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A decade ago, Yves Couder and Emmanuel Fort discovered that a millimetric droplet sustained
on the surface of a vibrating fluid bath may self-propel through a resonant interaction with its own
wave field. We here present the results of a combined experimental and theoretical investigation
of the interactions of such walking droplets. Specifically, we delimit experimentally the different
regimes for an orbiting pair of identical walkers and extend the theoretical model of Oza, Rosales &
Bush[39] [J. Fluid Mech. 727:582–611, 2013] in order to rationalize our observations. A quantitative
comparison between experiment and theory highlights the importance of spatial damping of the wave
field. Our results also indicate that walkers adapt their impact phase according to the local wave
height, an effect that stabilizes orbiting bound states.

I. INTRODUCTION

A droplet may bounce indefinitely[9] on the surface
of a fluid bath subjected to a vertical acceleration Γ =
γ cos(2πft). Above the bouncing threshold, γ > γB ,
the droplet avoids coalescence by virtue of a thin air
layer sustained between the drop and bath during im-
pact. Such droplet levitation has been examined both
experimentally[8, 13, 35, 46] and theoretically[3, 25, 30,
35]. Between the so-called walking threshold and Fara-
day instability threshold, γW < γ < γF , the droplet
self-propels by interacting with its own wave field[9, 44].
Walking arises because the droplet lands on a perturbed
surface, and the local slope imparts a horizontal impulse
to the droplet during impact. The association of a self-
propelling drop and extended wave field is referred to as
a walker [9]. The transition from bouncing for γ > γB to
walking for γ > γW > γB is preceded by a period dou-
bling transition[44]; specifically, the drop must bounce
at twice the period of the forcing, commensurate with
the most unstable mode of the subharmonic Faraday
instability[2, 31], in order to walk. Faraday waves of
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wavelength λF are thus excited by the resonant inter-
action between the bath and the drop. The closer the
system is to the Faraday instability, the more long-lived
the waves. The walker motion is thus influenced by the
wave field generated by previous impacts. The concept of
path memory[20] is central to the walker dynamics: pre-
diction of the walker’s future requires knowledge of its
past. The relevant timescale of influence is proportional
to the memory parameter, Me ∝ (1 − γ/γF )−1, which
prescribes the proximity to the Faraday threshold, and
so the persistence of the impact-induced wave field.

Walkers are of growing interest because they exhibit
numerous phenomena reminiscent of quantum systems:
single-particle diffraction[1, 7], quantum-like statistical
behavior in a corral[24, 29], tunneling[18], quantized or-
bits in a rotating frame [26, 38] and central force[33, 41],
orbital level splitting [19] and spin states[6, 32]. This sys-
tem represents the first macroscopic example of a pilot-
wave system of the form envisaged by Louis de Broglie
in his double-solution pilot-wave theory[11]. The rela-
tion between this hydrodynamic pilot-wave system and
the modern extensions of de Broglie’s mechanics has been
explored elsewhere[5, 6].

Yves Couder, Suzie Protière and coworkers[9, 19, 42,
43] observed that two walkers may interact through their
common wave field, and reported a variety of behaviors.
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FIG. 1. (a)–(b) A pair of walkers orbiting in phase in the n = 1 orbital mode (Supplementary Movie 1). (c) Strobed
image illustrating the horizontal trajectory of two drops locked in a circular orbit. (d) The parameter regime explored in our

experimental study is indicated by the white line. The vibration number Vi = 2πf/
√
σ/ρR3 is fixed at 0.77, corresponding

to drops of radius R = 0.37 mm. The vibrational forcing acceleration of the bath is γ. The relevant variables are defined in
Table I.

Depending on the initial conditions, the two droplets ei-
ther attracted, repelled or walked side by side in the so-
called promenade mode[4]. Circular orbits, oscillatory
orbits or epicycles also arose, depending on the relative
size of the two drops. For identical drops, orbital diame-
ters dn were quantized, such that dn = λF (n−ε0), where
the orbit order n ∈ N∗ when the two drops were bouncing
in phase and n = 1/2 + k, k ∈ N when they were out of
phase. The quantization was rationalized qualitatively in
terms of a simple model for the wave field. The authors
reported that ε0 is typically measured to be 0.2, but de-
pends on different parameters such as the forcing acceler-
ation, drop size and orbit order n. They also reported the
velocity of the orbiting droplets, noting that the orbital
motion slows down the drops: the smaller the orbits, the
slower the drops. Since the precise values of the forcing
acceleration and drop sizes were not reported, a quanti-
tative comparison with theory was not possible. The goal
of the experimental portion of our study is to categorize
the range of possible orbiting states and their dependence
on system parameters. This quantitative data will prove
to be essential in guiding the refinement of theoretical
models of this hydrodynamic pilot-wave system.

The drop behavior is extremely sensitive to the system
parameters, specifically to drop size and forcing accel-
eration. Moláček & Bush[35, 36] described the impact
of a bouncing drop on a vibrating liquid bath in terms
of a logarithmic spring model. They also calculated the
form of the wave field induced by the droplet impacts.
This provided the basis for Oza et al.’s[38, 39] strobo-
scopic model, in which the vertical motion of the droplet
is averaged over the bouncing period and the drop is ap-
proximated as a continuous moving source of standing

waves that decay in time. While easier to analyze than
the full model of Moláček & Bush[35, 36], the strobo-
scopic model introduces a parameter in the form of the
impact phase, which was chosen to match the walker’s
rectilinear walking speed. Using a more refined model
of weakly viscous quasi-potential wave generation and
evolution, Milewski et al.[34] succeeded in reproducing a
number of features observed by Protière et al.[43], such
as circular orbits and the promenade mode[4]. More-
over, it made clear the importance of spatial damping
in accurately modeling the wave field far from a walker.
The theoretical models of pilot-wave hydrodynamics are
reviewed by Bush[6], and more recent developments in-
clude those of Blanchette[3], Dubertrand et al.[14], Durey
& Milewski[15] and Faria[22]. We here apply and extend
the stroboscopic model of Oza et al.[38, 39] through an
investigation of the dependence of the stability of orbit-
ing pairs on both memory and orbital diameter.

II. EXPERIMENTS

A. Apparatus and methods

We use the experimental setup developed by Harris
& Bush[27]. The system consists of an electrodynamic
shaker with an external linear air bearing that constrains
the vibration to a single axis. The maximum inhomo-
geneity of the vertical vibration amplitude can thus be
reduced to approximately 0.1%, and transverse vibra-
tions are effectively eliminated. A piezoelectric droplet-
on-demand generator[28], capable of producing droplets
of highly repeatable size, is used to create a pair of nearly
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identical droplets that are released onto the bath surface.
In the present study, we restrict our attention to a sin-
gle drop radius, R = 0.37 ± 0.01 mm, unless otherwise
stated, as the walking regime is relatively large for this
drop size (Fig. 1d). Orbital bound states can be ob-
served for a range of drop sizes, but are less stable for
substantially smaller or larger drops. In order to spec-
ify the memory, we need both the driving amplitude and
the Faraday threshold, the latter of which depends on
the fluid temperature. All experiments were undertaken
with a bath of 20 cSt silicone oil of depth H = 6.5 mm
driven at a vibrational frequency f = 80 Hz, for which
γF ∼ 4.2g at room temperature.
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FIG. 2. (a) Schematic illustration of one paddle. (b) Top view
of the vessel, with the channels leading to holding pens then
two launchers. The orange lines indicate the trajectories of
the drops, which exit the launchers before locking into orbital
motion in the middle of the vessel.

The experimental apparatus is presented in Fig. 2. In
order to eliminate the influence of air currents, a sealed
lid is fixed to the vibrating bath. We launch two walk-
ers in opposite parallel directions, the perpendicular dis-
tance between their initial trajectories being the impact
parameter. These launchers, as used successfully in re-
cent studies[45], allow us to impel the droplet to walk
straight along the symmetry axis of the diverging sub-
merged barriers. By laterally translating the launchers,
the impact parameter can be varied continuously. To syn-
chronize the two drops, we employ four rotating paddles
that pass through a sealed bearing in the lid, as illus-
trated in Fig. 2. The paddles are partially submerged in
the silicone oil and the resulting menisci repel the drops,
allowing for drop confinement in the holding pens. The
droplet trapping typically takes no more than thirty sec-
onds, because the droplets tend to follow the curved outer
boundary toward the holding pens. Once both droplets
are trapped, both front gates are opened simultaneously
and the droplets walk through the launchers and interact
near the center of the vessel.

This system of paddles and launchers allows us to ob-
tain different orbits by following a simple protocol. First,
the impact parameter is set to be close to the diameter of
the desired orbit. Then, the system is forced just above
the bouncing threshold, at typically 1.2g, and the drops

are created. Next, we increase the vibrational forcing in
order to cross the period-doubling transition (typically
γ ≈ 3g). A strobe light is used to ascertain whether the
two drops are bouncing in or out of phase, and the rel-
ative phase may then be altered by perturbing the fluid
surface near one of the drops with a partially immersed
needle. We then replace the lid and increase the forc-
ing to the desired value γ > γW and use the paddle
mechanism to launch the two drops simultaneously. Pro-
vided the orbit is relatively well centered in the vessel,
so that the influence of boundaries is minimized, we vary
the forcing acceleration γ incrementally, waiting approxi-
mately one minute until the system reaches a new steady
state. We then acquire the trajectories (for typically 30
seconds) using a top-view camera. Each video (shot at 20
frames per second) is then post-processed and analyzed
to obtain the position of the two drops at every time step
using tracking software, yielding walker trajectories.
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FIG. 3. Observed trajectories of orbiting pairs of walkers,
from the innermost orbit order n = 0.5 to the outermost
n = 3 at forcing acceleration γ/γF = 0.86± 0.01. The radius
of all drops is R = 0.37±0.01 mm and the Faraday wavelength
λF = 4.75 mm. Color bar indicates the instantaneous speed
in mm/s. The free walking speed of a single walker at this
value of γ/γF is u0 = 7.9± 0.3 mm/s. The n = 3.5 orbit is a
wobbling trajectory at this value of memory (see Fig. 4).

B. Experimental results

To characterize the quantized orbits, we follow the no-
tation of Protière et al. [42], using integer orbit orders
n to denote orbits when the two drops are in phase, and
half-integers when they are out of phase. We observed
seven different orbit sizes, from n = 0.5 to n = 3.5. While
larger orbits may be possible, we were constrained experi-
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FIG. 4. Orbital stability diagram for pairs of walkers of the same size, R = 0.37±0.01 mm, forced above the walking threshold,
γ/γF ≥ γW /γF = 0.77±0.01. Each dot corresponds to one orbital trajectory acquired over 30 seconds, and n is the orbit order.
Blue dots correspond to stable circular trajectories, rose dots to wobbling at low forcing acceleration, green dots to wobbling at
large forcing acceleration, red dots to unstable orbits and black dots to stationary bouncing. Four typical trajectories are shown
in panels A–D, along with power spectra of the inter-droplet distance, T being the orbital period. The color bars indicate the
droplet speed in mm/s. The trajectories correspond to (A) high-frequency wobbling at low memory, (B) 2ω–wobbling at high
memory, (C) 3ω–wobbling at high memory, and (D) stable circular motion.

mentally by the finite size of our vessel and the influence
of boundaries. The orbit orders n = 3 and n = 3.5
have not previously been reported[19, 42, 43], but were
achieved here presumably by virtue of the precision of
the driving system and the elimination of air currents.
Evidently, for such large orbits, the attractive wave force
exerted by the other drop may be exceeded by the influ-
ence of air currents. A video of an n = 1 orbit is shown
in Supplementary Movie 1, and still images in Fig. 1.
Fig. 3 shows six different orbital trajectories achieved at
approximately the same forcing. It highlights the fact
that the orbital diameters are quantized, and span a siz-
able range, from 1.1 mm ∼ 3R between the centers of the
two drops for n = 0.5 to approximately 16 mm ∼ 40R
for n = 3.5. For small orbit orders n, the drop velocity is
substantially less than the associated free walking speed
u0 of a single walker, an effect that will be rationalized
in Sec. III.

The dependence of orbital stability on memory is re-
ported in Fig. 4. We consider all of the orbits that could
be achieved with our fixed drop size, and observe sev-
eral dynamical regimes. For n = 0.5, we observe that
the pair of drops does not walk in a considerable range
above the walking threshold for single drops (grey re-
gion). This delayed onset of walking might be explained
by the fact that the two wave fields generated by the
out-of-phase pair of drops are so close that they roughly

cancel each other, resulting in a wave field that is lo-
cally almost flat. At low memory, small orbits (n ≤ 2)
exhibit a distinct transition from a bouncing state to a
wobbling orbit, characterized by a periodic oscillation in
the separation distance between the walkers. This low-
memory wobbling region gets smaller with increasing n.
The small orbits (n ≤ 1.5) remain bound at high mem-
ory, even just below the Faraday threshold. In the central
(blue) region, we observe circular orbits of the form de-
scribed by Protière et al.[43] At higher values of memory
(red region), large circular orbits (n ≥ 2) are unstable,
but stable wobbling orbits (green region) typically arise
prior to the onset of instability.

The wobbling styles arising at low and high memory
are denoted by different colors in Fig. 4 because they
appear to have different origins. Typical trajectories of
the different wobbling styles are shown in Fig. 4. At
low memory, wobbling appears to be associated with the
transition from the static bouncing state to circular mo-
tion. Particularly for n = 1, at the walking threshold
for single drops, the drops begin to oscillate along a line.
When the forcing acceleration is increased, this oscillat-
ing pair begins to slowly rotate around its center of mass
(Fig. 4a). As the memory is progressively increased, the
wobbling decreases in amplitude and ultimately disap-
pears. At high memory, both 2ω and 3ω–wobbling orbits
are observed (Fig. 4b–c): the separation distance between
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FIG. 5. Evolution of the wobbling amplitude as a function of
memory for two drops of radius R = 0.4 ± 0.01 mm orbiting
in the n = 2 mode. (a) Dependence of the wobbling ampli-
tude Aw on forcing acceleration γ/γF . The amplitude is mea-
sured as the mean of the successive peak-to-peak distances
between the walkers, and error bars reflect the standard devi-
ation of the measurement. (b)–(e) Four orbital trajectories at
specified memories, the color indicating the speed in mm/s.
Also shown are power spectra of the distance between the two
drops, T being the orbital period. One can see the appear-
ance of several modes of oscillation at high memory (panel
e).

the drops oscillates at roughly twice or thrice the orbital
frequency, which is apparent from the peaks in the power
spectra of the inter-droplet distance. These wobbling or-
bits are thus locked on the orbital period, in contrast
to those observed at low memory. The growth of the
wobbling amplitude with increasing memory is reported

in Fig. 5, behavior suggestive of a Hopf-type instability.
The wobbling trajectories in Fig. 5c–d exhibit substantial
speed fluctuations, as the walkers accelerate when they
move apart and decelerate when they come together.

In Fig. 6, we report the dependence of the mean speed
of orbiting walkers on the forcing acceleration γ/γF . Er-
ror bars represent the standard deviation of the speeds;
thus, large error bars are indicative of wobbling orbits. A
clear tendency is observed: walker speeds increase with
memory and then plateau for γ/γF > 0.9. Orbital speed
appears to decrease slightly in the high memory limit,
γ/γF > 0.975. At fixed memory, walkers in orbiting
pairs are generally slower than free walkers, although the
maximum speed in a wobbling orbit may exceed the free
walking speed. Fig. 6b–c shows that the speed increases
monotonically with n, a trend also reported by Protière
et al.[43] A similar trend was observed for promenading
pairs of droplets by Borghesi et al.[4], who interpreted
this as evidence of an effective binding energy between
walkers.

III. THEORETICAL MODELING &
COMPARISON WITH EXPERIMENT

A. Theoretical model

We here outline an improved version of the strobo-
scopic model introduced by Oza et al. [38, 39], developed
with a view to rationalizing the experimental results de-
scribed in Sec. II. We consider two walkers of mass m,
radius R, density ρ and surface tension σ with horizontal
positions x1(t) and x2(t) bouncing in phase (ς = +1) or
out of phase (ς = −1) under a gravitational acceleration
g, the relevant variables being given in Table I. Walkers
experience two forces in the horizontal direction[36, 44]:
a propulsive wave force proportional to the local slope of
the fluid surface and an opposing drag force proportional
to their velocity. A force balance in the horizontal direc-
tion, time-averaged over the bouncing period TF , yields
the pair of trajectory equations[36]

mẍi +Dẋi = −mgS[hi(xi, t)]∇hi(xi, t) (1)

for i = 1, 2, where D is the time-averaged drag coeffi-
cient, hi the wave field generated by the two walkers,
and S = sin Φ is the sine of the mean phase of the wave
relative to the forcing during the drop’s contact with the
bath. Note that S depends on both the forcing acceler-
ation γ/γF and the local wave height h. Including this
dependence represents a significant extension to the stro-
boscopic model, since prior work[33, 38] assumed S to be
constant, an approximation we demonstrate to be inad-
equate in Sec. III B.

The qualitative dependence of the phase parameter S
on the forcing acceleration γ/γF and local wave height
h may be deduced from the following physical argument.
Under the assumption of short contact time, the impact
phase must decrease as the bath’s peak vertical velocity
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increases, so as to keep the drop’s outgoing vertical veloc-
ity roughly constant and thus maintain a periodic bounc-
ing dynamics. The bath’s peak vertical velocity increases
with forcing acceleration but decreases with local wave
height, since a walker in a (2, 1)2 bouncing state strikes
the bath while the wave is decreasing in amplitude[36].
We thus expect S to decrease with forcing acceleration
and increase with local wave height.

A derivation of the wave field hi(x, t) is given
elsewhere[37], an abbreviated version of which is pre-
sented here. The linear theory[2, 31] of Faraday waves
below the Faraday instability threshold, γ/γF . 1,
shows that the least stable mode has wavenumber kF
and frequency f/2, where the Faraday wavenumber kF
approximately satisfies the standard water-wave disper-
sion relation, (πf)2 = (gkF + σk3F /ρ) tanh(kFH). The
mode decays exponentially in time due to viscosity,

over a timescale prescribed by the nondimensional mem-
ory parameter[20, 36], Me (see Table I). Note that
a period-doubled walker is resonant with this mode.
Since the wave generated by each impact is small in
amplitude, the complete wave field may be obtained
by summing the contributions of each walker over its
trajectory[20, 23, 35].

Since the present study concerns interactions between
drops separated by several Faraday wavelengths, the
model of the emitted standing waves must be reasonably
accurate in the far field, which was evidently not required
to capture the dynamics of a single walker[38, 39]. The
wave field generated by a single impact may be approx-
imated by a standing wave with wavenumber kF whose
amplitude decays exponentially in time, multiplied by a
Gaussian profile of time-dependent width[10, 37]:
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Variables Definition

x1(t),x2(t) drop positions
m,R drop mass, radius
g, γ, f gravitational acceleration, forcing acceleration, forcing frequency
γF , kF , λF Faraday instability threshold, wavenumber, wavelength
Td, TF = 2/f decay time of waves without forcing, Faraday period
σ, ρ,H fluid surface tension, density, mean depth
(νe) ν (effective[36]) fluid kinematic viscosity
µa, ρa air dynamic viscosity and density
S = sin Φ sine of wave’s mean phase during contact time
ς = ±1 drops’ relative bouncing phase

D = 0.17mg

√
ρR

σ
+ 6πµaR

(
1 +

ρagR

12µaf

)
drag coefficient

A =

√
8πνeTF

3

(kFR)3

3B−1
w + 1

, Bw =
ρg

k2Fσ
wave amplitude, Bond number

α =
ε2

2νe(1 + 2ε2)
where ε =

2πfkF νe

g
(
3B−1

w + 1
) wave spatial damping coefficient

Me =
Td

TF (1− γ/γF )
memory parameter

TABLE I. Variables and parameters appearing in the trajectory equation (1)–(2). Following the experiments described in
Sec. II, we model walkers of radius R = 0.37 mm and viscosity ν = 20 cSt forced at a frequency f = 80 Hz. The numerical
values of the corresponding constants appearing in the trajectory equations are[36]: TF = 0.025 s, Td = 0.0182 s, kF = 1.32
mm−1, λF = 4.75 mm, m = 2.01× 10−4 g, D = 1.55× 10−3 g/s, A = 13.8µm, α = 4.31× 10−4 s/mm2.

hi(x, t) =
A

TF

∫ t

−∞
[f (|x− xi(s)|, t− s) + ςf (|x− xi+1(s)|, t− s)] ds, where f(r, t) = J0(kF r)e

−αr2/(t+TF )e−t/(TFMe),

(2)

α is the spatial damping coefficient, A the amplitude of
a single surface wave and J0 the Bessel function of the
first kind. The discrete sum of waves may be replaced
by an integral provided the timescale of horizontal mo-
tion is long relative to that of the vertical motion[39],
λF /|ẋi| � TF , as is the case in the experiments. The
spatial damping factor may be derived[37] as a long-time
asymptotic approximation of the wavefield generated by
a single droplet impact, and arises from the observation
that waves of wavenumber k 6= kF are damped far more

strongly than those with k = kF . The TF term in the
spatial damping factor ensures that f(r, t) and its spatial
derivatives are well-behaved for all t ≥ 0. We omit the
t−1/2 term in the interest of simplicity, as it is subdomi-
nant to the exponential temporal decay. The model (2) is
consistent with experimental measurements of the wave-
field generated by a single bouncing droplet below the
walking threshold [10].

We introduce the dimensionless variables x̂ = kFx and
t̂ = t/TFMe, and obtain the dimensionless trajectory
equation

κx̂′′i + x̂′i = −βS
[
ĥi
(
x̂i, t̂

)]
∇ĥi

(
x̂i, t̂

)
, ĥi(x̂, t̂) =

∫ t̂

−∞

[
f̂(|x̂− x̂i(ŝ)|, t̂− ŝ) + ςf̂(|x̂− x̂i+1(ŝ)|, t̂− ŝ)

]
dŝ, (3)

where primes denote differentiation with respect to t̂,

f̂(r̂, t̂) = MeJ0(r̂) exp
(
− α̂r̂2

t̂+M−1
e
− t̂
)

, κ = m/DTFMe,

β = mgAk2FTFMe/D and α̂ = α/(k2FTFMe). We note
that this definition of β differs from that used in prior
work[39], and drop all carets in the remainder of the sec-

tion for the sake of clarity.
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B. Phase-adaptation of walking droplets

We now use the experimental data presented in Sec. II
to empirically deduce the dependence of the phase pa-
rameter S = sin Φ on the forcing acceleration γ/γF and
wave height h. We seek orbital solutions to the trajec-
tory equation (3) of the form x1(t) = r0(cosωt, sinωt)
and x2(t) = −r0(cosωt, sinωt), in which the walkers tra-
verse a circle of radius r0 at uniform angular velocity ω
while diametrically opposed to each other. In doing so,
we obtain a system of algebraic equations that describe
the radial and tangential force balance on an orbiting
pair, thus defining the orbital radius r0 and angular fre-
quency ω in terms of the experimental parameters:

−κr0ω2 = βS
∫ ∞
0

[
S1(z) sin

ωz

2
+ ςC1(z) cos

ωz

2

]
dz,

r0ω = βS
∫ ∞
0

[
S1(z) cos

ωz

2
− ςC1(z) sin

ωz

2

]
dz,

(4)

where we define the functions

Sk(z) = −∂
kf

∂rk

(
2r0 sin

ωz

2
, z
)

and

Ck(z) = −∂
kf

∂rk

(
2r0 cos

ωz

2
, z
)
. (5)

We solve Eq. (4) in Matlab, finding the phase param-
eter S = sin Φ required to match the experimentally ob-
served orbital speed r0ω for each value of forcing accel-
eration γ/γF and orbit order n. As shown in Fig. 7a,
this fitted phase parameter generally decreases with forc-
ing acceleration and increases with orbit order n. Both
trends are in agreement with the physical argument pre-
sented in Sec. III A: since a walker in a circular orbit lies
near the trough of the wave created by its orbiting pair,
the total wave height at each walker’s location is reduced
by the presence of the other. These troughs decrease in
amplitude with increasing orbit order n, so the total wave
amplitude felt by a walker increases with orbital diame-
ter. Since the phase parameter S is expected to decrease
with increasing wave height h, it should increase with
increasing orbital diameter.

We proceed by defining the wave height at a walker’s
position when it is in circular orbit:

hc = −
∫ ∞
0

[S0(z) + ςC0(z)] dz. (6)

Guided by recent developments reported elsewhere[37],
we assume for the sake of simplicity that S is a lin-
ear function of both forcing acceleration γ/γF and local
wave height hc. We compute hc using the experimen-
tally observed orbital radius r0 and angular frequency ω,
restricting our attention to stable circular orbits satis-
fying γ/γF ≤ 0.95 and thus neglecting walkers in com-
plex bouncing states (Fig. 1d). Multivariate linear re-
gression in Matlab is used to find the line of best fit,

S = p1 − p2(γ/γF ) + p3hc, as shown in Fig. 7b. In
Sec. III C, we shall use this semi-empirical linear rela-
tionship to assess the existence and stability of orbital
solutions to the stroboscopic model (3). This analysis
will suggest that the walker behaves as a phase-adapting
oscillator, changing its impact phase based on the local
wave field so as to maintain a periodic vertical bouncing
dynamics.

C. Orbital solutions and their stability

Solving the system of algebraic equations (4)–(6) in
Matlab, we find that the orbital solutions are quantized
in radius, and that the predicted radii are in good agree-
ment with experiment, as is evident from the solid lines

in Fig. 8c. The spatial damping factor e−αr
2/(t+TF ) is

essential to obtain accurate predictions; indeed, Fig. 8a
shows that the predicted orbits are too small if spatial
damping is neglected (α = 0), presumably because the
model then overpredicts the wave amplitude in the far
field[37].

Figure 9 shows the dependence of the predicted orbital
speed r0ω on forcing acceleration γ/γF and orbit order n.
The results deduced from a model that neglects both spa-
tial damping (α = 0) and phase adaptation (sin Φ = 0.2)
are shown in Fig. 9a, while those corresponding to the
full model with both spatial damping and phase adapta-
tion sin Φ = S(h) are shown in Fig. 9b. The free walking
speed u0 of an isolated walker satisfies the equation

u0 = −βS(hw)

∫ ∞
0

∂f

∂r
(u0z, z) dz,

where hw =

∫ ∞
0

f(u0z, z) dz. (7)

It is evident from Fig. 9b that orbiting walkers move
slower than they would in isolation, and that their speed
increases with orbit order n, as observed in experiment
(Fig. 6). We note that the substantial increase of orbital
speed with n (Fig. 9b inset) is due to the phase parame-
ter S increasing with local wave height h, an effect that
is absent if phase-adaptation is neglected (Fig. 9a). In-
deed, neglecting phase adaptation leads to circular orbits
whose speed changes little with n, and may even slightly
decrease with n. We thus conclude that walkers in or-
biting pairs are slower than free walkers owing largely to
their phase-adaptation based on the local wave field.

We then perform a stability analysis of the orbital so-
lutions by generalizing the framework of Oza et al. [38]
and Labousse et al. [33] to incorporate multiple walk-
ers, the effect of spatial damping, and the dependence of
the phase parameter S on the local wave height. We
express the trajectory equations (3) using polar coor-
dinates, x1(t) = r1(t)(cos θ1(t), sin θ1(t)) and x2(t) =
r2(t)(cos θ2(t), sin θ2(t)), as shown in Eq. (11) of the Ap-
pendix. Following the procedure described in Oza et
al. [38], we linearize the trajectory equation around the
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FIG. 7. (a) Dependence of the phase parameter sin Φ on the forcing acceleration γ/γF and orbit order n, as deduced from
the experimental data. The phase is chosen to match the experimentally observed orbital speed using the stroboscopic model
described in the text. (b) Empirical fit sin Φ = p1 − p2 [γ/γF − (p3/p2)hc] to the experimental data, where hc is the local wave
amplitude defined in Eq. (6), p1 = 0.8171, p2 = 0.8735 and p3 = 5.063 × 10−2. We select data points for which γ/γF ≤ 0.95
and the orbital diameter’s standard deviation is less than 0.1λF , so as to exclude complex bouncing states and wobbling orbits.

orbiting solution to assess its stability, and so substi-
tute the expressions r1(t) = r0 + r̃1(t)H(t), θ1(t) =

ωt + θ̃1(t)H(t), r2(t) = r0 + r̃2(t)H(t) and θ2(t) =

ωt+ π + θ̃2(t)H(t) into (3), H being the Heaviside func-
tion. Taking the Laplace transform of the linearized
equations (12), we obtain algebraic equations for the
Laplace transformed variables Ri(s) = L[r̃i(s)] and

Θi(s) = L[θ̃i(s)], which may be expressed in matrix form
as A(s) −B(s) −E(s) −F (s)
C(s) D(s) G(s) H(s)
−E(s) −F (s) A(s) −B(s)
G(s) H(s) C(s) D(s)


 R1

r0Θ1

R2

r0Θ2

 =

 cr1
r0cθ1
cr2
r0cθ2

 .

(8)

The matrix elements of the 4 × 4 matrix are defined
through the functions given in Eq. (13) in the Ap-
pendix. The constants on the right-hand side of this
equation are defined through the initial conditions by[38]

˙̃ri(0) = cri/κ and
˙̃
θi(0) = cθi/κ, where we assume that

r̃i(0) = θ̃i(0) = 0.
The eigenvalues of the linear stability problem are

given by the poles of the Laplace transforms [38] Ri(s)
and Θi(s). The orbital solution is stable if all eigenvalues
satisfy Re(s) < 0, and unstable otherwise. The function
f(r, t) decays exponentially in t, f ∼ e−t as t → ∞,
which implies that the functions in (13) are analytic in
the region Re(s) ≥ 0. The unstable eigenvalues of the
linear stability problem are thus given by the zeros of
detM(s), where M(s) is the 4 × 4 matrix in (8). For
square matrices M1 and M2, we have the identity

det

(
M1 M2

M2 M1

)
= det(M1 −M2) · det(M1 +M2), (9)

from which we deduce that detM(s) = G+(s)G−(s),

where

G±(s) = (A(s)± E(s))(D(s)∓H(s))

+ (B(s)∓ F (s))(C(s)∓G(s)). (10)

The linear stability problem is thus reduced to finding the
roots of G±(s) in the right-half complex plane. It may be
shown that G+(±iω) = 0 and G−(0) = 0, which reflect
the invariance of the orbital solution under translation
and rotation, respectively [38]. To locate the nontrivial
roots of G±(s), we use the contour integration method
developed by Delves and Lyness [12]. A circular orbit is
stable if there are no roots in the region Re(s) > 0 (blue
curves in Fig. 8), and unstable otherwise. For unstable
orbits, we identify the root s∗ of detM(s) with the largest
real part. Orbits with Im(s∗) = 0 destabilize via a non-
oscillatory instability (red curves in Fig. 8), and those
with Im(s∗) 6= 0 destabilize via an oscillatory instability
(green curves).

We find that unstable (red) branches separate the
quantized circular and wobbling orbital solutions, which
was also observed in theoretical studies of a single walker
in a rotating frame[38] and harmonic potential[33]. How-
ever, we find that circular orbits undergo oscillatory
instabilities at low and high memories (Fig. 8c), and
are stabilized at intermediate memories for n ≤ 2,
which is consistent with experiment (Fig. 4). This is
in contrast to a single walker’s dynamics in the pres-
ence of external forces, in which orbits are stable at low
memory and destabilize as the memory is progressively
increased[26, 33, 38, 41].

To understand the effects of nonlinearity in the un-
stable regimes, we performed numerical simulations of
the trajectory equation (3) with adaptive phase, using
a fourth-order Adams-Bashforth time-stepping method
combined with Simpson’s integration rule[40]. Some un-
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FIG. 8. The dependence on memory of the mean distance d between the orbiting drops for different orbit orders n. Panel
(a) shows the results of a model in which spatial damping is neglected (α = 0), and the phase is assumed to be constant
(sin Φ = 0.2). Panel (b) corresponds to a model in which spatial damping is included, and the phase is assumed to be a
different constant for each circular orbit, sin Φ = S(hc), where hc is the wave height defined in Eq. (6). Panel (c) corresponds
to the full model in which spatial damping and phase adaptation are included, so that the phase is allowed to change with time,
S = p1 − p2(γ/γF ) + p3h. Diamonds correspond to the experimental results. The mean of the successive maxima and minima
are plotted for wobbling orbits (green), the standard deviations being on the order of the pixel size. The curves correspond
to the theoretical predictions of (4), colored according to the results of our stability analysis. Blue indicates stable orbits, and
(red) green indicates orbits that destabilize via a (non) oscillatory instability. The shaded green surfaces indicate the extent of
the wobbling orbits found by numerical simulation of the trajectory equation (3). Integer (half-integer) values of n correspond
to ς = 1 (ς = −1). The sign of ς also alternates across different red branches, with the lowest branch corresponding to ς = 1.

stable circular orbits destabilize into stable wobbling or-
bits, the extent of the wobbling being indicated by the
shaded green regions in Fig. 8, while others destabilize
into rectilinear walking states. For the parameter values
explored here, we find that a necessary (but not suffi-
cient) condition for a stable wobbling orbit is that the
unstable eigenvalues of the linear stability problem con-
sist of a single complex-conjugate pair that are roots of
G−(s); indeed, wobbling orbits are never found near the
red solution branches in Fig. 8, which destabilize via non-
oscillatory instabilities. Examples of simulated wobbling
orbits are shown in Fig. 10, both at low memory (panels
a and b) and high memory (panel c). We observe various
polygonal instabilities of orbital solutions at low memory
(Fig. 10a–b), qualitatively similar to the high-frequency
wobbling orbits observed in experiments (Fig. 4a). Both
2ω- and 3ω-wobbling orbits are observed at high mem-
ory (Fig. 10c), as in the experiments (Fig. 4b–c). The

wobbling amplitudes (Fig. 8c) exhibit the qualitative be-
havior characteristic of supercritical Hopf bifurcations,
as observed experimentally (Fig. 5a). We also observe
presumably chaotic trajectories, in which the separation
distance between the walkers d(t) is aperiodic.

Fig. 8c shows that we obtain stable orbits, wobbling
orbits and unstable orbits in a wide range of both or-
bit order (n ≥ 1) and memory, as observed in the ex-
periments. It is evident that phase adaptation through
the phase parameter S = S(h) has a stabilizing effect
on both circular and wobbling orbits, thus substantially
improving the match with experiment. Specifically, the
theoretical model that assumes constant phase (Fig. 8b)
incorrectly predicts the absence of bound states for n = 3
and n = 3.5, a failing that is corrected by the inclusion of
phase adaptation (Fig. 8c). Comparison of Figs. 8b and
8c also indicates that wobbling orbits are observed over
a larger range of forcing acceleration γ/γF for each orbit
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FIG. 9. The dependence of orbital speed r0ω on forcing acceleration γ/γF and orbit order n, as predicted by (4). The rectilinear
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The inset in panel (b) shows the dependence of r0ω/u0 on n for γ/γF = 0.8. As in experiment (Fig. 6), orbiting walkers move
slower than they would in isolation, and their speed increases with orbit order n.

order n in the model that includes phase adaptation.
While including the dependence of the phase parame-

ter on forcing acceleration and local wave height improves
the comparison with experiments, the match in Fig. 8c
is still imperfect. First, we obtain no solutions for the
smallest orbit n = 0.5, which is presumably due to the
model’s poor characterization of the waves in the near-
field. The model for the wave field (2) is derived under
the assumption that the walker is a point source[36], an
approximation that is evidently inadequate when the or-
bital radius is comparable to the drop radius. Second,
the orbits predicted by our stroboscopic model become
unbound at high memory (γ/γF > 0.92), unlike in the
experiments. This discrepancy might be explained by
the fact that more complicated bouncing states, which
are not adequately described by the stroboscopic model,
may arise at high memory. Specifically, as indicated
in Fig. 1d, the experimental results of Wind-Willassen
et al. [47] indicate that our drops of vibration number

2πf/
√
σ/ρR3 ≈ 0.77 would transition to a (4, 2) bounc-

ing state at γ/γF ≈ 0.93, and to a chaotic bouncing state
at γ/γF ≈ 0.97.

IV. CONCLUSION

We have examined the dynamics of orbiting pairs of
walkers of equal size, focusing on the influence of mem-
ory on the stability of the quantized orbits. Small or-
bits are stable for large values of forcing acceleration but
wobble in the low-memory limit. Conversely, large orbits
(n > 2) destabilize at high memory, the stable region of
parameter space shrinking with orbital diameter. The
precision of our experimental setup allowed us to observe
the n = 3 and n = 3.5 orbits, which were not reported
in prior experiments[19, 43]. The speeds of the orbiting

drops increase with orbital diameter, and may exceed the
free walking speed of a single walker for large wobbling
orbits. We also observed a 3ω-wobbling solution, an or-
bital bound state in which the separation distance be-
tween the walkers oscillates at roughly thrice the orbital
frequency. Our experiments have guided the refinement
of our theoretical models of pilot-wave hydrodynamics.

We extended the stroboscopic model[39] to capture
theoretically the walker-walker interactions and the tran-
sition from stable to wobbling orbits. Specifically, the
model was extended to include spatial damping of the
wave field, the importance of which was indicated by re-
cent experimental measurements[10], and allows for the
phase of impact to vary with the forcing acceleration
and local wave height. The extended model predicts the
orbital diameters well (Fig. 8c) and qualitatively repro-
duces the emergence of wobbling orbits (Fig. 10). We
identify the walkers’ phase adaptation to the local wave
height as the cause for their decreased speeds in tighter
orbits (Fig. 9b). Phase adaptation is also shown to have
a stabilizing effect on both circular and wobbling orbits
(Fig. 8b–c). The shortcomings of the model have also
been identified and rationalized. Specifically, the stro-
boscopic model fails to capture the smallest n = 0.5 or-
bits because the wave field near the drop impact is in-
adequately described. The model predictions also break
down at high memory, when the walker ceases to execute
a (2, 1) bouncing mode and instead enters a (4, 2) mode
or chaotic walking state[47].

The functional dependence of the phase S = sin Φ on
forcing acceleration and wave height cannot be deduced
from the stroboscopic model (3), as it does not include
the walker’s vertical dynamics, so we instead inferred a
semi-empirical linear dependence in Sec. III B. Alter-
natively, we may use Moláček & Bush’s model of the
walker’s coupled horizontal and vertical dynamics[35, 36].
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As their model has no free parameters, the phase pa-
rameter S is computed directly from the simulated solu-
tion. This approach will provide a theoretical prediction
for the phase dependence S(γ/γF , h), roughly consistent
with that inferred here, that can be incorporated into
our adaptive-phase stroboscopic model, a direction to be
explored in a forthcoming publication[37].

Our analysis of orbiting pairs suggests that a walker
behaves as a phase-adapting oscillator, maintaining a pe-
riodic bouncing dynamics by modifying its impact phase
according to the local wave height. The idea of phase
adaptation explains why interacting walkers move slower
than free ones, suggesting an effective binding energy
between walkers[4]. It also may provide theoretical in-
sight into lattices[16, 17], ratcheting pairs[21], promenade
modes[4] and other complex bound states reported in re-
cent experiments. Rationalizing the dependence of phase
on wave height and incorporating it into the stroboscopic

model will be the subject of future work[37].
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APPENDIX

The trajectory equation in polar coordinates is

κ
(
r̈1 − r1θ̇21

)
+ ṙ1 = −βS(h1(x1(t), t))

∫ t

−∞

{
fr (|x1(t)− x1(s)| , t− s)

|x1(t)− x1(s)|
[r1(t)− r1(s) cos [θ1(t)− θ1(s)]]

+ ς
fr (|x1(t)− x2(s)| , t− s)

|x1(t)− x2(s)|
[r1(t)− r2(s) cos [θ1(t)− θ2(s)]]

}
ds,

κ
(

2ṙ1θ̇1 + r1θ̈1

)
+ r1θ̇1 = −βS(h1(x1(t), t))

∫ t

−∞

{
fr (|x1(t)− x1(s)| , t− s)

|x1(t)− x1(s)|
r1(s) sin [θ1(t)− θ1(s)]
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+ ς
fr (|x1(t)− x2(s)| , t− s)

|x1(t)− x2(s)|
r2(s) sin [θ1(t)− θ2(s)]

}
ds, (11)

where h1 is defined in (3). The equation for x2(t) is ob-
tained simply by interchanging x1(t) and x2(t) in (11).
We substitute the expressions r1(t) = r0 + r̃1(t)H(t),

θ1(t) = ωt + θ̃(t)H(t), r2(t) = r0 + r̃2(t)H(t) and

θ2(t) = ωt+ π + θ̃2(t)H(t) into (11) and retain terms at

leading order in the perturbations r̃i(t), θ̃i(t), where r0, ω
are defined by (4) and H is the Heaviside function. We
thus obtain the linearized equations (dropping all tildes)

κ
(
r̈1 − ω2r1 − 2r0ωθ̇1

)
+ ṙ1 = βS

∫ t

−∞

{
Ŝ(z) cos

ωz

2

[
(r1(t)− r1(s)H(s)) cos

ωz

2
+ r0 (θ1(t)− θ1(s)H(s)) sin

ωz

2

]
+ Ŝ2(z) sin

ωz

2

[
(r1(t) + r1(s)H(s)) sin

ωz

2
+ r0 (θ1(t)− θ1(s)H(s)) cos

ωz

2

]
+ ςĈ(z) sin

ωz

2

[
(r1(t)− r2(s)H(s)) sin

ωz

2
− r0 (θ1(t)− θ2(s)H(s)) cos

ωz

2

]
+ςC2(z) cos

ωz

2

[
(r1(t) + r2(s)H(s)) cos

ωz

2
− r0 (θ1(t)− θ2(s)H(s)) sin

ωz

2

]}
ds

+
κr0ω

2S ′

S

∫ t

−∞

{
S1(z)

[
(r1(t) + r1(s)H(s)) sin

ωz

2
+ r0 cos

ωz

2
(θ1(t)− θ1(s)H(s))

]
+ςC1(z)

[
(r1(t) + r2(s)H(s)) cos

ωz

2
− r0 sin

ωz

2
(θ1(t)− θ2(s)H(s))

]}
ds,

κ
(

2ωṙ1 + r0θ̈1

)
+ ωr1 + r0θ̇1 = βS

∫ t

−∞

{
Ŝ(z)

[
−1

2
(r1(t)− r1(s)H(s)) sinωz − r0 (θ1(t)− θ1(s)H(s)) sin2 ωz

2

]
+ S2(z)

[
1

2
(r1(t) + r1(s)H(s)) sinωz + r0 cos2

ωz

2
(θ1(t)− θ1(s)H(s))

]
+ ςĈ(z)

[
1

2
(r1(t)− r2(s)H(s)) sinωz − r0 (θ1(t)− θ2(s)H(s)) cos2

ωz

2

]
+ςC2(z)

[
−1

2
(r1(t) + r2(s)H(s)) sinωz + r0 sin2 ωz

2
(θ1(t)− θ2(s)H(s))

]}
ds

− r0ωS ′

S

∫ t

−∞

{
S1(z)

[
(r1(t) + r1(s)H(s)) sin

ωz

2
+ r0 cos

ωz

2
(θ1(t)− θ1(s)H(s))

]
+ςC1(z)

[
(r1(t) + r2(s)H(s)) cos

ωz

2
− r0 sin

ωz

2
(θ1(t)− θ2(s)H(s))

]}
ds, (12)

where z = t − s, Ŝ(z) = S1(z)/2r0 sin(ωz/2), Ĉ(z) =
C1(z)/2r0 cos(ωz/2) and S = S(hc),S ′ = S ′(hc) = p3
are evaluated at the wave field hc as defined in Eq. (6).
We obtain analogous equations for the perturbations

r2(t) and θ2(t) to the other walker’s trajectory.
The functions defined in the Main Text are obtained

by taking the Laplace transform of both sides of (12),
and are given by

A(s) = κs2 + s− κω2 − ςβI
[
Ĉ(z) sin2 ωz

2
+ C2(z) cos2

ωz

2

]
+ βL−

[
Ŝ(z) cos2

ωz

2

]
− βL+

[
S2(z) sin2 ωz

2

]
− κr0ω

2S ′

S

{
I
[
S1(z) sin

ωz

2
+ ςC1(z) cos

ωz

2

]
+ L

[
S1(z) sin

ωz

2

]}
,

B(s) = 2κωs− ςβ

2
I
[(
Ĉ(z) + C2(z)

)
sinωz

]
− β

2
L−
[(
Ŝ(z) + S2(z)

)
sinωz

]
− κr0ω

2S ′

S

{
I
[
−S1(z) cos

ωz

2
+ ςC1(z) sin

ωz

2

]
+ L

[
S1(z) cos

ωz

2

]}
,

C(s) = 2ωκs+ ω − ςβ

2
I
[(
Ĉ(z)− C2(z)

)
sinωz

]
− β

2
L−
[
Ŝ(z) sinωz

]
− β

2
L+ [S2(z) sinωz]
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+
r0ωS ′

S

{
I
[
S1(z) sin

ωz

2
+ ςC1(z) cos

ωz

2

]
+ L

[
S1(z) sin

ωz

2

]}
,

D(s) = κs2 + s− ςβI
[
−Ĉ(z) cos2

ωz

2
+ C2(z) sin2 ωz

2

]
− βL−

[
Ŝ(z) sin2 ωz

2

]
+ βL−

[
S2(z) cos2

ωz

2

]
,

− r0ωS ′

S

{
I
[
−S1(z) cos

ωz

2
+ ςC1(z) sin

ωz

2

]
+ L

[
S1(z) cos

ωz

2

]}
,

E(s) = ςβL
[
−Ĉ(z) sin2 ωz

2
+ C2(z) cos2

ωz

2

]
+
ςκr0ω

2S ′

S
L
[
C1(z) cos

ωz

2

]
,

F (s) =
ςβ

2
L
[(
Ĉ(z) + C2(z)

)
sinωz

]
+
ςκr0ω

2S ′

S
L
[
C1(z) sin

ωz

2

]
,

G(s) =
ςβ

2
L
[(
Ĉ(z) + C2(z)

)
sinωz

]
+
ςr0ωS ′

S
L
[
C1(z) cos

ωz

2

]
,

H(s) = −ςβL
[
Ĉ(z) cos2

ωz

2
− C2(z) sin2 ωz

2

]
+
ςr0ωS ′

S
L
[
C1(z) sin

ωz

2

]
, (13)

where we define L[g(t)] =
∫∞
0
g(t)e−st dt, L±[g(t)] =∫∞

0
g(t) (e−st ± 1) dt and I[g(t)] =

∫∞
0
g(t) dt.
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chemin: une expérimentation théorique. PhD thesis, Uni-
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