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Separation of one type of chiral particle from mirror-image particles in a racemic

mixture by shear flow and rotating electric field is studied theoretically. In shear flow

the chiral particles and their mirror-image particles migrate in opposite directions

along the vorticity direction. In a rotating electric field, they migrate in opposite

directions along the axis of rotation. In each case, the migration velocity of the

particles is calculated for a model chiral particle: a propeller-like particle which

consists of two disks, at an angle to each other, rigidly connected to a thin rod.

Effects of shear rate, field strength, and particle structure on the migration velocity

are discussed. It is shown that the chirality of the particle is characterized by different

parameters depending on the method of separation.

1



I. INTRODUCTION

A chiral particle is a particle whose mirror-image cannot be superimposed on it by rota-

tion. Separating one type of particle (R-type) in the racemic mixture of the particles from

its mirror-image particles (L-type) is a scientific challenge which has potential applications

in various fields of science and technology1,2.

Conventional separation methods are based on crystallization which gives R-type crystals

and L-type crystals, or on adsorption using the different permeability of R-type and L-type

particles. In such methods, considerable efforts are needed as these techniques require the

optimization of the crystallization conditions or the development of new filters for individual

particles or molecules. Such methods have been developed for small molecules, but have not

been developed for large particles of size greater than 0.1 µm. For such large particles, other

simpler methods which do not rely on the individual properties of the particles are needed.

Two methods have been proposed for this purpose.

One method is to use the shear flow. It has been shown that chiral particles placed in

a shear flow can have a non-zero average velocity along the vorticity direction2,3. Due to

physical law of the mirror symmetry, if one type of chiral particle moves along the vorticity

direction, the mirror-image type moves in the opposite direction, allowing for the separation

of both types of particles.

The other method is to use a rotating electric field. If the particles are rotated by an

external electric field, the chiral particles and the mirror-image particles migrate in opposite

directions4–6.

Though such separation can be shown to be possible using the argument of mirror sym-

metry, calculation of the actual migration velocity is not easy since one has to deal with the

motion of particles which have a complex structure and are subject to Brownian motion.

Accordingly, previous studies have been limited to the demonstration of the method4–6. Few

studies have been reported on the relation between the migration velocity and the param-

eters characterizing the fields or the particle structures. In our previous works3,6, we have

studied the migration velocity of a chiral particle (a twisted ribbon) placed in shear flow3,

and in rotating electric field6. However, the question how the migration velocity is related

to the chirality of the particle has not been discussed in detail. Chiral structure is generally

characterized by a parameter called the chiral parameter1 which is zero for non-chiral par-
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ticle, but is non-zero for chiral particle. In this paper we consider a special type of chiral

particle, a propeller-like particle (shown in Fig. 1), and discuss the relation between the

migration velocity and the chiral parameter.

We shall study this problem using a simple model particle, a propeller-like particle as

shown in Fig. 1. We shall consider two methods of separation, shear flow and rotating

electric field, and calculate the migration velocity explicitly as a function of the particle

structure and the field characteristic, such as the strength of the shear rate or electric field.

Using these results, we shall discuss the chirality parameter, the parameter which specifies

the degree of chirality.

This paper is organized as follows. A framework of the motion of a particle in an external

field is presented in Sec.II. The mobility tensor of a propeller-like particle is calculated by

superposition approximation and its spin averaged tensor are shown in Sec.III. The condition

of the simulation method are written in Sec. IV The migration in shear flow is discussed in

Sec.V. The migration in rotating electric field is discussed in Sec.VI. The relation between

structure of the particle and mobility is discussed in Sec. VII. Finally, we summarize our

paper in Sec.VIII.

II. MOTION OF A PARTICLE IN AN EXTERNAL FIELD

A. Particle in external fields

The particle we consider in this paper in shown in Fig.1. It consists of two thin disks of

radius a rigidly fixed to a thin rod which we shall call the particle axis. The center-to-center

distance between the disks is 2h. The two disks make an angle θ with each other. The

three parameters a, h and θ completely specify the particle shape and its hydrodynamic

properties.

To investigate the separation by electric fields, we assume that the particle has a per-

manent electric dipole m fixed to the particle parallel or perpendicular to the particle axis.

If m is perpendicular to the axis, another structural parameter, φ, is needed, which is the

angle that m makes against a plane bisecting the two disks (see Fig. 1 (b)) .

We take three orthogonal unit vectors u1,u2 and u3 fixed to the particle. u3 is along the

particle axis, and u1 and u2 are the unit vectors in the plane bisecting the disk plane. If
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the dipole moment m is perpendicular to the particle axis, it is given by m = m(cosφu1 +

sinφu2). If the dipole moment is parallel to the particle axis, m is given by m = mu3.

We shall consider the motion of such a particle in a shear field and in an electric field.

We let ex, ey and ez be the orthogonal unit vectors in the laboratory frame. We consider

the shear flow in which the velocity at position r is given by (see Fig. 1 (c))

v0(r) = γ̇exey · r (1)

where γ̇ is the shear rate. We also consider the electric field which is rotating around ez

with angular frequency ω (see Fig. 1 (d)),

E(t) = E(cosωtex + sinωtey) (2)

Our objective here is to calculate the average of the particle velocity 〈V 〉 in such situations.

B. Brownian motion of particles of arbitrary shape

The dynamics of particles of arbitrary shape have been studied by many people7–11. Here

we summarize the equations we use in our present calculations12.

Consider a particle moving in a flow field the velocity of which far from the particle is

given by

v0(r) = V0 + Ω0 × r + E0 · r (3)

where V0, Ω0 and E0 are constants each representing the linear velocity, the angular velocity

and the strain rate tensor of the imposed flow, respectively. Suppose that the particle is

moving with velocity V and angular velocity Ω in such a velocity field. The hydrodynamic

frictional force Fd and torque Td exerted on the particle by the fluid is calculated by Stokesian

hydrodynamics and can be written as Fd

Td

 = −

 A B̃

B C

 ·
 V − V0

Ω−Ω0

+

 G̃

H̃

 : E0 (4)

where A,B, B̃, C, G̃ and H̃ are tensors called the resistance tensors7,8. They are functions

of the particle shape and particle orientation.

If the particle motion is induced by an external force F and an external torque T , V

and Ω are determined by the force balance condition

F + Fd = 0, T + Td = 0 (5)
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The external force and the torque are derived from the external potential U

F = −∂U
∂R

, T = −RU (6)

where R is the rotational differential operator defined by6

R =
∑
i

ui ×
∂

∂ui

. (7)

Equations (4) and (5) give the following equation for the particle velocity V

Ω

 =

 V0

Ω0

+

 a b̃

b c

 ·
 F

T

+

 g̃

h̃

 : E0 (8)

where the mobility tensors a, b, b̃, c, g̃ and h̃ are given by a b̃

b c

 =

 A B̃

B C

−1 (9)

and  g̃

h̃

 =

 A B̃

B C

−1 ·
 G̃

H̃

 . (10)

If the particle is subject to Brownian motion, the equation is modified as V

Ω

 =

 V0

Ω0

+

 a b̃

b c

 ·
 F

T

+

 g̃

h̃

 : E0 +

 V B

ΩB

 (11)

where V B and ΩB are stochastic vectors representing the thermal motion. Their averages

are zero 〈
V B(t)

〉
= 0,

〈
ΩB(t)

〉
= 0 (12)

and their time correlations are determined by the fluctuation dissipation relation:〈
V B(t)V B(t′)

〉
= 2kBTaδ(t− t′),

〈
ΩB(t)ΩB(t′)

〉
= 2kBTcδ(t− t′)

and
〈
ΩB(t)V B(t′)

〉
= 2kBTbδ(t− t′). (13)

It should be noted that in rewriting the deterministic equation (8) to the Langevin equa-

tion (11), we have to add ”divergence terms” such as kBTR · b̃ and kBTR · c in order to

ensure the equation is consistent with the Boltzmann distribution at equilibrium. However,

such terms become zero in the present case. One can show for a general symmetric tensor
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s which is a function of u1,u2, and u3 that R · s is zero. The tensor c is symmetric from

the reciprocal relation, and the tensor b can be made symmetric if we choose the center of

mobility8 at the center of the particle.

The mobility tensors a, b, etc. depend on the orientation of the particle and vary with

time. It is convenient to express them using the particle frame since their components in

the particle frame are constant independent of time. For example, the tensors b and c are

written as

b(t) =
∑

ij=1,2,3

bijui(t)uj(t), c(t) =
∑

ij=1,2,3

cijui(t)uj(t) (14)

where bij and cij are constants which depend on the shape of the particle, but are independent

of time.

In the following calculation, we take u1, u2 and u3 along the principal axes of the tensor

c. Then

cij = ciδij (15)

where ci (i = 1, 2, 3) are the principal values of the tensor c.

If the particle is moving in a shear flow described by eq. (1) without any external forces,

the migration velocity is given by

V = g̃ : E0 + V B (16)

where E0 = γ̇(exey + eyex)/2.

If the particle is moving in a rotating electric field described by eq.(2), the migration

velocity is given by

V = b · T + V B (17)

where the torque T is given by T = m×E.

In both situations, we shall calculate the average of the z component of the migration

velocity

〈Vz〉 = 〈(g̃ : E0)z〉 , 〈Vz〉 = 〈(b · T )z〉 . (18)

III. MOBILITY TENSOR OF PROPELLER-LIKE PARTICLES

We now calculate the mobility tensor of the propeller-like particle shown in Fig.1(a). We

use the superposition approximation8 that the resistance tensor of the propeller-like particle
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is a sum of the the contribution of two disks. The resistance tensors of a disk of radius a

are given by

A
(0)
ij =

16

3
ηa(ninj + 2δij), B

(0)
ij = 0, C

(0)
ij =

32

3
ηa3δij

G̃
(0)
ijk = 0 H̃

(0)
ijk = −16

3
ηa3 (eiklnlnj + ejklninl) (19)

where η, eikl and n are the fluid viscosity, the Levi-Civita’s symbol and the unit vector

normal to the disk respectively.

When the propeller-like particle moves with translational velocity V and rotates at angu-

lar velocity Ω around the center of the particle (i.e., the midpoint of the connecting rod), the

disk 1 and 2 of the propeller move with velocity V −hΩ×u3 and V +hΩ×u3 respectively,

and rotate with angular velocity Ω. The resistance tensors of the propeller-like particle are

obtained by the summation of each contribution.

A = A(1) + A(2), B = B(1) + B(2), ... (20)

The explicit form of the resistance tensors A(p) and B(p) (p = 1, 2) are given as

A
(p)
ij =

16

3
ηa(n

(p)
i n

(p)
j + 2δij), B

(p)
ij = (−1)p

16

3
ηaheiklu3k(n

(p)
l n

(p)
j + 2δlj), (21)

where n(p) is the unit vector normal to the disk p. Using the twist angle θ between the disks,

n(1) and n(2) are written as

n(1) = sin(θ/2)u1 + cos(θ/2)u2, n(2) = − sin(θ/2)u1 + cos(θ/2)u2 (22)

Other resistance tensors are calculated in the same way, and are given by

C
(p)
ij =

16

3
ηa
{

2a2δij + h2eiklejmnu3ku3n(n
(p)
l n(p)

m + 2δlm)
}
,

G̃
(p)
ijk = (−1)p

8

3
ηah

{
u3k(n

(p)
j n

(p)
i + 2δji) + u3j(n

(p)
k n

(p)
i + 2δik)

}
,

H̃
(p)
ijk =

16

3
ηa3(eikln

(p)
j n

(p)
l + eijln

(p)
k n

(p)
l )

+
8

3
ηah2

{
(sin2(θ/2) + 2)(u2iu3ju1k + u2iu1ju3k)− (cos2(θ/2) + 2)(u1iu3ju2k + u1iu2ju3k)

−(−1)p sin(θ/2) cos(θ/2)(u2iu3ju2k − u1iu3ju1k + u2iu2ju3k − u1iu1ju3k)} (23)

The mobility tensors are then obtained by eq. (10). The final results of that calculation
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is:

a =
3

64ηa

{
2a2 + h2(cos2(θ/2) + 2)

3h2 + a2(sin2(θ/2) + 2)
u1u1 +

2a2 + h2(sin2(θ/2) + 2)

3h2 + a2(cos2(θ/2) + 2)
u2u2 + u3u3

}
, (24)

b =
3

64ηa

{
−1

2

h sin θ

3h2 + a2(sin2(θ/2) + 2)
u1u1 +

1

2

h sin θ

3h2 + a2(cos2(θ/2) + 2)
u2u2

}
, (25)

c =
3

64ηa

{
2 + sin2(θ/2)

3h2 + a2(sin2(θ/2) + 2)
u1u1 +

2 + cos2(θ/2)

3h2 + a2(cos2(θ/2) + 2)
u2u2 +

1

a2
u3u3

}
,(26)

g̃ = −a
2h sin θ

4

{
sin2(θ/2)

3h2 + a2(sin2(θ/2) + 2)
(u1u2u3 + u1u3u2)

+
cos2(θ/2)

3h2 + a2(cos2(θ/2) + 2)
(u2u1u3 + u2u3u1)

}
, (27)

h̃ = −1

2

3h2 + a2 cos2(θ/2)(sin2(θ/2) + 2)

3h2 + a2(sin2(θ/2) + 2)
(u1u2u3 + u1u3u2)

+
1

2

3h2 + a2 sin2(θ/2)(cos2(θ/2) + 2)

3h2 + a2(cos2(θ/2) + 2)
(u2u1u3 + u2u3u1)

+
1

2
cos θ(u3u1u2 + u3u2u1) (28)

A. Spin averaged mobility tensor

Analysis of the rotational Brownian motion of a rigid particle of arbitrary shape becomes

complex since one has to deal with the motion of three orthogonal vectors u1,u2 and u3.

For particles with large aspect ratios, spin average approximation has been introduced to

simplify such calculations3. The approximation is used in migration of the particle in weak

shear flow shown in Sec. V. In this approximation, the mobility tensor, a, is replaced by the

average 〈a〉spin where the average 〈...〉spin stands for the average over the rotation around

u3. Furthermore, in calculating the average 〈...〉spin, it is assumed that the distribution of

u1 and u2 are completely random around u3. With such an assumption, it is easy to show

〈u1u1〉spin = 〈u2u2〉spin =
1

2
(I − u3u3). (29)

This gives, for example,

〈a〉spin =
3

64ηa

{
1

3
(cos2(θ/2) + 2) 〈u1u1〉spin +

1

3
(sin2(θ/2) + 2) 〈u2u2〉spin + u3u3

}
=

3

64ηa

1

6
(5I + u3u3) (30)
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where terms of higher order in (a/h) are ignored. Similar calculations can be done for other

tensors. The detailed calculations are given in Appendix A, and the final results are

〈a〉spin =
3

64ηa

1

6
(5I + u3u3) (31)

〈b〉spin = − 1

1536ηha
sin 2θ

(a
h

)2
(I − u3u3), (32)

〈c〉spin =
3

64ηa

[
5

6h2
(I − u3u3) +

1

a2
u3u3

]
(33)

〈g̃〉spin,ijk = −a
2 sin 2θ

48h
(eilju3lu3k + eilku3lu3j) (34)

and 〈
h̃
〉
spin,ijk

= eilju3lu3k + eilku3lu3j. (35)

IV. SIMULATION METHOD

To simulate the Brownian motion of the particle, we first calculated the mobility tensor

components in the particle frame. The matrix in eq. (9) is Cholesky decomposed only once

to include the Brownian displacement13. We then conducted a simulation of the rotational

Brownian motion using eqs. (11) and (14). We used quaternions to describe the rotation14.

In our simulation, we included the random angular velocity ΩB, but did not include the

random velocity V B, since V B does not affect the average value 〈Vz〉, and inclusion of the

term only increases the statistical error.

The set of differential equations is numerically solved by 4th order Runge-Kutta method.

The time difference between time steps is dt = 0.001/γ̇ in the shear flow or dt = 0.001/ω in

the rotating electric field.

We conducted Brownian motion simulations for particles whose length h/a = 3. The

particles are initially in random orientations, and calculated the average migration velocity

〈Vz〉 with 1000 particles. Our results are independent of the initial orientation when the

simulation time and number of the particles are appropriately large. The results will be

discussed in subsequent sections, where the standard errors in each data are about the same

size of each symbol.
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V. MIGRATION OF PROPELLER-LIKE PARTICLES IN SHEAR FLOW

A. Results of simulation

Figures 2 and 3 show how the migration velocity 〈Vz〉 of a propeller-like particle in a shear

flow changes with the shear rate γ̇. In Fig. 2, 〈Vz〉 /aγ̇ is plotted against the Péclet number

Pe = γ̇/Dr, where Dr is the rotational diffusion constant associated with the rotation of the

particle axis. Dr is given by Dr = kBT (c1 + c2)/2, where c1 and c2 are the first two smallest

eigenvalues of the tensor c.

As seen in Fig 2, the average migration velocity 〈Vz〉 is zero if θ is equal to 0 or ±π/2.

This is natural, since the particle is not chiral for these angles. If θ is different from these

values, 〈Vz〉 becomes non-zero. It is seen that the migration velocity of particles having −θ

is the opposite of that of particles having θ. These results are consistent with the mirror

symmetry of the equation of motion in fluids.

We now discuss in more detail how the migration velocity 〈Vz〉 depends on the shear rate

γ̇, and the twist angle θ.

B. Shear rate dependence

Figure 3 shows 〈Vz〉 /aDr against Péclet number γ̇/Dr in a double logarithmic plot. It is

seen that 〈Vz〉 increases with an increase in γ̇, and that the slope decreases with an increase

in γ̇. This result can be understood as follows.

For small Péclet numbers, it has been predicted that 〈Vz〉 increases with the power law

〈Vz〉 ∝ γ̇3 . This is because (a) the migration velocity 〈Vz〉 must be an odd function of γ̇,

and (b) the linear term is zero since the linear coupling between the vectorial quantity 〈V 〉

and the tensorial quantity E0 is not allowed (Curie’s law)2,3. This prediction is consistent

with Fig 3, where the slope of 3 is shown by the first triangle.

On the other hand, for large Péclet numbers, it is seen that 〈Vz〉 increases linearly with

γ̇ (This is also seen in Fig. 2, where the plot 〈Vz〉 /aγ̇ approaches a constant value for large

Péclet numbers). This is reasonable since for large Péclet numbers, Brownian motion is

negligible and dimensional analysis indicates that 〈Vz〉 must be proportional to γ̇.

Theoretical calculations can be done for 〈Vz〉 if we use the spin averaged mobility tensor.
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By use of eqs.(A6), (A7) and (18), the migration velocity 〈Vz〉 is written as

〈Vz〉 = (〈g̃〉spin : E0)z

=
γ̇gspin

2

〈
u23x − u23y

〉
(36)

where gspin = a2 sin 2θ/(24h). For small Péclet numbers, the average
〈
u23x − u23y

〉
is pro-

portional to (γ̇/Dr)
2 . For large Péclet numbers

〈
u23x − u23y

〉
approaches a finite constant

value. This gives the shear rate dependence discussed above. The dashed line in Fig.2 is

calculated by using the results for
〈
u23x − u23y

〉
for a uniaxial particle15. Good agreement is

seen between such calculations and the simulation if γ̇/Dr is less than approx. 10.

Deviation between the calculated values and the simulation is seen for larger Péclet num-

bers. Examination of the results indicates that it is because the spin-average approximation

becomes inaccurate at large Péclet numbers. Fig.4 shows the orientational order parameters.

The spin average approximation assumes 〈u1u1〉 = 〈u2u2〉, but such equality does not hold

for large Péclet number as seen in Fig.4.

Despite the failure in the quantitative prediction at large Péclet numbers, the spin average

approximation predicts correctly the overall behavior of the shear-rate dependence of the

migration velocity. This is also seen in the structural dependence of the migration velocity

which will be discussed in the next subsection.

C. Structure dependence

We now discuss how the migration velocity depends on the structure of the particle. Fig.5

shows the plot of 〈Vz〉 /aγ̇ against the twist angle θ at various Péclet numbers. It is seen

that the simulation result is well fitted by the curve const× sin 2θ for all Péclet numbers.

The functional form of sin 2θ is what one might expect. The migration velocity must

vanish when θ is equal to 0 and π/2 (as was discussed in section IIIA), and sin 2θ is the

simplest periodic function satisfying this condition. The sin 2θ dependence can be derived

theoretically if the spin average approximation [eq.(33)] is used.

To summarize, the migration velocity of a propeller in shear flow is given by the following

equation

〈Vz〉 ∼


1

a2
(aγ̇)3

D2
r

sin 2θ, for
γ̇

Dr

� 1

aγ̇ sin 2θ, for
γ̇

Dr

� 1
. (37)
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VI. MIGRATION OF PROPELLER-LIKE PARTICLES IN A ROTATING

ELECTRIC FIELD

A. Mobility of propeller-like particles in weak electric fields

Using the same method as in the previous section, we have conducted simulations for

propeller-like particles having a permanent dipole moment placed in a rotating electric field.

Before presenting the results , we first show the theoretical results which are valid for weak

electric fields.

In weak electric fields, the time averaged migration velocity is proportional to E2, and

can be written as6

〈Vz〉 = M(ω)E2 (38)

where the coefficient M(ω) is expressed by the mobility tensor b representing the translation-

rotation coupling:

M(ω) =
3∑

i,j=1

(biim
2
j − bijmimj)

1

6kBT

ωτj
1 + (ωτj)2

(39)

and τi (i = 1, 2, 3) is the dielectric relaxation time given by

τi =
1

kBT (
∑

j cj − ci)
. (40)

For the present propeller-like particle, the tensors bij and ci are calculated by eqs. (25)

and (26), and eqs (39) and (40) give the following expression for the mobility M(ω). (Here

we only gives an expression in the limit of h� a).

(A) In the case that the dipole is perpendicular to the main axis, i.e., m = m(cosφu1 +

sinφu2)

M(ω) =
1

6ahηkBT

m2 sin θ cos 2φ

128

ωτ

1 + (ωτ)2
(41)

where

τ =
64ηa3

3kBT
(42)

(B) In the case that the dipole is parallel to the main axis, i.e., m = mu3

M(ω) = − 1

6ahηkBT

m2 sin 2θ

768

(a
h

)2 ωτ

1 + (ωτ)2
(43)
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where

τ =
64ηah2

5kBT
(44)

In the following section, we shall discuss the results of the simulations in comparison with

these results. The results for weak electric fields are not shown here since such a comparison

was reported in our previous paper6. Here we shall mainly focus on the results of strong

electric fields.

B. Dipole moment perpendicular to axis of the propeller-like particle

Figure 6 shows the migration velocity of a particle which has a dipole moment parallel

to u1, plotted against the field strength E (normalized by kBT/m) for various twist angles

θ. The frequency ω was chosen as 1/τ . The effect of the frequency was discussed in the

previous paper6, according to which the migration velocity becomes largest at the frequency

ω = 1/τ .

It is seen that the curves in Fig. 6 have mirror symmetry with respect to the horizontal

axis: the migration velocity of a particle having angle −θ is the opposite of that of a particle

having angle θ.

The dashed lines in Fig. 6 indicate the theoretical curves obtained for weak fields. For

weak fields, the migration velocity increases with the increase of field strength in proportion

to E2, which is consistent with our simulation. The result of the simulation deviates signifi-

cantly from the dashed line for a strong electric field. This is because the orientation of the

dipole moment is saturated in a strong electric field. In the strong field limit, the migration

velocity is determined by the angular frequency of the field and is independent of the field

strength. This is seen in the result of the simulation (Fig. 6).

Figures 7 and 8 show how the migration velocity depends on the structure of the particle.

Figure 7 shows the dependence on the twist angle θ. Unlike the shear flow, the migration

velocity does not vanish at θ = ±π/2. This is because, due to the presence of the dipole

moment, the particle remains chiral even at the angle θ = ±π/2. The solid lines in Fig. 7

denote the curves of sin θ.

If the field is weak, the migration velocity should be calculated analytically. Equation

(41) indicates that the migration velocity depends on θ and φ as 〈Vz〉 ∝ sin θ cos 2φ. Figure

7 indicates this angle dependence holds even for a strong field. The same is true for the
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φ dependence. Figure 8 indicates that the weak-field result 〈Vz〉 ∝ cos 2φ holds even for a

strong field. This is because φ is related to the particle structure.

C. Dipole moment parallel to axis of the propeller-like particle

Figure 9 shows the migration velocity of a particle which has a dipole moment parallel

to the particle axis. Unlike the particle having a perpendicular dipole moment, this particle

becomes non-chiral when θ = ±π/2. Therefore the migration velocity vanishes at these

angles.

Figure 10 shows the twist angle dependence of the migration velocity 〈Vz〉. It is seen that

〈Vz〉 depends on the twist angle θ in the same way as in the shear flow, 〈Vz〉 ∝ sin 2θ. This

angle dependence is the same as that predicted by the theory for weak field (eq.(43)).

VII. DISCUSSION

For a propeller-like particle, the particle is not chiral for θ = 0, and the migration velocity

is zero in both cases of shear and electric fields. The migration velocity becomes non-zero

as θ deviates from zero, but the θ dependence is different for different types of the fields,

and different types of particles.

In the shear flow, the migration velocity is proportional to sin 2θ. In the rotating electric

field, on the other hand, the migration velocity is proportional to sin θ cos 2φ if the dipole

is perpendicular to the particle axis, and is proportional to sin 2θ if the dipole is parallel to

the particle axis. The reason for this is shown graphically in Fig. 11.

If the particle does not have a dipole moment (or if the dipole moment is parallel to the

axis), the two particles a-1 and a-3 in Fig. 11 are identical, and the particles a-2 and a-4 are

also identical. Therefore the migration velocity of a particle with twist angle θ is equal to

that with twist angle θ + π, i.e., the migration velocity has a periodicity π as a function of

θ. On the other hand, if the particle has a dipole moment perpendicular to the axis (with

φ = 0), the four particles b-1, b-2, b-3 and b-4 are all different, and the periodicity of the

migration velocity is now 2π.

Whether a particle is chiral or not depends not only on the geometrical structure of the

particle but also on other physical characteristics (such as the dipole moment) of the particle.
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This means that ”chirality” depends on the experimental method by which we distinguish

particles. For example, the propeller-like particle having twist angle π/2 is not regarded as

chiral from the structural view point. Indeed they cannot be separated by hydrodynamic

methods which act on the geometrical shape only. On the other hand, if such particles have

dipole moments perpendicular to the particle axis, they become chiral and the particles and

there mirror-image particles behave differently in a rotating electric field. As was discussed

by Harris et al1, there is no unique way of defining the chiral parameters. A practical way

of defining the chiral parameters is to use the migration velocity associated with a certain

separation method.

Finally, we provide an estimate of the migration velocity. We consider a propeller particle

of size a = h/3 ∼ 1nm. In a shear flow of shear rate γ̇ ∼ 103 1/s ,where a radius of concen-

tric cylinder is 10cm with gap distance 1mm and rotating speed 100rpm are assumed, the

migration velocity is estimated to be 〈Vz〉 ∼ 10−25m/s (viscosity η ∼ 1mPa · s temperature

kBT ∼ 4.12× 10−21J), which is too small for separation. On the other hand, using similar

parameters in the reference4 , under a rotating electric field of strength E ∼ 106V/m and

angular frequency ω ∼ 108 1/s, 〈Vz〉 ∼ 10−8m/s for the perpendicular dipole moment and

〈Vz〉 ∼ 10−10m/s for the parallel dipole moment (the magnitude of the dipole moment is

assumed to be m ∼ 10−29C ·m). Therefore, separation by rotating electric field is feasible.

If the particle is large, the separation becomes possible by shear flow: if a ∼ 1µm, the

separation speed is 〈Vz〉 ∼ 10−8m/s,∼ 10−3m/day.

VIII. SUMMARY

We have theoretically studied two methods of separating one type of propeller-like particle

from their mirror-image particles. We have calculated the migration velocity in a shear flow

and in a rotating electric field, and shown how they depend on the field strength and also

on particle structure. We have explicitly demonstrated that a hydrodynamically non-chiral

particle can be chiral if it has a dipole moment. We have also demonstrated that the spin

average approximation works well: the characteristic aspects of such structure dependence

are in accordance with the results obtained using this approximation.
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Appendix A: Average tensor around u3

If the unit vectors u1 and u2 are randomly distributed around u3, one can get the

following equations, where i stands for 1 or 2.

〈ui〉spin = 0, 〈uiui〉spin =
1

2
(I − u3u3) and 〈uiuiui〉spin = 0. (A1)

Using the relation u1 = u2 × u3 = −u3 × u2, we have

〈u1u2u3〉spin = 〈u1u2〉spin u3 = −u3 × 〈u2u2〉spin u3 = −u3 ×
1

2
(I − u3u3)u3

= −1

2
u3 × Iu3 (A2)

Using these equations for eqs. (24)-(28), we have

〈a〉spin =
3

64ηa

[
1

2

{
2a2 + h2(cos2(θ/2) + 2)

3h2 + a2(sin2(θ/2) + 2)
+

2a2 + h2(sin2(θ/2) + 2)

3h2 + a2(cos2(θ/2) + 2)

}
(I − u3u3) + u3u3

]
,

(A3)

〈b〉spin =
3

64ηa

h sin θ

4

{
−1

3h2 + a2(sin2(θ/2) + 2)
+

1

3h2 + a2(cos2(θ/2) + 2)

}
(I − u3u3),

(A4)

〈c〉spin =
3

64ηa

[
1

2

{
2 + sin2(θ/2)

3h2 + a2(sin2(θ/2) + 2)
+

2 + cos2(θ/2)

3h2 + a2(cos2(θ/2) + 2)

}
(I − u3u3) +

1

a2
u3u3

]
,

(A5)

〈g̃〉spin,ijk = gspin(eilju3lu3k + eilku3lu3j) (A6)

where

gspin = −a
2h sin θ

8

(
cos2(θ/2)

3h2 + a2(2 + sin2(θ/2))
− sin2(θ/2)

3h2 + a2(2 + cos2(θ/2))

)
(A7)

and 〈
h̃
〉
spin,ijk

= hspin(eilju3lu3k + eilku3lu3j) (A8)

where

hspin =
1

2

{
3h2 + a2 sin2 θ(cos2(θ/2) + 2)

3h2 + a2(cos2(θ/2) + 2)
+

3h2 + a2 cos2 θ(sin2(θ/2) + 2)

3h2 + a2(sin2(θ/2) + 2)

}
(A9)

For a/h � 1, we can expand the right hand side of these equations with respect to a/h.

Retaining the leading order terms in a/h, we have eqs.(31)-(35).
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(a) (b)

(c) (d)

FIG. 1. (a) The propeller-like particle considered in this paper. Two disks of radius a are connected

by a thin rod to give a disk-to-disk separation of 2h. (b) The particle viewed from u3 axis. θ is the

angle between the two disks, and φ is the angle between m and u1 . (c) The shear flow considered

in this paper. (d) The rotating electric field considered in this paper.
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FIG. 2. Migration velocity 〈Vz〉 /aγ̇ of a propeller particle in simple shear flow plotted as a function

of the Péclet number γ̇/Dr . Symbols show the results of simulation. The dashed lines show Eq.

(36).
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FIG. 3. Migration velocity 〈Vz〉 /aDr (normalized by aDr) of a propeller particle in simple shear

flow plotted as a function of the Péclet number γ̇/Dr.
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FIG. 4. Orientations
〈
u21x − u22x

〉
,
〈
u22y − u21y

〉
and

〈
u23x
〉
− 1/3 of a propeller-like particle with

θ = π/4 are shown as a function of the Péclet number γ̇/Dr in simple shear flow.
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FIG. 5. Migration velocity 〈Vz〉 /aγ̇ of a propeller particle in simple shear flow plotted as a function

of the angle θ. Symbols show the results of simulation. Lines show the curve 〈Vz〉 /aγ̇ = α sin 2θ

where α is a fitting parameter.
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FIG. 6. Migration velocity 〈Vz〉 /ωa of a propeller-like particle having dipole moment perpendicular

to the axis, placed in rotating electric field, plotted as a function of mE/kBT . Symbols show the

results of simulation.
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FIG. 7. Migration velocity 〈Vz〉 /aω of a propeller-like particle having dipole moment perpendicular

to the axis plotted as a function of the angle θ. Symbols show the results of simulation. Lines

show the curve 〈Vz〉 /ωa = α sin θ where α is a fitting parameter.
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FIG. 8. Migration velocity 〈Vz〉 /ωa of a propeller-like particle having dipole moment perpendicular

to the axis plotted as a function of the angle φ. Symbols show the results of simulation. Lines

show the curve 〈Vz〉 /ωa = α cos 2φ where α is a fitting parameter.
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FIG. 9. Migration velocity 〈Vz〉 /aω of a propeller-like particle having dipole moment parallel to

the axis plotted as a function of mE/kBT . Symbols show the results of simulation.
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FIG. 10. Migration velocity 〈Vz〉 /aω of a propeller-like particle having dipole moment parallel to

the axis plotted as a function of the angle θ in a rotating electric field. Symbols show the results

of simulation. Lines show the curves 〈Vz〉 /ωa = α sin 2θ where α is a fitting parameter.
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a-1 a-2 a-3 a-4

b-1 b-2 b-3 b-4

FIG. 11. Top views of the propeller-like particles for various twist angles. The reds and blues show

the disk 1 and disk 2 respectively. The black arrows show the dipole moments. a-1 - a-4 show

the particle without the dipole moment. a-1 and a-3, and a-2 and a-4, are completely identical

particles. b-1 to b-4 show the particle with the dipole moment. All particles from b-1 to b-4 are

different.
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