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Abstract 

Numerical simulations based on DEM-CFD were conducted to study the behavior of gas-solid 
flows of cohesive particles under various values of particle friction and restitution coefficient, which 
dictate the energy dissipation in the tangential and normal directions of particle relative motion. 
Fluidized beds and riser flows were selected as typical systems for dense and dilute flows, respectively. 
Based on the defluidization curves and agglomerate properties in respective systems, a reverse 
dependence on friction and restitution coefficient was identified: defluidization curves were dominated 
by friction while agglomerates in riser flow were governed by the restitution coefficient. The reverse 
sensitivity is ascribed to the difference in particle interactions for the two systems. In the fluidized bed, 
particles primarily interact via enduring multiple-particle contacts, in which the dynamics in the 
tangential directions dominates. In riser flows, the instantaneous binary collisions are more common and 
the relative motion of particles in the normal direction becomes important. A non-monotonic response of 
defluidization curves to varying sliding friction was observed, which is explained by the competing 
effects of increased sliding and enhanced spin of particles on bed porosity. This study highlights the 
importance of correct experimental measurement of solid properties for numerical simulations. The 
results are also useful for driving the development of continuum modeling of gas-solid flows of cohesive 
particles. 

1 Introduction 

Gas-solid flows are important phenomena in nature and industry [1-3]. Fluidized beds and risers 
are common unit operations in a range of industries. Fluidized beds typically run with superficial gas 
velocities slightly larger than the minimum fluidization velocity, at which the pressure drop of gas phase 
balances the weight of the solid phase. The relatively low gas-solid drag results in a dense flow with 
sufficient physical contacts between particles. The dense flow ensures efficient mass and heat transfer 
and making fluidized beds effective in processes such as coating, drying and granulation [1,4]. On the 
other hand, riser flows with a much more dilute solid concentration typically operate at superficial gas 
velocities around the particle terminal velocity. As an essential component of circulating fluidized bed 
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(CFB), knowledge on the riser flows is crucial to the evaluation of the performance of CFB reactors [5] 
and particle entrainment [6,7]. 

Interparticle cohesion originating from van der Waals force and liquid bridging has pronounced 
effects on gas-solid flows in both fluidized beds and risers. In fluidized beds, a variety of novel 
behaviors associated with cohesion have been reported, such as the existence of a homogenous 
fluidization with increased minimum bubbling velocity [8-11], increased pressure drop overshoot 
[12,13], higher pressure drop fluctuations [14] and reduced bubble size [15]. In riser flows, evident 
influence of cohesion was also captured. For example, depending on the solid concentration, the 
interaction between van der Waals force and gas-solid drag can lead to either enhanced or depressed 
cluster formation close to the wall of the riser [16]. Increased agglomeration was observed for wet 
particles with capillary force as the dominant mechanism of cohesion [17,18]. 

The friction and restitution coefficients, which are associated with the energy dissipation during 
relative motion of particles in tangential and normal directions, respectively, have significant impacts on 
gas-solid flows as well. Increased dissipation due to higher friction or lower restitution coefficient 
generally leads to larger "heterogeneity" in gas-solid flows of non-cohesive particles [4,19]. In fluidized 
beds, heterogeneities (bubbles) are reflected by the increased fluctuations of pressure drop and bed 
height with increasing friction [20-22], as well as increased bubble size with decreasing restitution 
coefficient [23,24]. For riser flows, enhanced heterogeneities (clusters) are characterized by the 
increasing cluster size as a result of increasing friction or decreasing restitution coefficient [16,17,25], 
though the velocity distribution of particles remains largely unaffected [26]. 

Since cohesion is known to enhance energy dissipation during particle collisions [13,15,27], 
studies on the interplay of cohesion with friction and restitution coefficient in fluidized beds are 
emerging. Using coupled discrete element method and computational fluid mechanics (DEM-CFD) 
simulations of cohesive particles, Hou et al. [28] found that both sliding and rolling friction contribute to 
the formation of expanded beds during fluidization. Galvin and Benyahia [29] reported that a larger 
sliding friction coefficient results in an increasing minimum fluidization velocity. Wilson et al. [30] 
recently proposed that decreasing restitution coefficient leads to an increasing number of contacts per 
particle in the fluidized bed, while a non-linear trend is seen relating sliding friction with the number of 
contacts per particle and bubble velocity. 

In this work, we continue to study the sensitivity of fluidized bed and riser flow of cohesive 
particles to friction and restitution coefficient based on DEM-CFD simulations, where van der Waal 
force between particles was considered. In particular, we focus on the less explored riser flows, where 
the solid concentration is much lower than in fluidized beds. Defluidization curves in fluidized beds and 
agglomerate properties in riser flows, both of which serve as good indicators of system cohesion level 
[18,29,31-34], are extracted from the simulations. A large parameter space was covered with the effects 
of both sliding and rolling friction scrutinized. The results of this study (i) highlight the level of 
importance of the physical parameters in gas-solid flows depends on the system of interest and (ii) 
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provide validation data for continuum model predictions incorporating particle cohesion and friction, a 
subject of enduring theoretical effort [35-41]. 

2 Numerical method and simulation conditions 

2.1 DEM-CFD 

Numerical simulations based on DEM-CFD were conducted in this study so that particle friction 
and restitution coefficient are varied individually without affecting other material properties. In DEM-
CFD, the solid phase is treated as discrete particles whose trajectories are solved by Newton's equations 
of motion, given by 

 c f vdW
dm m
dt

= + + +v F F F g  (1) 

 ˆt n
c r c

dI RF
dt

μ= × −ω R F ω  (2) 

where m, v, I and ω are, respectively, the particle mass, translational velocity, moment of inertia and 
angular velocity. R is a vector aligned from particle center to the contact point with its magnitude equal 
to particle radius R. Fc, Ff, and FvdW are, respectively, the total contact force, particle-fluid drag and van 
der Waals force (cohesion). The first and second terms on the right-hand side of Eq. (2) represent 
torques due to tangential contact force and rolling resistance, respectively, where μr is the rolling friction 
coefficient [42,43]. The contact force Fc is calculated by the visco-elastic model [44] in both normal and 
tangential directions. The magnitude of the normal contact force n

cF  between particle i and j is given by 
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+ Rj) is the effective radius and δn is the normal geometric overlap. n
cF  in Eq.(3) contains two terms. 

The first term represents the repulsion due to elastic deformation described by the Hertz contact model. 
The second term represents a viscous damping responsible for the energy dissipation in the normal 
direction during particle collisions. The normal damping coefficient ηn is related to the restitution 
coefficient e for binary collisions between non-cohesive particles by [45] 
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where meff = mimj/(mi + mj) is the reduced mass. The corresponding contact force in the tangential 
direction t

cF  is given by 
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where Geff = 1/[(2 − νj)/Gi + (2 − νi)/Gj], Gk = Ek/[2(1 + νk)], (k = i, j) is shear modulus and δt is the 
tangential displacement during particle collisions. The tangential damping coefficient ηt is commonly 
assumed equal to ηn [44]. In this work, we set ηt ≡ ηn(e = 0.97) when we vary e in the simulations, since 
changing ηt within the range ηn(e = 0.97) ≤ ηt ≤ ηn(e = 0.4) has little impact on simulation results. Sliding 
friction is turned on whenever t

cF  exceeds that maximum static friction approximated to be n
s cFμ , 

where μs is the sliding friction coefficient. Particle-wall contacts are treated similarly as particle-particle 
interactions. Description on the cohesion model for van der Waals force FvdW is detailed in our recent 
work (section 3.2 in ref. [34] and ref. [46]), where FvdW is expressed as a function of particle radius R, 
Hamaker constant A, interparticle separation distance D and parameters quantifying surface roughness in 
terms of root-mean-square amplitudes and wavelengths. As the separation distance reduces below the 
intermolecular separation [47], FvdW remains constant i.e. FvdW ≡ FvdW(D0) for D ≤ D0, similarly to 
previous studies summarized recently by Guo and Curtis [48]. The particle-fluid interaction force Ff is 
given by 

 ( )
1f g g
VV P β

ε
= − ∇ − −

−
F v v  (6) 

where V is the volume of the particle, Pg is the gas pressure, β is the gas-solid frictional coefficient, vg is 
the gas velocity, and ε is the porosity. β can be obtained from different drag models. In this work, the 
model developed by Hill et al. [49,50] based on Lattice–Boltzmann simulations with the application 
range extended by Benyahia et al. [51] to cover the full range of porosity in fluidized beds was applied. 

The gas phase is solved using CFD with the continuity and momentum equations given by 
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where τg is the gas shear stress tensor and Igs is the gas-solid momentum transfer, given by 
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where Vm is the volume of a CFD cell m and Nm is the number of particles in the cell. The interpolation 
factor φ  determines the contribution of the drag force of each particle to the cell, which is inversely 
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proportional to the distance from particle location to the cell center. Refer to Patankar [52] for more 
details about the CFD solver based on the control volume formulation. 

2.2 Simulation conditions 

The systems studied in simulations are illustrated in Fig. 1. In the fluidized bed with a square 
distributor plate (Fig. 1a), defluidization is conducted via a step-wise decreasing superficial gas velocity 
from U = 2.0 to 0 cm/s, with a step size of 0.1 cm/s. To minimize the wall effect, we set side walls to be 
free-slipping for the gas phase, and frictionless and non-cohesive for the solid phase, similar to our 
recent work for non-cohesive particles [53]. Each gas velocity is maintained for 0.1 s, sufficient for the 
relaxation of gas pressure into steady state [34,53]. During defluidization, the flow transits from 
bubbling to static regimes with the majority of particles accumulating near the bottom of the fluidized 
bed, resulting in a dense gas-solid flow with solid concentration εs > 0.4. The defluidization curves, the 
gas pressure drop normalized by particle weight pressure as a function of superficial gas velocity, are 
extracted for data comparison (Section 3.1). 

In riser flows with the same dimension as the fluidized bed (Fig. 1b), a dilute gas-solid flow with 
εs = 0.01 is driven by a superficial gas velocity of U = 51.5 cm/s. Cyclic boundary conditions are 
implemented in all directions for both gas and solid phases, similar to previous setups in literature 
[16,17,54]. Due to particle cohesion, agglomerates form and break in the riser during particle collisions. 
To track the time evolution of agglomerates, the contact durations between particles tc were recorded. A 
particle is included to an agglomerate when its tc with another particle or agglomerate exceeds a critical 
value tc,crit. In this work, we set tc,crit = 5.9 × 10-5 s, which is 3-5 times tcb, the contact duration for a 
binary collision with typical impact velocities (relative velocities between approaching particles) in the 
riser (1-10 cm/s, see Fig. 8c. tcb can be evaluated by Eq. (A3)). As tcb is finite except for agglomeration 
where tcb diverges in binary collisions [34], tc > tc,crit is considered an appropriate criterion to claim an 
agglomeration event. The breakage of agglomerates subject to the collisions with higher impact 
velocities are also recorded. Specifically, particles are removed from an agglomerate the moment they 
travel outside the "cohesive well Dc", i.e. when D > Dc, where Dc is solved by 

0 0
( ) ( ) 99%cD

vdW vdWF D dD F D dD
∞

=∫ ∫ . The robustness of algorithm above is demonstrated by (i) the increase in 

agglomeration with increasing cohesion and (ii) no agglomeration event detected when cohesion is 
turned off. Starting from randomly generated positions without overlap, particles in the riser accelerate 
upwards under particle-fluid interaction until ~ 0.2 s of simulation when the flow becomes fully 
developed, indicated by the vanishing gradients for the time-averaged velocity profiles of gas and solid 
phases. The time-averaged particle speed and agglomerate properties over a period of 0.8 s during the 
fully-developed regimes are collected for data comparison in Section 3.2. 
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                                                        (a)                                (b) 

Fig. 1. Systems used in simulations: (a) fluidized bed at U = 1.5 cm/s and (b) riser at U = 51.5 cm/s. The 
contour indicates particle speed v. (μs = 0.275, μr = 0, e = 0.97) 

It is worth noting that wall effects are minimized in both fluidized bed and riser simulations using 
the boundary conditions detailed above. This treatment will allow us to conduct direct comparison 
between simulation results and experiments in future studies. Namely, by using frictionless side walls, 
the simulations predictions for the complete fluidization velocity Ucf (to be discussed in Section 3.1) 
were previously found to be independent of system size [34]. This system-size independence is key 
since DEM-CFD simulations are so computationally expensive that the simulation of lab-scale fluidized 
beds is impossible even with today’s high-performance computing. However, a direct quantitative 
comparison is justified between DEM-CFD simulations with bed width = 0.32 cm (identical to the 
current simulations) and lab-scale experiments [34], since the results of both are system-size 
independent. Simulations taking wall effects into account were also conducted, i.e. applying frictional 
walls for the solid phase and no-slip walls for the gas phase. It is found that simulations with wall effects 
lead to the same trends as the simulations with minimized wall effects (to be discussed in Section 3.1). 
Quantitatively, wall effects also have relatively small impact (< 6%) on the simulation results in terms of 
Ucf. The reason lies in the relatively high bed width to particle size ratio of 46.4 used in this work, where 
a dominant proportion of particles are away from the walls thus not directly subject to wall effects, 
similar to previous observations [55,56]. 

Similarly, in riser simulations, wall effects are removed here in order to allow for future 
comparison with riser experiments. Measurement of agglomerate size distribution will be conducted in 
the fully-developed region close to the central axis of the bed, where gradients of gas velocities are 
vanishing. Accordingly, wall effects in simulations need to be minimized to match the velocity profiles 
in experiments in a posteriori manner.  Note that with the presence of walls, a core annular profile is 
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commonly observed [57,58], where the riser exhibits a relatively dilute gas-solid flow at the core and a 
dense flow near the walls. Depending on the superficial gas velocity and solid flux, a downward flow 
with enhanced particle clustering can be found close to the walls [59]. Thus, to make direct comparisons 
between simulations and experiments, we need to make sure the measurements at the core is not subject 
to non-negligible influence from the side walls. Otherwise, simulations for the full geometry of the riser 
considering no-slip and frictional walls are necessary. However, a comparison of current results with 
corresponding simulations that take wall effects into account shows that the qualitative findings of this 
work remain unaffected. 

The parameters used in simulations are summarized in Table 1. the values associated with surface 
roughness used in the cohesion model are detailed in ref. [34]. For purposes of assessing the relevant 
physics in the current systems. The pertinent dimensionless groups for gas-solid flows of cohesive 
particles are also computed and summarized in Table 1, including particle-to-gas density ratio ρp/ρg, 
granular Bond number Bo = FvdW/mg, solid concentration εs and particle Reynolds number Rep [60,61]. 
In defluidization, Rep = dpUρg/[μg(1 − εs)] [50], while Rep = dpvtρg/μg in riser flows, where vt = τpg is the 
particle terminal velocity in undisturbed gas flow and τp = ρpdp

2/(18μg) is the particle response time scale 
[61]. Note while the ρp/ρg is fixed, εs decreases from ~ 0.5 to 0.01; Bo and Rep increases by 
approximately an order of magnitude from fluidized bed to riser flows, serving as the major differences 
between the two systems. The simulation results are collected by varying particle sliding friction 
coefficient from 0.0-1.0 [62], rolling friction coefficient from 0.0 to 0.02 [63,64] and restitution 
coefficient from 0.4-0.99 [65,66], which are within typical ranges of the materials properties of common 
solids. The open source solver Multiphase Flow with Interphase eXchanges (MFIX) was used to 
perform DEM-CFD simulations [67]. 

Table 1: Parameters in simulations 

System dimensions Fluidized bed Riser 
Height, H (cm) 1.5 
Width, W (cm) 0.32 
Total number of particles, Np 50000 9000 
Particle properties  
Diameter, dp (μm) 69 
Density, ρp (kg/m3) 2500 
Young's modulus, E (MPa) 10 
Poisson ratio, ν 0.22 
Sliding friction coefficient, μs 0 - 1.0 
Rolling friction coefficient, μr 0 - 0.02 
Restitution coefficient, e 0.4 - 0.99 
Hamaker constant, A (J) 3.1 × 10-20 3.1 × 10-19 
Intermolecular separation, D0 (nm) 0.3 
Gas properties  
Density, ρg (kg/m3) 0.97 
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Viscosity, μg (kg·m-1·s-1) 1.8335 × 10-5 
Superficial gas velocity, U (cm/s) 0 - 2.0 51.5 
Dimensionless groups   
Particle-to-gas density ratio, ρp/ρg 2577.3 
Granular Bond number, Bo 5.43 54.3 
Solid concentration, εs ~ 0.5 0.01 
Particle Reynolds number, Rep 0 - 0.15 1.30 

3 Results and Discussion 

3.1 Defluidization of particles in the fluidized bed 

3.1.1 Effect of friction 

The effect of friction is first discussed by using a constant restitution coefficient at e = 0.97. The 
representative flow patterns during defluidization are compared in Fig. 2 at different sliding friction 
coefficient μs. Rolling friction in these simulations is turned off. The transition from the bubbling regime 
at superficial gas velocity U = 1.6 cm/s to the static regime at U = 0.4 cm/s is observed for all values of 
μs by the reduction of particle speed. However, at U = 1.0 cm/s, while flows with μs = 0.02 and μs = 0.8 
are bubbling, a static bed is seen for particles with an intermediate μs = 0.275; this intermediate friction 
coefficient is also characterized by the tallest bed height at U = 0.4 cm/s, suggesting that increasing μs 
has a non-monotonic effect on defluidization. 

 

Fig. 2. Flow patterns during defluidization at different μs and U. The contour indicates particle speed v. 
(μr = 0, e = 0.97) 
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A more quantitative assessment of this non-monotonic behavior is possible via defluidization 
curves, which are plotted in Fig. 3a for cases with μr = 0 (bottom plot) corresponding to the snapshots in 
Fig. 2, and μr = 0.02 (top plot). The gas pressure drop normalized by particle weight pressure Δp* stays 
at unity for higher U where particles are fully fluidized. With U further reduced, Δp* decreases and 
cannot fully support the solid phase (partially fluidized regime). Instead of a linear dependency as is the 
case for non-cohesive particles, Δp* shows a non-linear decrease with U due to the varying bed porosity 
at different U for cohesive systems [29,53,68]. Both μs and μr affect the defluidization curves in the 
partially fluidized regime. To quantify the effect of μs and μr, the complete fluidization velocity Ucf, 
defined as the critical U at which Δp* fall below 0.98 (marked by vertical lines in Fig. 3a) [34], is plotted 
as a function of μs at different μr in Fig. 3b. Similar to the flow pattern evolutions in Fig. 2, Ucf exhibits a 
non-monotonic relation with increasing μs in Fig. 3b, where after a relatively sharp increase before μs ≈ 
0.2, Ucf drops gradually with the rate of decay reducing with increasing μr. 

 

                                               (a)                                                                       (b) 

Fig. 3. (a) Defluidization curves at different μs with μr = 0 (bottom) and μr = 0.02 (top) (Error bars 
represent standard deviation and can be smaller than symbol size, same for following figures), (b) 

complete fluidization velocity as a function of μs at different μr. (e = 0.97) 
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As shown in Fig. 4a (bottom plot), at μr = 0, increasing μs can increase (μs from 0.02 to 0.275) or 
decrease (μs from 0.275 to 0.8) ε at partial fluidization (corresponding to the range U < Ucf), which 
directly accounts for the non-monotonic trend between Ucf and μs in Fig. 3b. However, the decrease of ε 
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with increasing μs is not expected as a higher μs is generally considered favorable for stabilizing more 
porous packings [69-71]. 

To shed light on the counterintuitive, non-monotonic trend between μs and ε, we analyze the 
translational and angular speeds of the particles with varying μs. Two competing effects are identified 
with increasing μs: (i) increased dissipation due to sliding between particles, and (ii) increased driving 
force for particle spin. For systems without rolling friction (Fig. 4a), at lower μs from 0.02 to 0.275, 
increasing μs results in reduced translational speed of particles (Fig. 4a, middle plot), suggesting 
increased dissipation due to sliding (Effect I). Thus a more porous packing is formed due to limited 
particle rearrangement at higher μs. As μs varies from 0.275 to 0.8, due to increased maximum static 
friction, the condition for sliding is harder to satisfy, as recently shown by Wilson et al [30]. 
Consequently, Effect I is counterbalanced by Effect II, causing an increase of particle angular speed 
(Fig. 4a, top plot). With a higher angular speed, particles can roll across each other towards a less porous 
packing seen in Fig. 4a (bottom plot). Turning on rolling friction to limit particle spin (Fig. 4b, top plot) 
weakens Effect II, so that Effect I dominates and recovers the monotonic increase of ε with μs at partial 
fluidization (Fig. 4b, bottom plot). Theoretical understanding of the competing effects of μs is 
demonstrated via modeling of simple systems characteristic of the defluidization process in Appendix. 
Increasing μs has also been reported to have non-monotonic effects on bubbling velocity, contact number 
[30] and minimum bubbling velocity [28] for cohesive particles, to which the mechanism above may 
partially contribute. 
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Fig. 4. Average bed porosity 〈ε〉, particle translational speed 〈v〉 and angular speed 〈ω〉 during 
defluidization at different μs for (a) μr = 0 and (b) μr = 0.02. (e = 0.97) 

3.1.2 Effect of restitution coefficient 

By maintaining a constant μs = 0.275 and increasing restitution coefficient e, the defluidization 
curves largely collapse except at the largest e shown in Fig. 5a. A slight decreasing trend of Ucf with 
increasing e is observed in Fig. 5b, since increasing e leads to decreased dissipation in particle collisions 
and thus a higher average particle speed. As discussed in the last section, particles with higher velocities 
have more energy to rearrange towards a tighter packing and correspondingly a decrease in Ucf, similar 
to the consequence of increasing material Young's modulus [15,34,72]. However, compared with 
friction, the sensitivity of defluidization curves to e is much weaker as Ucf varies less than 20% with 
varying e (Fig. 5b), much smaller than a factor of 3-5 change in Ucf with varying μs (Fig. 3b). Similar 
conclusions were also drawn for non-cohesive particles [73,74]. A physical understanding of the 
reduced sensitivity to e is proposed as follows: due to the high solid concentration in the fluidized bed, 
particle interactions are dominated by lasting contacts with low impact velocities, especially around Ucf 
where bubbling is beginning to cease. Therefore, with reduced impact velocities, the effect of collisional 
dissipation (viscous damping) associated with e becomes secondary to frictional interaction. To verify 
the hypothesis above, we extracted the normal impact velocity distributions f(vim,n) in simulations for μs 
= 0.275, μr = 0 at e = 0.97. Similar to our previous observations [34], as U → Ucf, we found over 80% of 
the normal impact velocities between particles are lower than the critical agglomeration velocity vcrit, 
below which particles agglomerate together to form lasting contacts (results out shown. More discussion 
on f(vim,n) and vcrit is available in the following section).  
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Fig. 5. (a) Defluidization curves at different e and (b) complete fluidization velocity as a function of e. 
(μs = 0.275, μr = 0) 
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3.2 Agglomerate properties in the riser flow 

3.2.1 Effect of restitution coefficient 

For riser flow, we first consider the effect of the restitution coefficient, since it is found to have a 
larger impact than friction. Snapshots of riser flows in the fully-developed regimes with different e at μs 
= 0.275 are compared in Fig. 6. At lower e = 0.4 (Fig. 6a), a high non-uniformity of solid concentration 
is seen as particles clump together throughout the domain. From the enlarged view with singlets in the 
system removed in Fig. 6a, a large number of agglomerates Nagg are collected with a wide distribution of 
agglomerate size nagg, i.e. number of particles in an agglomerate. Bigger agglomerates are seen to have 
smaller translational speed v with two examples circled in the enlarged view in Fig. 6a. At higher en = 
0.97 (Fig. 6b), while the flow also shows spatial inhomogeneity of local solid concentration, the pattern 
of inhomogeneity is more reminiscent of hydrodynamic clustering [75,76] where persistent particle 
contacts and agglomeration are less common (see Section 2.2 for agglomeration criterion). As a result, 
only a handful of doublets are collected as revealed in the enlarged view in Fig. 6b. The statistical 
distributions of agglomerate size are summarized in Fig. 6c with varying e. In all distributions, the 
frequencies of agglomerates decay monotonically with agglomerate size nagg and are well described by 
log[ ( )] [log( )]b

agg aggf n a n=  with a and b being fitting parameters. As e reduces, tails of the distributions 

extend to larger nagg. At e = 0.4, big agglomerates consisting of ~ 30 particles are recorded, though the 
fraction of doublets with nagg = 2 still exceeds 60%. These results are useful for validating continuum 
models incorporating a population balance [36,77] to consider the effect of agglomerates for dilute gas-
solid flows of cohesive particles. Comprehensive validations of continuum models via comparison with 
DEM-CFD simulations are outside the scope of current work and will be discussed in a future study. 
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                                  (a)                                                                             (b) 

 

                                                                                     (c) 

Fig. 6. Instantaneous flow patterns and visualizations of agglomerates within a layer 10 dp deep in the 
riser using (a) e = 0.4 and (b) e = 0.97. The indexagg assigns each agglomerate a number so that they can 
be differentiated from each other by the color contour; (c) distributions of agglomerate size at different 
e. Solid lines shows fittings using log[ ( )] [log( )]b

agg aggf n a n=  with a and b as fitting parameters (For e = 
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0.4, 0.6, 0.8, 0.97, a = -2.55, -4.78, -7.32, -10.17 and b = 1.89, 2.50, 2.55, 2.59, respectively). (μs = 
0.275, μr = 0) 

The effect of e on time-averaged properties in fully-developed risers are summarized in Fig. 7. 
Decreasing e leads to a growth in the total number of agglomerates 〈Nagg〉 and agglomerate size 〈nagg〉 
(Fig. 7, middle and top plot). As larger agglomerates have smaller velocities (Fig. 6a), a reduction in 
average particle speed 〈v〉 is observed with decreasing e (Fig. 7, bottom plot), which is different from the 
non-cohesive particles showing little dependence of particle velocity distribution on e [26]. The reduced 
〈v〉 with decreasing e can be understood by an analysis on the drag force. The results for Fig. 7 are 
extracted during fully-developed riser flows, where 〈v〉 and agglomerate properties (〈Nagg〉 and 〈nagg〉) 
reach statistical steady state. In the fully-developed regime where particles reach their terminal 
velocities, the gravity acting on each particle is balanced by the interaction force from the gas phase so 
that mg = Fdrag/(1 − εs), where m is particle mass, Fdrag is the drag force and εs (= 1% in this work) is 
solid concentration for the entire domain [78]. Fdrag increases with the growing magnitude of slip 
velocity vslip = |vg − v|, where vg and v are the gas and particle velocities, respectively. Since a larger 
pressure drop is required for gas to squeeze through regions with higher local solid concentration, gas 
tends to bypass agglomerates, leaving a smaller vg for particles in agglomerates, as confirmed in 
numerical simulations [61,79] and experiments [80]. In our simulations, the "gas bypassing" 
phenomenon is also observed by comparing the spatial distributions of bed porosity ε = 1 − εs and 
vertical gas velocity vgy (vgy ≈ vg since gas flux is applied in the vertical direction). We found the 
locations with lower ε (representing agglomerates) coincide with lower vgy (plots not shown for brevity). 
As a result, the velocities of particles in agglomerates lowers such that vslip can still balance weight of 
particles. Therefore, as agglomeration increases with decreasing e, the mean particle speed 〈v〉 decreases. 
The reduction of particle speed at enhanced agglomeration was also reported by Girardi et al. [18], who 
changed particle cohesion to control the agglomerate size in DEM-CFD simulations. Through particle-
resolved direct numerical simulations, Mehrabadi et al. [81] recently reported a reduction of drag force 
at the presence of particle clusters compared with uniform particle configurations under the same Rep 
and εs. Since the drag model used in current work is established under homogeneous distribution of 
particles, the effect of agglomerates on the drag may not be fully captured. Therefore, in future 
numerical studies, it will be more appropriate to incorporate a robust structure-dependent drag model, 
which is under active development [81-84]. However, as the drag reduction is more significant at 
smaller e with enhanced agglomeration, the qualitative trend that 〈v〉 reduces with decreasing e is 
expected to remain valid with the structure-dependent drag considered (larger vslip or smaller v needed 
for cases with more agglomerates). 
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Fig. 7. Time-averaged particle speed 〈v〉 and agglomerate properties (total number of agglomerates 
〈Nagg〉 and agglomerate size 〈nagg〉) as a function of e. Note the log scale used for 〈Nagg〉. (μr = 0, μs = 

0.275) 

Based on the mean particle velocity 〈v〉 in Fig. 7, the particle Stokes number in riser flows St = 
ρpdp(U − 〈v〉)/μg [85] is evaluated to be ~ 3,000, indicating the dominance of particle inertia over fluid 
viscous force and the importance of interparticle collisions in affecting the flow behavior. Therefore, by 
conducting an analysis on the particle collisions statistics, we found the decreasing 〈Nagg〉 and 〈nagg〉 with 
increasing e observed in Fig. 7 can be attributed to the reduced probability of agglomerating collisions. 
More specifically, Fig. 8 summarizes the statistical distributions collected as two particles collides in 
riser flows. The inset of Fig. 8a is a schematic of a binary collision, which illustrates the normal impact 
velocity for approaching collisions vim,n and impact angle θ for a collision. Fig. 8a shows the distribution 
of the number of particles involved in collisions ncoll. Due to the small solid concentration εs = 0.01 in 
riser flows, the mean free path of particles is much larger than particles in defluidization. Thus, the 
frequency for multiple-particle collisions drops quickly with increasing ncoll and binary collisions (ncoll = 
2) dominate the particle collisions in riser flows. For a binary collision, it is known that when vim,n ≤ vcrit, 
where vcrit is the critical agglomeration velocity, the collision will result in agglomeration and a doublet 
will form [86-89]. As a result of reduced collisional dissipation, Fig. 8b indicates that increasing e 
causes a decrease in vcrit at typical impact angles θ. The distributions of θ show peaks at 45° but have 
little independence on varying e (inset of Fig. 8b), suggesting level of energy dissipation does not alter 
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the geometric configurations of particle collisions in riser flows. With vcrit known, the probability of 

agglomerating binary collisions Pagg can be evaluated by , ,0
( )critv

agg im n im nP f v dv= ∫ , where f(vim,n) is the 

distribution of normal impact velocity. The distributions f(vim,n) collected in simulations are summarized 
in Fig. 8c, where changing e is seen to have relatively small impact on f(vim,n). Therefore, with a 
decreasing vcrit, Pagg drops from 25% to 0.3% (evaluated using vcrit values at θ = 45°, red curve in Fig. 
8b) as e increases from 0.4 to 0.99 (inset of Fig. 8c). An example of Pagg at e = 0.4 is illustrated by the 
shaded area in Fig. 8c. Since a smaller Pagg indicates a reduced fraction of binary collisions that end up 
in doublets, 〈Nagg〉 decreases with increasing e. Similarly, the mean critical agglomeration velocities for 
collisions with ncoll ≥ 3 is likely to be decreased with increasing e (though such critical velocities also 
depend on the geometric configuration of collisions and are non-unique for each specified e [90]), 
resulting a decrease in 〈nagg〉 at higher e. Given the correlation between vcrit and 〈nagg〉 discussed above, it 
is reasonable that changing material stiffness or Tabor parameter of particles, which alters vcrit [15,91], 
affects particle agglomeration in riser flows as well [16]. It is worth mentioning that assuming the 
fluctuating velocities (v' = v − 〈v〉) of all particles in risers follow Gaussian distribution with identical 
"granular temperature T = 1/3〈|v − 〈v〉|2〉", the normal impact velocity vim,n follows Rayleigh distribution 

2
, , ,( ) / (2 )exp[ / (4 )]M im n im n im nf v T v Tv −= . However, as shown in Fig. 8c, f(vim,n) has higher tails than the best 

fit using fM(vim,n) (red dashed line in Fig. 8c) at e = 0.6 (higher tails also seen for other values of e). This 
deviation of f(vim,n) from fM(vim,n) is reminiscent of granular gases, in which higher tails of velocity 
distributions than Gaussian are observed and proven to be a consequence of particle clustering due to 
inelastic collisions [92-94]. Since cohesion enhances particle clustering by forming agglomerates, 
deviation of f(vim,n) from fM(vim,n) in the current system is expected. Recently, Murphy and Subramaniam 
[95] conducted DEM simulations for a granular gas of cohesive particles. A wider normal relative 
velocity distribution than Gaussian is also observed. 
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                                                                                    (c) 

Fig. 8. (a) Probability mass function of the number of particles involved in collisions in riser flows with 
ncoll = 2 standing for the binary collision (inset: an oblique binary collision with normal impact velocity 
vim,n and impact angle θ collected right before they enter the cohesive well Dc.) (Refer to Section 2.2 for 

the definition of Dc); (b) critical agglomeration velocity in binary collisions as a function of e (inset: 
distributions of impact angle at different e); (c) distributions of normal impact velocity at different e (μs 

= 0.275, μr = 0) (red dashed line: prediction of velocity distribution at e = 0.6, inset: probability of 
agglomerating binary collisions with increasing e). 

3.2.2 Effect of friction 

Simulations were also conducted by changing μs or μr at e = 0.97. In contrast to the defluidization 
discussed in section 3.1.1, neither μs nor μr affects the average particle speed and agglomerate properties 
in riser flows (results not shown for brevity). Similar to the discussion in Section 3.2.1, the insensitivity 
of agglomerates to varying particle friction can be attributed to the fact that vcrit is unaffected by either μs 
or μr, as shown in Fig. 9. With a constant vcrit, the probability of agglomerating collisions remains 
unchanged as well as the agglomerate properties. 

A physical understanding of Fig. 9 is as follows: since agglomeration is determined by cohesion 
that acts only in the normal direction of interacting particles, the role of the dynamics associated with 
tangential motions controlled by μs and μr is minimized. A similar explanation applies to the 
insensitivity of vcrit to varying impact angle in Fig. 8b. Fig. 9 also confirmed previous findings that for 
binary collisions, the relative motion of particles in the tangential direction has little impact on that in 
the normal direction, which was seen for non-cohesive particles in ambient conditions [66] or 
submerged in liquids [96] as well as wetted particles [97]. Therefore, smoothing particles to decrease 
friction may not help avoid agglomeration in risers if the particle restitution coefficient remains the 
same. Conversely, since cohesion usually increases with decreasing surface roughness, agglomeration 
can be enhanced with smoothed particles. 
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Fig. 9. Critical agglomeration velocity in binary collisions as a function of μs with varying μr. (e = 0.97) 

4 Conclusions 

From DEM-CFD simulations, a reverse sensitivity to friction and restitution coefficient in gas-
solid flows of cohesive particles was observed between dense and dilute flows. Namely, particle 
defluidization is more influenced by friction since the flow is dense with lasting particle contacts. 
Conversely, particle velocity and agglomerates in dilute riser flow are dictated by the restitution 
coefficient due to the influence of inelastic dissipation on the critical agglomeration velocity of binary 
collisions. At lower rolling friction, an increase in sliding friction shows a non-monotonic effect on 
particle defluidization, which can be attributed to shift of the principal role of sliding friction from 
enhanced sliding dissipation to increased driving for particle spin. The different sensitivities suggest the 
complexity of the continuum modeling for gas-solid flows can be reduced provided the leading factor in 
the system of interest is properly considered. The results of this work may also serve as validation data 
for predictions from continuum models incorporating particle cohesion and friction. 
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Appendix: Theoretical analysis on the competing effects of sliding friction 

To establish an analytical understanding of the competing effects associated with changes in 
sliding friction (μs), we simplify the behavior of a single particle p during defluidization into two 
processes (Fig. 10): (i) acceleration of the particle after a binary collision characteristic of the bubbling 
regimes with relatively low solid concentration and (ii) deceleration and eventual stoppage as the 
particle slides or rolls on a solid wall, mimicking the condition of enduring contacts as U → Ucf. Based 
on the post-collisional velocities (translational and angular) of the particle obtained from Process I, the 
non-monotonic effect of μs will be demonstrated by variation of the particle stop distances (the distance 
travelled by the particle before it stops on the rough wall with the same μs and μr as the particle) in 
Process II with increasing μs. Two stop distances will be computed, based on assumptions of pure 
sliding (Ds) and pure rolling (Dr) respectively, as shown in Fig. 10b. 

 

                                   (a)                                                                                 (b) 

Fig. 10. Illustration of the two processes of a single particle p considered in theoretical analysis: (i) 
binary collision during which the initially static particle p (yellow) gains translational velocity vp and 

angular velocity ωp after collision, and (ii) particle either sliding or rolling on a rough solid wall with the 
initial velocities as the translational velocity and rotational velocity after Process I, respectively. 

To calculate the post-collisional velocities of the initially static particle p with particle c 
possessing impact velocity vim and impact angle θ (Fig. 10a), we extend the theory by Foerster et al [66] 
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where vp, ωp are respectively, the translational and angular velocities after the collision, n̂ is unit normal 
vector pointing from the center of particle c to particle p. Jc and Jr are the momentum transfer from 
contact forces and rolling friction during the collision, respectively given by 
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Combining the Eq. (A1) and (A2), the magnitudes of the translational velocity vp and angular 
velocity ωp of particle p after the oblique collision are respectively given by 
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Using the velocities calculated by Eq. (A4) and Eq. (A5) as initial conditions, the stop distances for the 
particle under the assumptions of pure sliding Ds and pure rolling Dr are respectively computed as 
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where dDs/dμs < 0 while dDr/dμs > 0 for μs > μs,crit. Therefore, when μs is small (μs < μs,crit), increasing μs 
has the opposite effect on Ds and Dr, i.e. Ds decreases and Dr increases. For the case of defluidization, as 
U reduces towards Ucf, the complex many-body interactions likely results in lasting contacts that are 
neither pure sliding nor pure rolling but a mixture of the two, and thus the combined stop distance Ds + 
Dr is a reasonable quantity to measure the overall effect of μs. Based on the material properties in this 
work with vim = 5 cm/s and θ = 75° (typical values in fluidized beds), Ds + Dr is plotted against μs in Fig. 
11. At μr = 0.002, for smaller μs (< 0.1), the decreasing Ds due to increased μs causes a quick decay of Ds 
+ Dr, while increased Dr with larger ωp (see Eq. (A5)) leads to a growth of Ds + Dr as μs is further 
increased (> 0.1), until μs > μs,crit (≈ 0.5), when Ds + Dr levels off upon the translation to "non-sliding". 
With increased μr = 0.02, particle angular velocity ωp is significantly limited (see Eq. (A5)), so that Ds + 
Dr is behaving closer to a monotonic decreasing (i.e., Ds is the dominant term). Since a larger Ds + Dr 
suggests a higher mobility for particles to rearrange into a denser packing and result in a smaller Ucf, the 
variation of Ds + Dr with μs is consistent with the behavior of Ucf with μs in Fig. 3, where a non-
monotonic trend is observed at smaller μr and Ucf generally levels off when μs > 0.5. In sum, by 
analyzing the dynamics of an individual particle in representative processes, the competing effects of 
sliding friction found in the many-particle defluidization are recovered. 

 

Fig. 11. Combined stop distance in Process (ii) for particle p moving on a wall with the same μs and μr as 
the particle. The material properties used in calculations are listed in Table 1 with vim = 5 cm/s, θ = 75°, 

β is assumed to be 0 for μs > μs,crit [99] and Bo = 5.43. Note e = 0.96, which is the effective e for 
cohesive binary collisions with input e = 0.97 in the simulations [34]. (Solid lines: sum of Eq. (A6) and 

Eq. (A7), symbols: DEM simulations) 
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