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Multi-component turbulence measurements in rough-wall boundary layers are presented and com-
pared to smooth-wall data over a large friction Reynolds number range (δ+). The rough-wall ex-
periments used the same continuous sand-paper sheet as in the study of Squire et al. (J. Fluid

Mech. vol. 795, 2016). To the authors’ knowledge, the present measurements are unique in that
they cover nearly an order of magnitude in Reynolds number (δ+ ≃ 2, 800− 17, 400) while spanning
the transitionally- to fully-rough regimes (equivalent sand-grain-roughness range, k+

s ≃ 37 − 98),
and in doing so also maintain very good spatial resolution. Distinct from previous studies, the
inner-normalized wall-normal velocity variances, w2, exhibit clear dependencies on both k+

s and δ+

well into the wake region of the boundary layer, and only for fully-rough flows does the outer por-
tion of the profile agree with that in a comparable δ+ smooth-wall flow. Consistent with the mean
dynamical constraints, the inner-normalized Reynolds shear stress profiles in the rough-wall flows
are qualitatively similar to their smooth-wall counterparts. Quantitatively, however, at matched
Reynolds numbers the peaks in the rough-wall Reynolds shear stress profiles are uniformly located
at greater inner-normalized wall-normal positions. The Reynolds stress correlation coefficient, Ruw,
is also greater in rough-wall flows at a matched Reynolds number. As in smooth-wall flows, Ruw

decreases with Reynolds number, but at different rates depending on the roughness condition. De-
spite the clear variations in the Ruw profiles with roughness, inertial layer u, w cospectra evidence
invariance with k+

s when normalized with the distance from the wall. Comparison of the normal-
ized contributions to the Reynolds stress from the second quadrant (Q2) and fourth quadrant (Q4)
exhibit noticeable differences between the smooth- and rough-wall flows. The overall time fraction
spent in each quadrant is, however, shown to be nearly fixed for all of the flow conditions investi-
gated. The data indicate that at fixed δ+ both Q2 and Q4 events exhibit a sensitivity to k+

s . The
present results are discussed relative to the combined influences of roughness and Reynolds number
on the scaling behaviours of boundary layers.

I. INTRODUCTION

Turbulent boundary layers over rough-walls are of considerable practical interest, since, for example, most appli-
cations involve surfaces that are, or become over time, dynamically rough. More generally, the study of rough-wall
turbulence holds potential to provide new insights regarding the possible effects of the wall boundary condition on
wall-turbulence structure. Inquiries into these effects are relevant to the dynamics underlying all turbulent wall-flows,
and especially in connection with modifying the mechanisms of wall-normal momentum and scalar transport.
The direct practical importance of high quality rough-wall turbulence measurements, and the broader issue of flow

sensitivities to the wall boundary condition, motivate the present study of turbulent stress behaviours in boundary
layer flows over smooth- and rough-walls over comparable Reynolds number ranges. The remainder of this Introduction
articulates the primary issues to be investigated. Throughout, variants of u, v and w are used to denote the velocity
components in the streamwise (x), spanwise (y) and wall-normal (z) directions, with upper case symbols denoting mean
quantities and an overbar indicating the application of the time average. Also, a superscript + denotes normalisation
by inner variables: lengths normalised by ν/Uτ and velocities normalised by Uτ , where ν is the kinematic viscosity,
and Uτ is the friction velocity.
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Surface roughness effects on the mean streamwise velocity profile have been extensively studied, and these effects are
generally well-accepted, e.g. [1]. Clauser [2] and Hama [3] (and many researchers since) showed that the streamwise
mean velocity profile over a rough-wall exhibits a region of log-linear dependence, as it does in smooth-wall flows.
This region is, however, shifted downward on the profile graph relative to the smooth-wall profile by an amount, ∆U+,
that is commonly called the roughness function. Physically, the shift indicated by the roughness function is due to
the increased drag of the rough surface. Thus, the mean velocity profile in the logarithmic region of a rough-wall flow
can be expressed as

U+ =
1

κ
log(z + ǫ)+ +A−∆U+, (1)

where κ and A are the smooth-wall log-law constants and ǫ, the zero-plane displacement, accounts for the roughness
itself displacing the entire flow away from the wall. In contrast to current understanding of roughness effects on the
mean flow, there is significant uncertainty regarding how rough surfaces affect turbulence quantities, modify transport
mechanisms, or influence the overall structure of the boundary layer. Accordingly, this study complements the recently
published investigation of Squire et al. [4], which documented the properties of the mean velocity, U , and streamwise

turbulent stress, u2, over a similar range of Reynolds numbers and roughness conditions.
The ‘k-type’ roughness is most associated with flows of practical interest [5]. These include homogeneously dis-

tributed roughness of the kind whose effects are studied herein. Within the k-type classification, one can further
organize flow behaviours within two regimes that are distinct from smooth-wall flows. These regimes depend on the
magnitude of ∆U+ [6]. At finite but sufficiently small ∆U+ (. 7), the net drag of the surface derives from a complex
mixture of both viscous and pressure effects acting directly on the roughness elements. The flow in this roughness
regime is termed transitionally rough. At larger ∆U+ fully rough flows are observed, whereby the pressure drag
associated with flow separation from the roughness elements dominates the contribution to the overall drag. The fully
rough condition is defined by a ∆U+ that is a log-linear function of k+, where k is a representation of the roughness
height. It is important, however, to note that the fully rough condition does not necessarily imply that the mean
dynamics above the roughness elements are devoid of a leading order viscous effect [4, 7, 8].
In rough-wall flow studies it is pragmatic, and thus common practice, to employ Nikuradse’s [9] equivalent sandgrain

roughness, ks. This practice forces all fully-rough flows to adhere to the log-linear fully-rough asymptote

∆U+ =
1

κ
log k+s +A−A′

FR. (2)

The constant A′

FR = 8.5 was empirically determined by Nikuradse [9] using a variety of sand grain roughness surfaces.
With this definition, k+s , like ∆U+, provides a representation of the rough-wall drag increment relative to the smooth-
wall, permitting comparisons between flows above geometrically different roughnesses.
A large number of rough-wall studies in the existing literature investigate the validity of Townsend’s wall similarity

hypothesis [10]. Here it is hypothesized that at sufficiently high Reynolds number there is an outer flow region where
statistical profiles are unaffected by viscosity, except through the boundary conditions which set the velocity scale, Uτ ,
and the boundary layer thickness length scale, δ [1]. Townsend’s hypothesis remains a subject of ongoing investigation,
with numerous studies suggesting its validity [e.g., 11–16], and a smaller but significant number indicating violations
of the hypothesis [e.g., 17–22]. Ramifications associated with the validity of Townsend’s hypothesis pertain to the
degree that roughness perturbations remain embedded within the turbulence structure, or more broadly, influence
the underlying dynamics. By itself, however, the hypothesis is somewhat ambiguous relative to addressing these
questions, since it speaks fundamentally to statistical measures, and not necessarily to the instantaneous motions that
contribute to these measures. These considerations motivate aspects of the present study to better understand under
what conditions and why Townsend’s hypothesis is apparently satisfied.
The predominant empirical test for wall-similarity is to inner-normalise a given velocity statistic, and then compare

smooth- and rough-wall profiles with (z + ǫ)/δ on the abscissa. Such comparisons are influenced by errors in Uτ and
z, both of which can be difficult to estimate in rough-wall flows. It is additionally important to keep in mind that
the wall similarity hypothesis is based on an asymptotic (high Reynolds number) approximation, and pertains to a
region beyond where wall perturbations directly affect the flow. Assessing wall similarity is thus further complicated
in experiments where δ+ is low, the roughness geometry generates motions of O(δ) size, or both. Jiménez [6] analyzed
data from a range of extant rough-wall studies, and from this suggested that for wall similarity to be operative, δ/k
must be larger than approximately 40. There are, however, studies that do not observe wall similarity, even though
they satisfy this approximate threshold, e.g. [23]. Jimenez [6] cites a need for measurements in which δ/k and k+ are
both large (low blockage, fully-rough flow), and where δ/k is large and k+ is small (low blockage, transitionally-rough
flow), to help clarify ongoing questions regarding the physics of rough-wall flows. In terms of how the roughness
induced motions assimilate within the turbulence, such considerations are consistent with recent findings indicating
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that the combined roughness and Reynolds number problem is of a richer complexity than can be adequately captured
within the transitionally-rough and fully-rough characterizations alone [4, 7, 8, 24].
The present investigation complements the recent studies by Squire et al. [4, 25, 26], which analyzed well-resolved

streamwise velocity measurements over an unprecedented range of k+s and δ+, and included u data acquired using
the multi-element hot-wire sensor of Morrill-Winter et al. [27]. In particular, we here extend the rough-wall study
of Squire et al. [4] by analyzing the wall-normal velocity and Reynolds shear stress measurements. This includes
comparisons with the smooth-wall measurements of Morrill-Winter et al. [27], also acquired with the same sensor and
over a comparable Reynolds number range. To the authors’ knowledge, the present measurements are unique in that
they cover nearly an order of magnitude in Reynolds number (δ+ ≃ 2, 800−17, 400) while spanning the transitionally-
to fully-rough regimes (equivalent sand-grain-roughness range, k+s ≃ 37 − 98), and in doing so also maintain very
good spatial resolution. Per the above discussion, the present aims include documenting and further clarifying how
the combined influences of roughness and Reynolds number conspire to produce the net momentum transport and
observed statistical features of the flow. Throughout the remainder of this paper, x, y and z denote the streamwise,
spanwise and wall-normal directions, respectively, with z = 0 located at the roughness crest.

II. EXPERIMENTAL DETAILS

The rough-wall measurements were acquired in the flow above P36 grit sandpaper in the High Reynolds Number
Boundary Layer Wind Tunnel (HRNBLWT), e.g. [28, 29]. These experiments are described in Squire et al. [4], and
thus only details specific to the present paper are summarised here. The sandpaper roughness elevation, h, is normally
distributed, with k = 6σ(h) = 0.902 mm and ks = 1.96 mm. Multi-wire hotwire sensor measurements were acquired
at three different streamwise locations (x ≈ 7 m, 15 m and 21.7 m), and at three freestream velocities (U∞ ≈ 7 m/s,
12 m/s and 17 m/s). The resulting nine experiments span the range of roughness parameters shown in Fig. 1, and
over the friction Reynolds number range 2800 < δ+ < 17400. The smooth-wall measurements were obtained in the
HRNBLWT and in the Flow Physics Facility (FPF) at the University of New Hampshire, and span the Reynolds
number range 2600 < δ+ < 12500 [27]. Table I presents properties of the rough-wall boundary layers studied herein.
It is noted that here δ is defined as the wall-normal location at which the mean streamwise velocity is 99% of the
freestream velocity, U∞.
The multi-element hot-wire probe employed is similar to that used by Foss and Haw [30], but is considerably smaller.

The probe, which consists of a vertical ×-array and two wall-parallel single wires (all wires have equal length l), is
contained within a volume of ∆x×∆y×∆z = 0.4 mm × 0.4 mm × 0.5 mm. None of these dimensions exceed 25 wall
units across all smooth- and rough-wall measurements (see table I). As described in Morrill-Winter et al. [27], under
the current processing the sensor yields measurements of ũ, w, uw and ω̃y. Here ·̃ represents a total quantity (mean
plus fluctuation), and ωy is the spanwise vorticity. (Note that in Morrill-Winter et al. [27] the sensor is referred to
as the ωz probe because they employed y as the wall-normal coordinate.) One novel aspect of the sensor is that the
parallel- and cross-wire- arrays are interwoven to symmetrically center the effective measurement point. A second is
its unique calibration and processing scheme that solves for w absent its mean value, while independently determining
ũ from the single wires [27]. This, for example, results in a greater level of consistency in the Reynolds stress profiles.
The friction velocity, Uτ , is determined for the rough-wall data using the approach described in Squire et al. [4].

This approach uses the large floating element drag balance that is located in the Melbourne Wind Tunnel between
x = 19.5 m and x = 22.5 m downstream of the beginning of the test section. Baars et al. [31] used this drag balance
to determine the mean wall-drag on the rough-wall at x = 21 m across a wide range of freestream velocities. For
rough-wall profiles obtained above the drag balance (i.e., profiles acquired at x = 21.7 m) the drag balance readings
can be used to determine Uτ directly with a maximum error at U∞ ≈ 5 m/s of 2.5% [4, 31]. The error is less when
U∞ is larger. For the profiles not acquired above the drag balance, we employ a novel form of the modified Clauser
method. In this approach, the data taken above the drag balance are used to determine the characteristic relationship
between roughness function, ∆U+, and equivalent sandgrain roughness, k+s , and this relationship is assumed to be
universal for a particular roughness. In this manner, the data obtained above the drag balance yield ∆U+ = f(Uτ , ν),
thus eliminating one fitted parameter from the conventional modified Clauser approach. Fig. 1(b) shows the roughness
function relationship, determined directly using the drag balance measurements of Baars et al. [31]. The black line
shows a smoothing spline fit to a cubic interpolation of the data taken above the drag balance. We determine Uτ

at x 6≈ 21 m by forcing conformity to the fitted curve, and by minimizing the least-squares error between the inner-
normalised streamwise velocity profile and the rough-wall logarithmic law (equation 1). Here we use κ = 0.39 and
A = 4.3 given by Marusic et al. [32], with justification provided in Squire et al. [4].
The approach described above requires a knowledge of both the zero-plane displacement, ǫ, and the region over

which the logarithmic law should apply (commonly called the inertial sublayer). We assume ǫ = k/2, but note that
any sensible choice of ǫ (0 < ǫ < k) does not appreciably change the results presented herein [4]. To estimate the
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TABLE I. Properties of the rough-wall boundary layers studied herein, as acquired in the HRNBLWT at the University of
Melbourne. Also included are the sensor wire length, l+, and wire spacing, ∆y+. The boundary layer thickness, δ, is defined as
the wall-normal location at which the mean streamwise velocity is 99% of the freestream velocity, U∞. Note that transitionally
rough flows are characterized by k+

s . 70, while fully rough flows are characterized by k+
s & 70.

symbol δ+ k+
s z+

I
U∞ ∆U+ uτ ν/uτ l+ ∆y+

(m/s) (m/s) (10−6 m) ∆z+

2890 41 365 7.3 4.5 0.314 48.2 10.4 8.5

5190 38 531 7.2 4.2 0.290 51.5 9.7 8.0

5250 68 535 12.1 6.3 0.529 28.5 17.5 14.4

6770 37 629 7.3 4.2 0.287 52.4 9.5 7.8

7670 97 682 17.1 7.4 0.754 20.1 24.9 20.4

8980 66 754 12.2 6.1 0.503 29.6 16.9 13.9

12300 63 922 12.2 6.0 0.488 31.1 16.1 13.2

13140 93 962 17.4 7.2 0.718 21.1 23.7 19.4

17190 89 1143 17.3 7.1 0.698 21.9 22.9 18.8
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FIG. 1. Visual representation of tabulated parameters. (a) inner-normalized roughness height versus boundary-layer-roughness-
height scale separation. (b) roughness function as a function of inner normalized roughness height. Black circles are the profiles
coupled with the drag balance; the black line is a smoothing spline fit to a cubic interpolation of the black circles.

wall-normal location of the start of the logarithmic region, we follow the work of Mehdi et al. [7]. Guided by the mean
momentum balance, they showed convincing evidence that the location of the inertial layer for rough walls does not
scale on k or δ as classically assumed, but instead scales with the location of the peak in the Reynolds shear stress.
These authors developed empirical expressions for this location, zm, that depend on the three length scales present in
rough-wall flows (ν/Uτ , k and δ), and suggest that for zm/ks > O(1), which encompasses all data presented herein,
the onset of the inertial sublayer, zI , can be approximated as:

zI = CI × zm

= CI × 0.89(ν/Uτ)
0.36k0sδ

0.64
(3)

Note that here zI physically denotes the smallest wall-normal location at which, to leading order, the mean dynamics
are wholly inertial. Equation 3 is, however, appropriate only for rough wall flows with zm/ks > O(1). The flow above
the present rough surface has been shown to exhibit a logarithmic region, in both the mean and streamwise velocity
variance, that spans zI < z + ǫ < 0.19δ, where zI is determined from equation 3 with CI = 2.5 [4]. Hence, these
bounds are also employed in the present study. For the smooth-wall data, Uτ is determined using the composite fit of
Chauhan et al. [33] across an inertial sublayer spanning zI = 3

√

δν/Uτ < z + ǫ < 0.19δ, with κ = 0.39 and A = 4.3
[4, 32].
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FIG. 2. Mean velocity profiles normalized by inner variable. The solid black line is U+ = 0.39−1 log(z+ + ǫ+) + 4.3 ([32]).
Symbols are given in table I. The black comparison profile is from the DNS of Sillero et al. [34] at δ+ ≃ 2000, and is the
δ+ ≃ 7900 smooth wall data presented in Morrill-Winter et al. [27]. The large black symbols show the onset of inertial dynamics,
zI , for each profile according to the formulation of Mehdi et al. [7]. Note that transitionally rough flows are characterized by
k+
s . 70, while fully rough flows are characterized by k+

s & 70.

III. RESULTS

Figure 2 presents inner-normalized mean velocity profiles over the rough walls. Taking into account that the onset
of the inertial domain here is demarcated by zI and not the classically assumed roughness crest, the profiles show
a convincing logarithmic dependence that is well described by κ = 0.39. The expected downward shifts, ∆U+, are
apparent. As clearly depicted in Fig. 1a, the parameter space of these experiments is given by three k+s values (at
ks/δ ≃ const.), and three ks/δ values (at k+s ≃ const.). Comparisons are made with smooth-wall boundary layers
from the DNS of Sillero et al. [34] at δ+ ≃ 2, 000, and from the Melbourne Wind Tunnel at δ+ ≃ 7, 900 [27]. The
profiles of ∆U+ ≃ 4.2 and ∆U+ ≃ 6.2 exhibit a greater near wall deviation from the log-law than the ∆U+ ≃ 7.2
case. Although no conclusion is drawn here, the consistency of the trend points to the process by which the near
wall dynamics change with increasing k+s through the transitionally-rough to fully-rough regime. More details on the
mean velocity profiles for this experimental campaign are given in Squire et al. [4].

A. Turbulent stresses

Statistical profiles associated with the fluctuations of velocity components are often presented under an inner-outer
normalization to deduce whether the results are in support of Townsend’s similarity hypothesis [e.g., 35]. The present

uw+, w2
+

and u2
+

profiles are plotted in Figs. 3, 4 and 5, respectively. Note that the u2
+

profiles were previously
discussed and analysed by Squire et al. [4], but are reproduced here for completeness. Figs. 3, 4 and 5 are not plotted
on a linear abscissa, as doing so tends to imply that the domain of similarity begins at a fixed (z + ǫ)/δ location.
Consistent with previous studies [4, 7, 8], the outer similarity argument is considered herein relative to a domain
starting near zI – a position that generally moves to smaller (z + ǫ)/δ with increasing δ+.
Although the rough-wall Reynolds shear stress profiles of Fig. 3a have shapes similar to those found in smooth-wall

flows, relative to inner-normalized wall position, they exhibit a less rapid near-wall increase. The rough-wall data do,
however, monotonically increase to peak at an intermediate wall location (as in smooth-wall flows), and beyond this
position they monotonically decrease to zero to satisfy the outer boundary condition. Note, that the peak in −uw+

occurs at the location, zm, where the Reynolds stress gradient crosses zero. This position can be thought of as a
surrogate for where the turbulent inertia transitions from a momentum source to sink [7, 36]. The peak magnitudes
of −uw+ are in agreement with −uw+ → 1 as δ+ → ∞, e.g., [37]. The viscous stress becomes negligible at a small
distance from the wall, and as δ+ increases, O(zm) ≫ O(ν/Uτ ). This coincides with the formation of a diminishing
curvature plateau in the profile over which −uw ≃ U2

τ . Squire et al. [4] show that the present data adhere to this
relationship to within ±2%, thus evidencing a high level of agreement between the present method of estimating the
mean wall shear stress, and the peak magnitude of the Reynolds stress.
Prevalent descriptions presume that in fully rough flows the maximum of −uw+ is located near the crest plane of

the roughness. This implies that the totality of the positive Reynolds stress gradient resides within the roughness
canopy, regardless of δ+. The total integral of ∂uw+/∂z+ is zero in both smooth- and rough-wall flows, and thus the
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FIG. 3. Inner-normalized Reynolds stress profile plotted with respect to inner (a), intermediate (b) outer normalized (c)
wall position above the rough-wall. The dashed line in (b) shows (z + ǫ)/zm = 1. The profiles in (c) are only plotted for
(z + ǫ)/δ > zI/δ. Recall zI = 2.5× zm. Symbols are given in table I. The black comparison profile is the DNS of Sillero et al.

[34] at δ+ ≃ 2000, and is the δ+ ≃ 7900 smooth wall data presented in Morrill-Winter et al. [27].
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FIG. 4. Inner-normalized wall-normal velocity variance plotted with respect to inner (a), intermediate (b) outer normalized (c)
wall position above the rough-wall. The dashed lines in (b) and (c) show (z+ ǫ)/zm = 1 and (z+ ǫ)/δ = 0.2, respectively. The
profiles in (c) are only plotted for (z + ǫ)/δ > zI/δ. Recall zI = 2.5× zm. Symbols are given in table I. The black comparison
profile is from the DNS of Sillero et al. [34] at δ+ ≃ 2000, and is the δ+ ≃ 7894 smooth wall data presented in Morrill-Winter
et al. [27].

positive contribution to the Reynolds stress gradient always balances the negative portion [7]. The consequences of
this are worth exploring in greater depth, especially since Squire et al. [4] provide clear evidence that the onset of the
log-region for both the mean and streamwise variance is closely approximated by equation 3 (recall zI = CI × zm,
where zm is the wall-normal location of the peak in the Reynolds shear stress). The precise peak location of −uw+

is challenging to determine with experimental data, and especially as δ+ increases. This is because the curvature of
the Reynolds stress profile, ∂2

(

−uw+
)

/∂z+2, diminishes with increasing δ+. Given this, zm was estimated using

Eq. 3, and Fig. 3b plots −uw+ versus (z + ǫ)/zm. It is apparent that the (z + ǫ)/zm coordinate approximately aligns
the maxima in −uw+. Admittedly, however, the noted limitations of experimental accuracy only allow a qualitative
assessment.

Figure 3c plots −uw+ for z + ǫ ≥ zI against outer normalized wall height. These data convincingly support
an invariant −uw+ profile on an inertial outer domain (of width that approaches δ as δ+ → ∞) that is specified
through consideration of the leading order balances in the mean momentum equation. As δ+ → ∞, this curve will
continue to extend towards zero while increasing in magnitude to unity. These behaviours are consistent with the
classical notion of outer layer similarity, but here the relevant domain is more precisely specified within the context of
properties exhibited by the mean dynamical equation. The net force developed by the Reynolds stress is ∂(−ρuw)/∂z.
Therefore, the merging of the Reynolds shear stress profiles observed beyond zI (Fig. 3c) indicates a loss of sensitivity
to roughness and Reynolds number. This finding is in line with the similarity that is observed in the mean velocity
profiles in defect form [4].
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FIG. 5. Inner-normalized streamwise velocity variance plotted with respect to inner (a), intermediate (b), outer normalized (c)
wall position above the rough-wall. The dashed lines in (b) and (c) show (z+ ǫ)/zm = 1 and (z+ ǫ)/δ = 0.2, respectively. The
profiles in (c) are only plotted for (z + ǫ)/δ > zI/δ. Recall zI = 2.5× zm. Symbols are given in table I. The black comparison
profile is from the DNS of Sillero et al. [34] at δ+ ≃ 2000, and is the δ+ ≃ 7894 smooth wall data presented in Morrill-Winter
et al. [27].

The wall-normal variance profiles of Fig. 4 exhibit more complicated dependencies on k+s and δ+ than the Reynolds
stress profiles, and share some similarities in trend with the streamwise velocity variance profiles reported in Squire
et al. [4], also see Fig. 9. For the parameter ranges considered, a clear k+s effect is observed in the outer portion of the
flow. Although the present experiments do not explicitly segregate roughness and friction Reynolds number effects,
it is evident that as the flow approaches the fully rough regime the agreement between the smooth- and rough-wall

profiles improves. Morrill-Winter et al. [27] found that for smooth-wall flows over 2000 . δ+ . 12, 500 the w2
+

profiles merge near (z + ǫ)+ = 80, and for greater (z + ǫ)+ follow a similar upward trajectory until (z + ǫ)/δ ≃ 0.2.
Here the profiles attain their peak magnitude, and for greater (z + ǫ)/δ subsequently decrease to satisfy the outer

boundary condition. (Note that hereafter w2
+

80 refers to w2
+

evaluated at (z + ǫ)+ = 80.) The rough-wall profiles
exhibit similar behaviours. For k+s . 80, however, these profiles exhibit a relative downward shift over the domain

(z+ǫ)+ ≥ 80. These data also suggest a near wall k+s influence on w2
+
, while the observed relative magnitude increase

with increasing (z + ǫ)+ is apparently preserved. That is, the rate of increase from (z + ǫ)+ ≃ 80 to (z + ǫ)/δ ≃ 0.2
remains essentially unchanged. Here we also note that the downward shift in magnitude is not thought to be a
normalization issue (i.e., not a Uτ issue), since the Reynolds stress profiles exhibit a high level of consistency, also see
[4].

Figure 4c plots w2
+
under outer-normalization by, once again, only including positions (z+ ǫ) ≥ zI . This represen-

tation reinforces the previous observation that the peaks of the w2
+

profiles align at (z + ǫ)/δ ≃ 0.2. Clearly there
is no outer layer similarity for the parameter ranges considered here. This observation, however, does not necessarily
disagree with the classical argument. Namely, outer layer similarity may require much higher Reynolds numbers

before the w2
+

profile begins to approximate its limiting value. For example, Kunkel and Marusic [38] present w2
+

data for a large range of δ+, including from the atmospheric surface layer. These authors developed a formulation,

guided by their data, that approximates the asymptotic behaviour of w2
+
. With the criteria used herein and by

Squire et al. [4] to detect evidence of outer layer similarity, their formulation predicts that similarity is satisfied in
smooth-wall flows (to within a small uncertainty) for δ+ > 105. Squire et al. [4] show that the k+s effect on outer layer

similarity for u2
+

is only a weak function of δ+. With this, it seems likely that for the present roughness there is a

minimum δ+(k+s ) threshold at which outer similarity in w2
+
is approximated.

To explore this further, Fig. 6 plots the maximum values in w2
+
versus friction Reynolds number. For reference, the

peak growth function of Kunkel and Marusic [38] is included along with all the smooth wall data of Morrill-Winter
et al. [27], and the highest δ+ data from the DNS of Sillero et al. [34]. The horizontal black dashed line is the
asymptotic limit given by Kunkel and Marusic [38] based on Townsend’s [10] attached eddy hypothesis. As is evident,
the fully-rough data in Fig. 6 trend with δ+ in a manner similar to the smooth wall case. For the transitionally rough
data the growth rate with increasing δ+ does, however, seem to be slightly larger. This behaviour is highlighted by the
logarithmic line fitted through the constant k+s data points (given as the black lines in Fig. 6). Here it is apparent that
the growth rate becomes a decreasing function of k+s . It is not possible with the present data to determine conclusively
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FIG. 6. The peak magnitude of w2
+
with increasing δ+. The rough wall symbols are tabulated in I. The open symbols are the

smooth-wall data of Morrill-Winter et al. [27] (refer to publication for boundary layer parameters): represent data acquired
in the Melbourne Wind Tunnel, where signify data taken in the FPF. The comparison point is from the Sillero et al. [34]
DNS at δ+ ≃ 2000. The gray line is the peak function from Kunkel and Marusic [38] and the horizontal black dashed line is the
asymptotic limit they gave of 1.78. The black lines represent the least square logarithmic fit for each of the k+

s groupings. These
fit lines should be simply considered a visual aid since we have no theoretical reason to suppose that a logarithmic function is
the appropriate form for the peak growth.
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FIG. 7. Inner-normalized Reynolds stress correlation coefficient profile plotted with respect to inner (a), intermediate (b) outer
normalized (c) wall position above the rough-wall. The profiles in (c) are only plotted for (z+ǫ)/δ > zI/δ. Recall zI = 2.5×zm.
Symbols are given in table I. The black comparison profile is from the DNS of Sillero et al. [34] at δ+ ≃ 2000, and is the
δ+ ≃ 7894 smooth wall data presented in Morrill-Winter et al. [27].

whether the dependency of w2
+

max on k+s is lost at sufficiently high δ+, though the results of Fig. 6 provide ostensible

evidence that this is indeed the case (certainly, such behaviour is observed for u2
+

in the outer region – see Squire
et al. [4]). This apparent behaviour is consistent with Townsend’s [10] wall-similarity and attached eddy hypotheses.

B. Unravelling roughness and Reynolds number effects

Reynolds shear stress implies the non-zero correlation of u and w. However, both the u2
+

profiles of Squire

et al. [4] and the present w2
+

profiles exhibit significant dependencies on k+s and δ+. The trends indicative of these
behaviours are captured in Fig. 4 above and Fig. 9 below. These trends are dramatic relative to the more subtle
variations exhibited by the uw+ profiles of Fig. 3. Collectively, these observations indicate that the wallward turbulent
momentum flux in these flows varies considerably relative to the intensities of u and w, and this is reflected in the

Reynolds stress correlation coefficient (Ruw = −uw/(
√

u2
√

w2)) profiles shown in Fig. 7. Qualitatively, these profiles
reveal the existence of a clear Reynolds number dependence, and that surface roughness modifies this dependence. Of
particular note is the (z+ ǫ)/zm normalization (Fig. 7), which shows that the onset of the inertial domain appears to
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FIG. 8. Reynolds stress correlation coefficient (a), streamwise velocity variance (b), and wall-normal velocity variance (c) at
the onset of the inertial domain plotted with respect to δ+. The rough wall symbols are tabulated in I. The open symbols are
all the smooth-wall data of Morrill-Winter et al. [27] (refer to publication for boundary layer parameters): represent data
acquired in the Melbourne Wind Tunnel, where signify data taken in the FPF. The comparison point is from the Sillero
et al. [34] DNS at δ+ ≃ 2000. The black lines represent the least square logarithmic fit for each of the k+

s groupings.

nominally coincide with a local minimum in the Ruw profile. (Recall here that zI = CIzm.) Accordingly, under inner
and outer normalization, zI respectively moves to increasing (z + ǫ)+ and decreasing (z + ǫ)/δ with increasing δ+.
A better understanding of the flow behaviours underlying the profiles of Fig. 3 is gained by clarifying the relative

effects of roughness and Reynolds number on the turbulence mechanism for wall-normal momentum transport. In-
vestigating the behaviours of Fig. 7 is a useful means of accomplishing this, since, in essence, Ruw quantifies how
efficiently the available turbulence energy contributions combine to affect the turbulence momentum flux. This is a
primary aim of the remaining analyses.

1. Roughness and the logarithmic decay of Ruw with δ+

Using both low Reynolds number wind tunnel data and measurements from the nearly smooth neutrally stratified
atmospheric surface layer, the analysis of Priyadarshana and Klewicki [39] revealed that Ruw decreases approximately
logarithmically with Reynolds number. The smooth-wall results of Fig. 8 place this conclusion on much firmer ground
by clearly demonstrating that the values of Ruw at zI , as well as those of u2 and w2, follow logarithmic variations with
δ+ (recall that zI is approximated differently for smooth- and rough-wall flows; comparisons between smooth- and
rough-wall flows at matched (z+ǫ)/δ are given in the following section). Additionally, the similarly plotted rough-wall
data reveal that the purely δ+ dependence apparent in the smooth-wall Ruw data is unambiguously modified by k+s
influences. The data of Fig. 8b indicate that the effect of decreasing k+s is to increasingly attenuate the underlying

growth in u2(zI) with δ+ such that all of the rough-wall cases exhibit a slower rate of growth than for the smooth-wall.

Conversely, the roughness effect on w2(zI) initially exhibits a steeper slope with increasing δ+ than in smooth-wall
flows, but with increasing k+s the log-linear line becomes approximately parallel to that observed for the smooth-wall
flow. From these observations, one is tempted to surmise that the dependence on δ+ diminishes once k+s crosses
into the fully-rough regime. Such a conclusion is, however, deemed premature. This is because k+s and δ+ are not
independently varied, and once in the fully rough regime the present data only cover a relatively small δ+ range.
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FIG. 9. Smooth-wall (open symbols) and rough-wall (filled,coloured symbols) streamwise velocity variance, wall-normal velocity
variance, and Reynolds shear stress comparisons at approximately matched Reynolds numbers (shown in the top of each figure).
The inset in each figure shows the k+

s and ∆U+ values of the rough-wall data in that figure. The figures are ordered from low
k+
s to high k+

s . Black dashed lines show the location corresponding to (z + ǫ)+ = 80. The large black symbols show the onset
of inertial dynamics, zI , for each profile according to the formulation of Mehdi et al. [7]. Note that transitionally rough flows
are characterized by k+

s . 70, while fully rough flows are characterized by k+
s & 70.

Note, that the log-linear fits describing the k+s effects are not theoretically motivated, and thus are included merely
to aid in viewing the data trends. As δ+ → ∞, the outer flow is anticipated (under outer similarity) to become k+s
invariant.

2. Matched Reynolds number comparisons

Extending the analysis of Squire et al. [4] for the streamwise variance, Fig. 9 compares smooth- and rough-wall

u2
+
, w2

+
and −uw+ profiles at four approximately matched δ+. The sub-plots of Fig. 9 are ordered from top left

to bottom right according to the magnitude of k+s . By examining flows at matched Reynolds number, k+s trends are
approximately isolated from those inherent to increasing δ+. It is recognized, however, that the physical interpretation
of these comparisons is complicated by the fact that δ+ is nominally the ratio of largest and smallest scales of motion
in the flow, and thus is indirectly influenced by ks through the friction velocity. Similarly, although the value of
k+s connects to the generation of the wall-shear force (via viscous shear, pressure, or a combination of the two),
there is ambiguity regarding its direct effect on the overall ratio of scales. As a result, δ+ can only be assumed to
approximately quantify similar dynamics between comparable δ+ smooth- and rough-wall flows. Thus, the rationale
for the comparisons of Fig. 9 is that they provide a nominal means of exploring k+s influences, given an overall
condition of scale separation as quantified by δ+.

The w2
+
smooth-wall profiles exhibit a relatively abrupt upward near-wall trend. Morrill-Winter et al. [27] showed

that this features correlates with physical wall-position, as opposed to inner-normalized distance. They hypothesized
that the wall proximity produced a spatial confinement of the probe that artificially stimulated the cooling of its ×-
array wires. In general, the existing literature provides little guidance regarding the characterization of such effects.
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Morrill-Winter et al. [27] were, however, able to show that this effect seemed to be almost exclusively confined to w2
+
,

with no reliably attributable influence on U+, u2
+
and uw+. Interestingly, for the rough-wall experiments this effect

does not appear to be present. Accordingly, comparisons in Fig. 9 are only considered for (z+ ǫ)+ > 80 (indicated by
the black dashed lines in Fig. 9). Relative to objective comparisons, also note that, while the present measurements are
well-resolved, they do not maintain the same spatial resolution between the rough- and smooth-wall cases. Relative

to other experiments of this type, it is thus unclear how the present slight changes in l+ might effect w2
+
or uw+. It

is well-documented, however, that at any given wall normal location the length scales associated with w2 are smaller

than those associated with uw, e.g. [40], and thus the l+ variations are expected to influence w2
+
to a greater degree

– particularly near the wall. Recent studies have addressed this issue using DNS simulations, and reported that l+

variations can either amplify or attenuate w2
+

– depending on the wall position. Amplification usually occurs for
positions close to the wall, and under the condition of relatively poor spatial resolution, e.g. [41]. From the present
data it is not possible to be precisely quantitative regarding spatial resolution effects. Given the present l+ values,
however, it seems safe to surmise that these effects are likely to be subtle. The l+ values for each of the profiles are
noted in Fig. 9.

For all the transitionally-rough flows in Fig. 9, differences between the smooth- and rough-wall w2
+
profiles extend

well into the wake region. As discussed previously, this seems to be connected to a decreased amplitude of w2
+

at (z + ǫ)+ ∼ 80 (w2
+

80); recall that w2
+

80 is essentially independent of δ+ for smooth-wall flows [27]. The rate of

increase of w2
+

beyond this point also seems to be the same for both smooth- and rough-wall flows. Interestingly,

(z+ ǫ)+ ≃ 70 is the outer limit of the near-wall cycle for smooth-wall flows [42]. It therefore seems likely that w2
+

80 is
at least partially determined by the properties of this near-wall cycle, and accordingly, with the addition of roughness
the flow properties in this region are altered. In particular, through the transitionally rough regime the near-wall
cycle dynamics are increasingly perturbed, until this cycle is presumably no longer recognizable in the fully rough

regime [6]. The variation of w2
+

80 depicted in Fig. 9a-d approximately coincides with the perturbation of the near-wall
cycle, although the details regarding the profile behaviours and the specific modifications to the near-wall cycle are

currently unknown. This observation is consistent with the findings presented in Fig. 6 relating to the peak in w2
+
.

To within the uncertainty of the present experiments, the smooth- and rough-wall Reynolds stress profiles in figures
9a-d exhibit remarkable agreement. In particular, this agreement for a fixed δ+ appears to hold across the outer
domain regardless of k+s . As mentioned previously, the presence of a rough-wall causes the onset of inertial mean
dynamics to move away from the wall for a fixed δ+. Consistent with the formulations and discussion given by Mehdi
et al. [7], the relative influences of the three length scales, ν/Uτ , ks, and δ, describe the net behaviour of zI . Thus,
k+s and δ+ are connected to the peak location in −uw+, whereas this position only depends on δ+ for smooth wall
flows. Figure 9 qualifies this by showing that the rough-wall profiles decrease in magnitude relative to those in the
smooth-wall flows in the region interior to zI of the rough-wall. This is also demonstrated in Fig. 3. The observation
is consistent with the generic observation that z+m(k+s 6= 0) > z+m(k+s = 0). Also of interest, the −uw+ profiles are very

similar between the two different boundary conditions, but for the transitionally rough profiles the ratio, w2/|uw|,
is larger for the smooth-wall flows, and is seemingly not a function of δ+. The results of Fig. 9a-d and [4] indicate

that this is similarly the case for u2/|uw|. Such results suggest that, while the inner-normalized intensities of the
relevant velocity components are attenuated at fixed δ+ for the rough-wall profiles, their inner-normalized correlation
is maintained when compared to the smooth-wall flow. The finding that −uw+ is similar in smooth- and rough-wall
flows at fixed δ+ is consistent with the mean momentum equation and the curvature of U+ approaching the same
value for (z+ǫ) ≥ zI . It is interesting that with the apparent variations in the u and w velocity variances, the motions
contributing to these two velocity components organize to preserve their correlation for (z + ǫ) ≥ zm. Of course, the
Reynolds shear stress, uw, is representative of the net wallward flux of momentum, which is ultimately reflected by
Uτ . Nonetheless, the observation motivates the spectral and quadrant analyses below.

3. Reynolds shear stress co-spectra

An indication of the correlating scales of motion that lead to the Reynolds shear stress profiles in Fig. 9 is gained
through consideration of the inner-normalised co-spectral density of the streamwise and wall-normal velocity fluctua-
tions (from here on just called the cospectra). Figure 10 presents a comparison of smooth- and rough-wall cospectra
throughout the inertial subdomain for the Reynolds numbers considered in Fig. 9. Wavelengths were approximated
using Taylor’s [43] hypothesis and the local mean velocity. While this is a common approach to estimate a spatial
derivative from a time series, relative to smooth-wall flows there is less justification for the application of Taylor’s
hypothesis in rough-wall flows since the turbulence intensities as a proportion of the local mean can be significantly
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FIG. 10. Comparison of smooth- (black lines) and rough-wall (colored lines) cospectra of streamwise and wall-normal velocity
fluctuations at approximately matched δ+. Rough-wall profiles are colored as indicated in table I. Cospectra are shown at
(z + ǫ) = zI and (z + ǫ) = 0.19δ for each matched δ+ comparions, with the black arrow indicating increasing (z + ǫ). In (a),
(b) and (c), the same comparions as in figure 9(a), (c) and (d), respectively, are shown (δ+ ≈ 6300, 5500, 7800).

larger. Recently, Squire et al. [44] demonstrated that the application of Taylor’s hypothesis in rough-wall flows can
produce erroneous estimates of spectra involving the wall-normal velocity component. We therefore emphasize that
prescribing the mean velocity to be the advection velocity for each scale over both wall conditions can, at best, provide
only an approximate representation of wavelength.
According to prevalent theories, once on the inertial domain, the momentum transporting motions exhibit distance

from the wall scaling across a self-similar hierarchy of layers (for example, the Lβ hierarchy—see [45] and [7]—and the
attached-eddy hypothesis—see [46]). In the smooth-wall case, the relationship from one member of the hierarchy to
the next is solely a function of Reynolds number. In the rough-wall case, the expectation is that the scaling behaviour
from one hierarchy to the next is, in general, a function of roughness and Reynolds number. Since the influence of
roughness on the hierarchy is not explicitly known, a continuous description of the layer transitions is beyond our
current understanding. We do, however, know that for both smooth- and rough-wall flows the inertial layer begins
near zI and ends near (z + ǫ)/δ = 0.19 (see [4]). Additionally, Priyadarshana and Klewicki [39] used a filter based
analysis to estimate the predominant frequency (wavelength) contributions to the uw signal. Somewhat contrary
to accepted notions, they found that even at very high Reynolds numbers these contributions are associated with
motions that are intermediate in size relative to the inner and outer scales. Similarly, Ebner et al. [8] observed that
normalizations using zI are effective at bringing statistical profiles from disparate roughness surfaces into nominal
agreement. With these considerations in mind, Fig. 10 presents cospectra at (z + ǫ) = zI and (z + ǫ) = 0.19δ for
each matched δ+ comparison. (Recall from §II that zI is defined differently for the smooth and rough walls; these
definitions do not coincide in either inner or outer scaling, but instead identify the same mean dynamical condition).
To emphasize the distance from the wall scaling stipulated by the theories just mentioned, the wavelength in Fig. 10
is normalized by its respective wall-normal location, (z + ǫ).
Given the previously mentioned uncertainties associated with the application of Taylor’s hypothesis, the cospectral

comparisons in Fig. 10 show inertial region invariance between smooth- and rough-wall flows across all values of k+s
examined. The statistical comparisons in Fig. 9 indicate clear differences in the outer region between the smooth and
rough wall streamwise and wall-normal intensities at low k+s . Yet the apparent invariance of the curves in Fig. 10
suggests that, despite the differences in the energy content of the individual velocity component constiuents of the
Reynolds shear stress, the strength and scales of the velocity correlation in the inertial region is somehow maintained
between the smooth- and rough-wall flows. Fully elucidating the above observations requires further investigation
of the correlating scales of motion that lead to the apparent differences between the smooth and rough wall flow
behaviours exhibited in Figs. 7 and 9. On the other hand, Fig. 10 clarifies that, consistent with wall scaling, these
differences do not arise from any significant modifications to the interacting scales of the u and w motions. Insights
into the observed differences are, however, further enabled through quadrant analysis of the Reynolds shear stress
correlation.

4. Quadrant analysis

Wallace et al. [47] introduced the conditional analysis of the Reynolds shear stress contributions on the basis of the
four possible signed combinations of u and w, referred to as Q1, Q2, Q3 and Q4 events. Quadrant analysis provides
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a useful way to expose the nature of the u and w combinations that contribute to uw. Such analysis was particularly
relevant in explaining the behaviours observed in the flow visualisations of Grass [48]. These revealed that, above
regular gravel-type roughness, violent ejection (Q2) events span much of the wall layer, while the sweep motions (Q4)
are confined to the region close to the wall. In the subsequent literature, there are rough-wall studies that report
an increase [17, 49, 50], a decrease [14, 51], and a negligible change [15, 52] in Q2 activity relative to smooth-wall
flow. Similar uncertainty in the effect of roughness is reported relative to Q4 events. Here we present uniformly
well-resolved data that enable the conditional structure of the Reynolds shear stress to be examined over a unique
range of parameters. This is particularly pertinent in light of Fig. 9 showing that at low k+s the present rough-wall
attenuates the inner-normalised streamwise and wall-normal velocity fluctuations relative to the smooth-wall flow,
even though the smooth- and rough-wall uw+ profiles show very good agreement.
A quadrant decomposition using the hyperbolic hole approach of Lu and Willmarth [53] is performed. Here the

percentage contribution to uw from a given quadrant, PQ, is given by

PQ = ProbQ(H) = lim
T→∞

1

Tuw

∫ T

0

uw(t)IQ(t,H)dt. (4)

Here, t represents time, and IQ is an indicator function:

IQ =

{

1, when |uw|Q ≥ H
√

u2

√

w2

0, otherwise.
(5)

The time fraction, TQ, spent in a particular quadrant is computed from

TQ(H) =
1

T

∫ T

0

IQ(t,H)dt. (6)

The hyperbolic hole size, H , sets the magnitude of the threshold for events to be included in the conditional sample
with H = 0 corresponding to including all events within a particular quadrant. Figure 11 shows the results of the
quadrant analysis for H = 0 (first row) and H = 1 (second row). In Figs. 11(a) and (c), each of (i), (ii) and (iii)
compares the percentage contribution from Q2 and Q4 events to the total Reynolds shear stress above smooth- and
rough-wall flows at the three approximately matched δ+. The same comparisons as were presented in Fig. 9(a), (c)
and (d) are presented here; recall that the rough-wall profiles are for k+s = 37, 68 and 97, respectively, but are all at
δ+ = 6600± 1200.
Figure 11(a) shows that the present rough-wall modifies the u and w structure relative to the smooth-wall flow.

Across all three matched Reynolds number comparisons, the rough-wall appears to generate a decrease in Q2 activity,
while the percentage contribution from Q4 is less affected – especially in the outer region. The Q2 results indicate
a reduction in the strength and/or frequency of ejection events. In Fig. 11(b), the time fractions, T2 and T4, show
good agreement between the smooth- and rough-wall for all three comparisons. This suggests that the smooth/rough
differences in Fig. 11(a) result from modified strength, not frequency, of the Q2 events. This modification also requires
redistributions of the event amplitude probabilities associated with Q1 and Q3 events, since the total percentage from
all four quadrants must always sum to 100%.
As demonstrated in Fig. 11(b), neither P2 or P4 show discernible differences between the smooth-wall cases across

the present range of friction Reynolds numbers. This supports the notion that (i), (ii) and (iii) are sufficiently close in
δ+ to approximately isolate trends with k+s . Like for the smooth-wall flows, the distributions of P2 from the rough-wall
experiments appear to be relatively unaffected by roughness Reynolds number. Conversely, P4 increases across the
entire boundary layer as the flow progresses towards the fully rough condition. For H = 1 (second row of Fig. 11),
similar trends to those described above are observed, but there are more significant differences between the smooth-
and rough-wall Q4 contributions – at least at high k+s . Note that the H = 1 threshold isolates only large excursions.
Specifically, its use results in the consideration of less than 10% of the uw time-series at all wall-normal locations.
T2+4 quantifies the time fraction that uw is producing a wallward flux of momentum. Analyses revealing self-similar

structure admitted by the mean momentum equation suggest that this fraction asymptotically approaches a constant
value, φ−1

c [54]. These analyses also indicate that φ2
c is equal to the inverse of the leading coefficient in the log law

for the mean profile, i.e., one over the von Kármán constant. Furthermore, under a natural extension to distance

from the wall scaling one arrives at the prediction that on the inertial domain φ−1
c = Φ−1 = 2/(1 +

√
5) ≃ 0.618, the

inverse of the golden ratio. Relative to the present interest in outer-similarity, it is thus instructive to compare the
differing δ+ behaviours of T2+4 for the present variations in k+s .
Figure 12 presents profiles of T2+4 versus (z + ǫ)/zI . As is apparent, the smooth wall profiles on this graph attain

a convincing plateau on the inertial domain, and the width of this plateau grows with increasing δ+. Also with
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FIG. 11. Quadrant decomposition of the Reynolds shear stress into percentage contributions from Q2 and Q4 events. The
results in the first row ((a) and (b)) are computed using H = 0, while those in the second row ((c) and (d)) use H = 1. In (a)
and (c), each of (i), (ii), (iii) compares the percentage contribution from Q2 and Q4 above a smooth-wall (open symbols) and
rough-wall (filled, coloured symbols) flow at matched friction Reynolds number (Reτ ≈ 6300, 5500 and 7800 in (i), (ii) and (iii),
respectively). The roughness Reynolds number of the rough-wall data in these comparisons is k+

s = 37, 68 and 97, respectively.
Note that transitionally rough flows are characterized by k+

s . 70, while fully rough flows are characterized by k+
s & 70. In

(b) and (d), all three matched Reynolds number comparisons are plotted to demonstrate trends with k+
s . Here, the percentage

contributions from each event (P2 and P4), and the time fractions associated with each event (T2 and T4, respectively) are
shown, with the black arrows indicating which data corresponds to which axis.

increasing δ+ (and over the given δ+ range), the plateau value appears to approach something near to that surmised
by Klewicki et al. [54]. The rough-wall data on the plot exhibit a similar trend with δ+. For the given δ+ range,
however, T2+4 is consistently larger than the smooth-wall flow at comparable δ+. Presuming that an asymptotic value
of T2+4 exists, then relative to inertial domain momentum transport this value should be reflective of the condition
of outer similarity. This leads to the intriguing observation that the addition of the present roughness delays the
approach to this asymptotic state. The subject behaviour is made clearer in Fig. 13, which plots the value of T2+4

averaged over the inertial domain versus δ+. From Fig. 12, it also seems clear that the apparent differences between
the smooth- and rough-wall T2+4 profiles near the wall reflect the direct amplifying effect that roughness has on
turbulent momentum transport in this region.

Lastly, we use the result of Fig. 13 to make a broader cautionary observation regarding the notion of scale separation
in rough-wall flows. In this figure, the behaviour of the rough-wall data seems to suggest that the approach to the
asymptotic state is a slower function of δ+ in the rough-wall flows. Insight into this issue is gained by first noting
that δ+ is the ratio of length scales, δ to ν/Uτ . With the addition of roughness, however, additional length scales are
imposed upon, and nonlinearly modify, the scales ranging from O(ν/Uτ ) to O(δ). On average, roughness modifies
(generally increases) the position where the flow transitions to inertial mean dynamics. Herein, the characteristic
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FIG. 12. Time fraction that uv is negative versus wall-normal distance normalized by the onset of inertial dynamics. The
rough wall symbols are tabulated in I. The open symbols are all the smooth-wall data of Morrill-Winter et al. [27] (refer to
publication for boundary layer parameters): represent data acquired in the Melbourne Wind Tunnel, where signify data
taken in the FPF. The black horizontal lines represent T 2+4 = 0.618.
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FIG. 13. The average time fraction that uw is negative in the inertial domain versus Reynolds number. The rough wall symbols
are tabulated in I. The open symbols are all the smooth-wall data of Morrill-Winter et al. [27] (refer to publication for boundary
layer parameters): represent data acquired in the Melbourne Wind Tunnel, where signify data taken in the FPF. The
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δ/zI

T
2
+
4
in
er
ti
a
l
su
b
d
o
m
a
in

7 10 20

0.6

0.62

0.64

0.66

0.68

FIG. 14. The average time fraction that uw is negative in the inertial domain versus Reynolds number normalized by the
onset of inertial dynamics. The rough wall symbols are tabulated in I. The open symbols are all the smooth-wall data of
Morrill-Winter et al. [27] (refer to publication for boundary layer parameters): represent data acquired in the Melbourne
Wind Tunnel, where signify data taken in the FPF. The black horizontal lines represent T 2+4 = 0.618.
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length scale of the largest motion affected by a leading order viscous force is estimated by zI . Accordingly, a measure
of the scale separation between the characteristic inertial scale and this scale is δ/zI . Figure 14 re-plots the data of
Fig. 13 according to this new measure of scale separation. If the asymptote suggested on Fig. 14 is valid, then the
smooth-wall data suggest that a value of δ/zI & 20 is required to attain this indicator of self-similar structure on the
inertial domain. As is apparent, by this measure the degree of scale separation is considerably smaller than this in
the present rough-wall flows.

IV. CONCLUSIONS

Measurements associated with the turbulent stresses, u2, w2 and uw, were acquired above the same sandpaper
surface that Squire et al. [4] used to study the effects of roughness and Reynolds number on U and u2. The present
measurements were acquired using a multi-element hot-wire sensing array, and covered a distinctively broad range
of Reynolds number and equivalent sand grain roughness 2, 800 . δ+ . 17, 400 and 37 . k+s . 98, respectively.
Numerous comparisons are made between these measurements, and those acquired in smooth-wall boundary layers by
Morrill-Winter et al. [27] over a comparable δ+ range. To the authors’ knowledge, such comparisons are also distinctive
in that they involved data from an identical sensor, and these sensors maintained very good spatial resolution over
the entire range of parameters. Important features of the present experiments are the spatially well-resolved nature
of the turbulence measurements, and the direct, and quasi-direct measurement, of the wall-shear stress. Notably, all
of the present profiles show self-consistent trends with δ+ and k+s .
The mean momentum equation is the same for both smooth- and rough-walled turbulent boundary layers. Also,

the wall-normal gradient of the mean velocity beyond the start of the inertial domain is not influenced by the surface
condition. From this, inner-normalized Reynolds stress profiles at a fixed δ+ are not expected to differ in the inertial
domain. These features were shown to hold for the present data. Using the formulation of Mehdi et al. [7], the
onset of the inertial domain, zI , was estimated. When the wall position was normalized by zI , both the smooth- and
rough-wall Reynolds stress peaks seemingly align, thus corroborating the empirical curve-fits of Mehdi et al. [7] for the
given ks/zI regime. For all of the present measurements, the peak magnitude in −uw+ ≃ 1 and never exceeded unity.
This further reinforced the validity of the approach introduced by Squire et al. [4] to determine Uτ at streamwise
locations where drag balance data was not directly available.
When compared to smooth-wall profiles at approximately matched δ+, the present wall-normal velocity variance

profiles in the transitionally rough regime exhibit a reduction in magnitude over the domain (z + ǫ)+ & 80. Such
behaviour is consistent with the gradual roughness-induced perturbation of the near-wall cycle. In particular, the
mechanisms of this cycle are expected to diminish as the pressure contribution to the surface drag (due to separated
flow around the roughness elements) becomes increasingly large in comparison to the viscous contribution; i.e., as
the flow transitions to the fully-rough regime. Akin to smooth-wall flow behaviours, for increasing positions beyond
(z + ǫ)+ ≃ 80 the present rough-wall profiles exhibit a self-consistent upward trajectory out to (z + ǫ)/δ ≃ 0.19.

Furthermore, combining this behaviour with w2
+

80 = f(k+s ) explains the reduced peak magnitude of w2
+
at fixed δ+

for k+s < 70. When the maxima of w2
+
are plotted versus δ+, the fully-rough profiles show good agreement with the

smooth-wall data, whereas, the transitionally rough data are of lower amplitude. The rate of increase with respect
to δ+, however, appears to be an inverse function of k+s . None of the present transitionally rough-wall data support
the validity of outer similarity over the present δ+ range. Based upon the previous analyses of Kunkel and Marusic
[38], these results are interpreted to suggest that the present δ+ are insufficient to approximately reflect Townsend’s
hypothesis for this statistic in this roughness regime. This result stands in contrast to previous findings pertaining to
this statistic.
The rough-wall profiles of Reynolds stress correlation coefficient, Ruw, exhibit elevated values relative to their

matched Reynolds number smooth-wall profiles. Like the smooth-wall profiles, however, the rough-wall Ruw exhibit
an approximately logarithmic decrease with δ+. The rate of logarithmic decrement with δ+ varies, however, with
k+s , thus highlighting the combined roughness and Reynolds number influences on the turbulent flux of momentum.
Because the uw+ profiles exhibit only subtle changes between the smooth- and rough-wall flows, the variations in

Ruw are predominantly connected to the individual variations in u2
+
and w2

+
. Here, the present results suggest that,

increasing k+s flattens the logarithmic increase in u2
+
(zI) (relative to the smooth-wall case). The same trend is also

observed for w2
+
(zI), but in this case the slope does not decrease below that of the smooth wall.

The present cospectra of u and w suggest that the inertial layer contributions to uw involve the same normalized
spectral content (range and amplitudes) regardless of k+s . The distance from the wall normalization required to
realize this condition is consistent with the existence of a hierarchical structure to inertial layer turbulence, essentially
independent of the value of k+s . The physical mechanisms that yield the invariant cospectra, despite variations in the
spectral content of both u and w, are presently unknown.
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Normalized contributions to the Reynolds stress from the second (Q2) and fourth (Q4) quadrants were evaluated at
an approximately fixed δ+ for three different roughness-Reynolds number combinations. For all the k+s values, the Q2
contributions decreased in activity, especially near the wall, while the Q4 contributions appeared less affected. This
result did not substantially change when the hyperbolic hole size, H , was increased from 0 to 1. Q4 events, however,
were shown to increase in magnitude over the entire boundary layer with increasing k+s . The present quadrant analyses
indicate that, while the inner-normalized Reynolds stress shows similarity over the smooth- and rough-surface, the
relevant probabilities underlying the subtly varying uw structure is a complicated function of k+s and δ+ for the
parameter ranges investigated.

Finally, the rescaling presented in Fig. 14 raises questions about the validity of matched δ+ comparisons between
smooth- and rough-wall flows. The results in Fig. 14 suggest that the ratio δ/zI may provide an alternative view of
the true scale separation (and hence an alternative appropriate Reynolds number for these flows). The present data
are suggestive in this regard, but a wider range of matched δ/zI smooth- and rough-wall data are required before
informative conclusions can be drawn.
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