of the structure function in the logarithmic

region. It is worth noting that the −2/3 power-law scaling in the inertial range is not incorporated up to this point

but smooth transitioning to power-law inertial range scaling is expected whenever
√
r2x + r2y + r2z < Czz, where Cz is

a constant of O(1).

Note that in the model the assumed eddy inclination angle θ and the eddy aspect ratio R do not appear explicitly

in the scaling law. These parameters do enter, however, when determining the limits between the various scaling

regimes. For instance, the eddy inclination angle is used to compute a streamwise extent within which an attached

eddy of height h exerts its influence on, while the aspect ratio R affects the scaling limits when considering various

ry and rx combinations. We remark further that for more realistic modeling of wall-bounded flows, an eddy tilting

angle might also be used to account for the lag of the effects of attached eddies across the wall normal direction (see

e.g. Ref. [41] for discussion of this effect). Last, the assumption of ai, bi being i.i.d. variables may not hold exactly.

However, in the high Reynolds number limit, the variance
〈
u2
〉
∼ log(δ/z) does not strictly require i.i.d. but rather

holds provided correlations have sufficiently rapid decay (the logarithmic scaling of cumulants is indicative of a large

deviations principle [43, 44] and is not restricted to i.i.d. variables [2]). Similarly, 〈uw〉 = −1 is constant according

to the HRAP model but is in fact only approximately so in the log region for finite Reynolds number, indicating

already the z-dependence of the random addends. Because of this wall-normal dependence at finite Reynolds number,

scalings including
〈
u2
〉

= a21 + a22 + ...+ a2Nz
are only approximately log(δ/z) and deviations from the log scaling are

expected to be similar to the deviations of 〈uw〉 from a constant -1. It should be kept in mind that the attached eddy

hypothesis and the HRAP model used here are models for the high Reynolds number limit and are therefore only

approximate for any finite Reynolds number.

IV. EMPIRICAL EVIDENCE FOR PROPOSED SCALINGS

Statistics that involve streamwise displacements can be evaluated from a single hot-wire measurement by invoking

Taylor’s hypothesis [28, 45, 46]. Evaluating statistics that include a displacement in the spanwise direction requires

much more work in a laboratory experiment because it needs simultaneous measurements at multiple spanwise lo-

cations. It is possible to resort to numerical simulations for such measurements, but for numerical simulations,

direct-numerical-simulations (DNS) in particular, the limited Reynolds number is an obstacle. The highest Reynolds

number accomplished to date for a channel flow using DNS is Reτ ≈ 5000 [18]. The reader is directed to Refs.

[47–52] for more DNS datasets of turbulent channel flows. In this section, the streamwise scalings, Dij as functions

of r = (rx, 0, 0) are investigated using hot-wire measurements in boundary layer flows. Spanwise scalings and trends

in other directions, on the other hand, are examined using channel flow DNS datasets.

Recent work [53] suggested applying extended-self-similarity (ESS) to structure functions to obtain scaling behavior

of improved quality, following the success of ESS in the context of moment generating functions [54]. ESS is useful

when considering scalings of higher-order moments relative to the scaling of a known lower-order moment. Here we

consider only the second order statistics and we require scaling ranges for different physical quantities in different

directions (spanwise, vertical), therefore the usefulness of ESS in the present context is not immediately clear.

To document the streamwise logarithmic scalings, we use the cross-wire measurements taken in boundary layer

flows at Reτ ≈ 15000 (where u,w components are measured in one experiment and u, v components are measured in

another experiment). Details of the experimental setup can be found in Refs. [17, 55] and the references cited therein.

The sampling frequency is high enough to allow streamwise displacements smaller than r+x = 10, which falls much

below the range of two-point displacement of interest (r+ & z+ � 100). The use of Taylor’s hypothesis for quantities

such as structure functions is common and has been proven to be valid [20, 56]. The streamwise logarithmic scaling

for D11 was confirmed in Ref. [20] and can be observed in figure 6, where 0.5D11 is shown as a function of rx at

wall normal heights z+ ≈ 400, 800, 1500. The prefactor 0.5 is used for better visualization when plotted together with

D22, which is also shown in figure 6. The figure shows D22 as functions of rx/z at three wall normal locations. The
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FIG. 6: Linear-log plot of D22(rx, 0, 0; z) and 0.5D11(rx, 0, 0; z) as functions of rx measured experimentally at Reτ ≈ 15 000 at

wall normal locations z+ = 400, 800, 1500. The thin lines are for D11 and the bold lines are for D22. The straight dashed lines

indicate the fitted slopes of the logarithmic scalings.

data collapse when plotted against rx/z. Thanks to the high Reynolds number, a logarithmic region that spans more

than a decade is found both in D11 and D22 in the streamwise direction. The slope for D11 is fitted here in the rx

range 1 < rx/z < 10, and the fitted slope results in 2.2, not far from prior measurements where 2A1 = 2.5. As for the

slope of the streamwise logarithmic scaling of D22, the fitted slope is 0.99. This is very close to the expected slope

of 2A1,v, where A1,v ≈ 0.5 is the slope of
〈
v2
〉

(as a function of z) measured previously [17, 51]. Compared to D11,

one notes that the logarithmic scaling region for D22 occurs at smaller scales as the curves appear to be shifted to

the left, by almost a factor 6. This means that C22 is considerably higher than C11, which is consistent with effects

from the continuity equation that leads to smaller integral length scales for transverse correlations as compared to

longitudinal ones. A factor 6, however, is quite large.

By symmetry one expects D12 ≡ 0, which is also predicted by the HRAP. The experimental hot-wire results (not

shown) are consistent with low values of D12 (the data are slightly negative, D12 ≈ −0.1 in wall units, at large

streamwise displacements possibly due to small misalignments of the cross-wires and possible uncertainties in the

measurements).

Figure 7 shows D13 as a function of rx at two wall-normal locations. D13 collapse when plotted against rx/z. For

sufficiently large two-point displacement rx, D13 = −2, as suggested by the HRAP model and required by the fact that

the mixed structure function must asymptote to twice (negative) the square of the friction velocity at large distances.

For rx . z, the structure functions should follow the inertial range scalings and such scalings were discussed in Refs

[33, 34]. Note for two points that are only displaced in the streamwise direction, we never actually enter regime I.

Figure 8 shows D33− 2
〈
w2
〉

as functions of rx/z. The data do not collapse when D33 itself is plotted as a function

of rx/z at different wall normal locations (not shown), but by subtracting limrx→∞D33 = 2〈w2〉 from D33, a good

collapse is found, as is seen in figure 8. This suggests that the difference in D33 is from fine scale motions in the

regime rx . z [57, 58]. Beyond rx ≈ z, D33 tends to 2
〈
w2
〉
, consistent with the model although the exact magnitude

of
〈
w2
〉

is not 1 in wall units. The transition from the inertial range scalings to the logarithmic range scalings occurs

near rx/z ∼ O(0.1). Note scalings in the logarithmic range are not necessarily log scalings, e.g. the scaling of D33

in the logarithmic range is a constant scaling -2 instead of a logarithmic scaling. Comparing D33 and D13, the

transitions to log-range scalings are at quite different rx/z distances, with D33 transitioning at smaller distances than

D13. This difference is not surprising if one considers frist the fact that w is controlled mostly by a local eddy while

u is affected by larger eddies, and second the aforementioned difference in the integral scales between the transverse

and longitudinal components.

For empirical evidence of the spanwise scalings, we require simultaneous measurements at a number of spanwise
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FIG. 7: Linear-log plot of D13(rx, 0, 0, z) at Reτ ≈ 15 000 as a function of rx at two wall normal heights (color available online).

FIG. 8: Linear-log plot of D33(rx, 0, 0, z) at Reτ ≈ 15 000 as a function of rx at two wall-normal locations (color available

online). 2
〈
w2
〉

at the two wall normal locations are 2.5 and 2.8 respectively.

distances. For this purpose we use the Reτ = 4200 DNS channel-flow dataset [51]. The DNS has used a grid of size

3072×3072×1081 (in x, y, z directions) for a computational domain of size 2π×π×2, where the half channel height

is 1.

Figure 9 (a) shows
〈
u2
〉

as a function of the wall normal distance. In figure 9 (b), we show D11(rx, 0, 0; z) as a

function of rx at different wall normal locations. As seen in figure 9, although no logarithmic region can be found in〈
u2
〉

as a function of z, a logarithmic region can be discerned in the streamwise velocity structure function as a function

of rx. Nevertheless, the measured slope is 1.6, whereas at high Reynolds numbers, the observed slope is 2A1 ≈ 2.5.

Thus even if a logarithmic scaling is observed, one may expect differences of at least 40% when comparing with values

expected at high Reynolds numbers. This insight will be useful when measuring scaling parameters in directions

where only DNS data are available. In terms of the behavior at sufficiently large rx, at which 〈u(x)u(x+ r)〉 = 0,

we expect D11 = 2
〈
u2
〉
. For the current dataset, the two-point correlation at r = Lx/2, where Lx is the streamwise

dimension of the periodic computational domain, does not drop to 0 due to the limited size of the channel. As a

result, D11 does not reach 2
〈
u2
〉

in figure 9 (b) at large rx values.

Figure 10 shows D11, D22 as functions of the spanwise displacement ry at three wall normal heights z+ ≈ 249,

285, 327. The data are obtained by averaging over one snapshot of the DNS, so at large ry some fluctuations are

visible due to lack of convergence. Nevertheless, logarithmic scalings are observed within the region indicated by the

vertical lines. Such behavior is consistent with the HRAP model. While the streamwise velocity correlation does not



13

FIG. 9: (a) Streamwise variance
〈
u2
〉

as a function of the wall normal distance for the Reτ ≈ 4200 DNS. The dashed line has

a slope 1.26. The two vertical lines enclose the expected log region and are at z+ = 3
√
Reτ and z/δ = 0.1. (b) D11(rx, 0, 0, z)

plotted against rx at three wall normal distances within the enclosed region in (a). A log region is found in the enclosed region.

The fitted slope within the enclosed region is 1.6 and is indicated using a dashed line. The expected slope is ≈ 2.5 and is

indicated using a thin solid line.

drop to 0 at rx = Lx/2, the correlation in the spanwise direction decays to 0 at ry = Ly/2, where Ly is the spanwise

dimension of the computational domain. As a result, at sufficiently large ry, both D11 and D22 tend to 2
〈
u2
〉

(which

can be confirmed by comparing figure 10 (a) and figure 9 (a)) and 2
〈
v2
〉

(not shown).

The measured slope for D11(ry) and D22(ry) are respectively 3.7 and 1.3. According to HRAP, the expected slopes

for the spanwise logarithmic scalings should be the same as their streamwise counterparts, which at high Reynolds

numbers are ∼ 2.5 and ∼ 1.0, respectively. The difference between the measured and expected slopes is on the order

of 30-40%. However, we note that it is a difference in the opposite direction as that noted before: for ry the DNS is

showing larger slopes than the expected high Reynolds number scaling, whereas it gave lower values for the streamwise

displacement, rx scaling. The difference between the measured slope and the expected slope could be due to a few

reasons: first, as was mentioned above, the limited Reynolds number of the data, because of which, a log region is

absent in
〈
u2
〉

and hence any expectations based on the slope of
〈
u2
〉

would also be not observable from the data [59].

Second the difference between large-scale fluid motions in channel flow and boundary layer flow, the former of which

lacks a second very long mode in the premultiplied spectrum when compared to channel flow [56]. Third the limited

size the computational domain [51] etc. It may also be that the slopes should indeed be different from the expected

ones according to the HRAP model because of physical processes that are not accounted for here. For now, we simply

remark that data at higher Reynolds numbers are needed to provide more definitive confirmation or refutation of the

HRAP prediction that the slopes in ry should be equal to those in the rx direction.

Next we examine trends and scalings with wall normal displacements, where r = (0, 0, rz). For two points that

are displaced in the wall-normal direction, D11 and D22 follow the scalings D11(0, 0, rz; z) ∼ A1 log((z + rz)/z),

D22(0, 0, rz; z) ∼ A1,v log((z + rz)/z) (see earlier discussion in section III). Thus we may examine the scaling by

plotting as a function of log(z+ rz) for fixed z, or by fixing z+ rz and plotting as a function of log(z). Since we must

ensure that z + rz is limited to below δ, the latter is more natural. Figure 11 shows D11(0, 0, rz; z), D22(0, 0, rz; z) as

functions of z for a specified z + rz value (we choose z + rz = 0.4δ). The results are marked as “not displaced”. For

D11 a possible scaling range appears to form above z+ ∼ 300 with a slope that is consistent with the prediction from

HRAP (which is A1 ≈ 1.25 for D11). For D22 a longer range appears starting around z+ ∼ 50, and a slope consistent

with A1,v ≈ 0.5 can be observed.

Additionally, we show D11(rx, 0, rz; z), D22(rx, 0, rz; z) as functions of z for the same specified z + rz = 0.4δ and

for a fixed streamwise displacement rx. The streamwise displacement value is chosen here such that the function
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FIG. 10: Linear-log plot of D11(0, ry, 0; z), D22(0, ry, 0; z) as function of ry at three wall normal heights z+ ≈ 249, 285, 327.

The measured slopes are 3.7, 1.3 for D11 and D22 and are shown using dashed lines. The expected slopes (2A1 = 2.5 and

2A1,v = 1.0) are indicated using thin solid lines.

FIG. 11: Linear-log plot of D11(0, 0, rz; z), D22(0, 0, rz; z) as functions of z for fixed z+rz = 0.4δ. The known slopes A1 ≈ 1.25,

A1,v = 0.5 are indicated using dashed lines. We also show results for D11(rx, 0, rz; z), and D22(rx, 0, rz; z) where rx is such that

the function f(rx) = 〈u(x, y, z)u(x+ rx, y, z + rz)〉 is at its maximum. Results are denoted as ‘displaced’.

f(rx) = 〈u(x, y, z)u(x+ rx, y, z + zr)〉 is at its maximum. We remark that this is in the spirit of the modulation

model [41] in which the signal at the higher location is displaced in order to account for the lag between the “large

scale” signal (here at z + rz) and the small scale signal (here at z). As seen in figure 11, for the presently considered

ranges of displacements, the shift in rx does not affect the overall trends as a function of z, at least at this Reynolds

number. It is worth noting that these structure functions do not vanish when z → 0 (see Fig. 11 at small z+) because

the value at z + rz remains, i.e. D11 =
〈
(u(x, y, 0)− u(x, y, rz))

2
〉

=
〈
u(x, y, z + rz)

2
〉
6= 0.

To observe a logarithmic region, the HRAP formalism requires both z and z + rz to be in the logarithmic region.

This is more easily attained for the spanwise component as 〈vv〉 has an extended logarithmic region, from z+ ≈ 50

to z/δ ≈ 0.4) at this Reynolds number. If we consider
〈
v2(z)

〉
=
〈
(v(x, y, z)− 0)2

〉
= D22(0, 0, rz > δ; z), then in

figure 11, we are simply taking z + rz from the freestream (where v(z + rz) = 0) to a wall-normal location in the

boundary layer (z + rz)/δ = 0.4. As is seen in figure 11 (b), this reduces the logarithmic region to a range 50 < z+,

z < 0.4(z + rz). The same does not hold for the streamwise component because a logarithmic region can barely be

found in
〈
u2
〉

at this Reynolds number. So it is interesting that when plotting D11 against z for z + rz = 0.4δ, a

logarithmic region begins to emerge, and more so for the displaced data, with the slope close to A = 1.25.

Lastly we consider structure functions with displacements along a diagonal line on the x−y plane. Figure 12 shows
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FIG. 12: Linear-log plot of D11(rx, ry, 0, z), D22(rx, ry, 0, z) for ry = rx/2 as a function of r =
√
r2x + r2y at three wall normal

heights z+ ≈ 249, 285, 327. The measured slopes are 3.6 and 1.1 for D11 and D22 and are indicated using dashed lines.

Logarithmic-scalings are observed within the region marked by vertical lines.

D11, D22 along a sample line that forms a ∼ 26◦ angle with the x axis (ry/rx = 0.5). As is expected from the HRAP

model, logarithmic scalings are still found. Taking a diagonal line mixes the logarithmic scalings in the streamwise and

spanwise directions. As a result, from the data the measured slopes are in between the slopes measured in the spanwise

and streamwise directions. Recall that from HRAP the slopes would be expected to be equal for displacements in

both directions so the differences discussed previously in the context of the spanwise structure functions hold also for

the present results.

V. CONCLUSIONS

In this work, we investigated the scaling behavior of the full structure function tensor (defined in Eq. 1) in

the logarithmic region within the framework provided by the HRAP, which is a simplified formalism based on the

Townsend attached eddy hypothesis. The results for the required 6 scalar functions as a function of (rx, ry, rz, z) are

presented in Eqs. 18, 22, 24, 25, and 27. Certain special cases of Eq. 1 have been studied in the past, most notably

the streamwise dependencies of the streamwise velocity component. In this paper, evidence supporting some of the

newly proposed scalings is provided based on hot-wire and DNS datasets, in particular scaling that involves vertical

displacements with respect to a fixed end point in the bulk region and logarithmic scaling for the transverse velocity

component. However, the slope in the logarithmic laws for structure functions with displacements in the spanwise

directions appeared to be larger than those predicted by the present simple version of HRAP. Several additional

scalings laws remain to be confirmed in more detail and in laboratory experiments or DNS, which will need to be

at higher Reynolds numbers than the ones that are presently available. The modeling work here thus calls for new

detailed multipoint measurements of wall-bounded flows at high Reynolds numbers.
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