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Abstract

In this study, a dynamic model for large-eddy simulations is proposed in order to describe the

motion of small inertial particles in turbulent flows. The model is simple, involves no significant

computational overhead, contains no adjustable parameters, and is flexible enough to be deployed

in any type of flow solvers and grids, including unstructured setups. The approach is based on the

use of elliptic differential filters to model the subgrid-scale velocity. The only model parameter,

which is related to the nominal filter width, is determined dynamically by imposing consistency con-

straints on the estimated subgrid energetics. The performance of the model is tested in large-eddy

simulations of homogeneous-isotropic turbulence laden with particles, where improved agreement

with direct numerical simulation results is observed in the dispersed-phase statistics, including

particle acceleration, local carrier-phase velocity, and preferential-concentration metrics.
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I. INTRODUCTION

In Lagrangian descriptions of turbulent flows laden with heavy particles, such as liquid

droplets or solid particles whose density is much larger than that of the carrier fluid, the

dispersed phase is described by the equation of the trajectory

dxp,i

dt
= up,i (1)

and the equation of motion

4

3
πρpa

3
dup,i

dt
= 6πµa(ui − up,i), (2)

where it is additionally assumed that the particles are sufficiently small such that the flow

in their vicinity is dominated by molecular transport. In this formulation, xp,i and up,i are

the particle position and particle velocity, ρp and a are the particle density and radius, and

µ is the dynamic viscosity of the carrier phase. In Eq. (2), ui refers to the velocity of the

carrier phase interpolated at the particle position. Ideally, ui is obtained from costly direct

numerical simulations (DNS) to retain all scales of the fluid motion influencing the dynamics

of particles. In contrast, in large-eddy simulations (LES) the only velocity available is low-

pass filtered, denoted here by ui. In particular, when the mass of particles per unit mass of

carrier phase is small, the filtered velocity is obtained by integrating

∂ui

∂xi
= 0 (3)

and
∂ui

∂t
+ uj

∂ui

∂xj

= −
1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

−
∂T LES

ij

∂xj

, (4)

which represent, respectively, the filtered equations of mass and momentum conservation

for an incompressible flow. In Eq. (4), p is the hydrodynamic pressure, ν is the kinematic

viscosity, and ρ is the carrier-phase density, with ρ/ρp ≪ 1 in most practical applications

[1]. The symbol T LES

ij = uiuj − uiuj denotes the subgrid-scale (SGS) stress tensor for the

carrier phase.

The utilization of ui in Eq. (2) in place of the unfiltered velocity ui leads to inaccu-

rate results when the particles are sufficiently light to interact with the unresolved eddies.

Expressed in dimensionless form, the regime where these interactions are important is [2]

StSGS = ta/t∆ . 1, (5)
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where StSGS is an SGS Stokes number based on the characteristic particle-relaxation time

ta = (2/9)(ρp/ρ)a
2/ν and the cutoff fluctuation time t∆ introduced by the eddies whose size

is of the same order as the grid size ∆. In general, t∆ is a time scale measured in the reference

frame of the particle. In conditions where (5) is satisfied, the particles become tracers of the

large eddies and the cutoff fluctuation time can be approximated from Kolmogorov scaling

as t∆ ∼ (∆2/ǫ)1/3, where ǫ is the mean dissipation.

In this study, the focus is on LES of turbulent flows in which the particles interact with

the unresolved eddies, so that condition (5) is satisfied. In this limit, unless an SGS model

is employed to model the subgrid velocity fluctuations u′

i = ui − ui in Eq. (2), the effective

maximum value of the Stokes number based on the smallest resolved scale becomes that given

by StSGS, which is, by definition, smaller than the Stokes number based on the Kolmogorov

scales. The absence of small scales in LES, along with their associated intermittency, have

negative consequences on the prediction of a number of metrics for the dispersed phase such

as relative dispersion, collision rates, preferential concentration, turbophoresis and particle-

acceleration statistics [2–9].

A number of previous investigations have addressed this issue by proposing closure mod-

els for the SGS velocity u′

i. These could be grouped into four different categories: stochastic

[10–20], approximate-deconvolution (AD) [24, 25], hybrid combinations of the two [26], and

kinematic-simulation (KS) [27–29] models. The four types of models share the common

goal of palliating the deficit of small scales in LES. For instance, stochastic models typically

employ a fluctuation velocity obtained from the solution of a Langevin equation supple-

mented with a random source, which is responsible for providing the high-frequency forces

exerted by the unresolved eddies on the particles in the Lagrangian reference frame. How-

ever, stochastic models are known to miscalculate preferential concentration since they are

generally dispersive at all Stokes numbers [20]. Additionally, stochastic models generally re-

quire parameter calibration, with exception of a relevant approach in Ref. [14] in which the

model parameter is obtained from a condition of consistency with the SGS kinetic energy,

but without taking into account particle inertia. AD models, on the other hand, calculate

the unfiltered velocity ui in Eq. (2) by approximate deconvolution of the resolved velocity ui,

which requires the utilization of series expansions for filter inversion along with an ad-hoc

choice of the test-filter level and calibration of the effective filter width. This broad category

includes scale-similarity models of SGS velocity estimation [21–23].
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The model investigated in this study belongs to the AD family. However, the filter chosen

in this study is exactly invertible and the effective filter width is computed dynamically with

no tuning of parameters being required. AD models tend to outperform stochastic models

in predicting preferential concentration, although they under-predict particle acceleration

because of the intrinsic limitations of the deconvolution method in injecting disturbances

of frequencies higher than those of the resolved eddies. Hybrid approaches correspond to

blended combinations of stochastic and AD models that extend the range of performance of

each separate type of model. Lastly, KS models aim at spectrally regenerating the missing

scales of turbulence by incorporating high-wavenumber modes in the velocity field. Despite

their higher computational cost, KS models are perhaps the most promising approach for

predicting preferential concentration, since this phenomenon is caused by the intermittency

of the vorticity and strain-rate fields at scales beyond the grid cutoff wavenumber. However,

the coarser the LES grid is, the more difficult it is to regenerate eddies at the missing

scales, since they become increasingly more anisotropic and problem dependent. In fact, the

problem at hand in this investigation, namely the one in which particles interact with SGS

turbulent eddies and preferentially concentrate, is a challenging one that puts traditional

LES models to the test, in that the fine scale features of the flow field, rather than the

structures resolved by the grid, play a major role in the relevant dispersed-phase dynamics.

The objective of this investigation is to formulate and test a model for the SGS velocity of

the carrier phase u′

i, which, in conjunction with the filtered velocity ui, leads to an estimate of

the unfiltered velocity ui that is used to integrate the particle equation of motion (2). The

proposed model is based on differential filters [30–34], and employs a dynamic procedure

to determine the value of an otherwise adjustable parameter. Using this model, LES of

dilute particle-laden homogeneous-isotropic turbulence are performed that show improved

agreement with DNS results in terms of dispersed-phase statistics, including local carrier-

phase velocity sampled by particles, particle acceleration, and preferential-concentration

metrics. Tests of the model in two-way coupled flows are deferred to future work, although

brief comments on potential impacts of the present approach in those flows are provided.

The rest of this article is structured as follows. The formulation of the SGS model is given

in Sec. II. The dynamic procedures for the model parameter are described in Sec. III. The

performance of the model is addressed in Sec. IV. Lastly, concluding remarks and future

prospectives are provided in Sec. V.
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II. THE SUBGRID-SCALE MODEL (LES-DF)

The SGS model for particles proposed here, denoted as the differential-filter (DF) model,

is based on computing the velocity ui in (2) using the filtered one ui according to the

expression

ui = ui −
∂

∂xj

(

b2
∂ui

∂xj

)

. (6)

The corresponding SGS velocity component is simply given by

u′

i = ui − ui =
∂

∂xj

(

b2
∂ui

∂xj

)

. (7)

Equation (6) represents the definition of an elliptic differential filter [30–34]. In this formu-

lation, b is a model parameter that is of the same order as the LES grid spacing, ∆, and

controls the nominal filter width. In principle, there are no restrictions related to the spatial

variability of b. If b is spatially uniform, then the filtered velocity

ui(x, t) =

∫

x
′

ui(x
′, t)G(x,x′)d3x′ (8)

can be expressed in terms of an exponentially decaying filter kernel

G(x,x′) =
exp{−|x− x′|/b}

4πb2|x− x′|
(9)

that corresponds to the Green’s function of Eq. (6), with x indicating a position vector.

In all cases, the model parameter b can be computed dynamically, as described in Sec. III.

Note that Eq. (6) guarantees that the volume-averaged value of ui and ui are the same in

triply-periodic domains or in bounded domains where b → 0 at the boundaries.

The utilization of LES for the carrier phase, in conjunction with the DF-modeled velocity

(6) for integrating the particle equation of motion (2), is referred to as LES-DF in what

follows. In LES-DF, at each time step the velocity ui computed using (6) is employed

in integrating the equation of motion (2) for the particles. Remarkably, the numerical

operations involved in the model can easily be done with any type of flow solver and grid at

low cost, including unstructured grids. On the other hand, the acronym LES will be used to

refer to LES performed by replacing ui by ui in the particle equation of motion (2), thereby

neglecting the effect of the subgrid scales on the dispersed-phase dynamics.

It is instructive to analyze the statistics of the LES-DF velocity field. Figure 1 shows that

for homogeneous-isotropic flows (described in Sec. IV) the Fourier spectra of kinetic energy
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FIG. 1. Ensemble-averaged spectra for (a) turbulent kinetic energy and (b) enstrophy in

homogeneous-isotropic turbulence as a function of the wavenumber κ, corresponding to DNS (2563

grid points), LES (323) and LES-DF (323) at Reλ = 85. The DF-model constant b is spatially

uniform and is obtained using the dynamic procedure described in Sec. IIIB. The symbols Reλ,

ℓk and uk denote, respectively, the Taylor-Reynolds number and the length and turnover velocity

of the Kolmogorov eddies. Further details about the computational setup are provided in Sec. IV.

and enstrophy in LES-DF are intensified with respect to those of LES near the grid cutoff. On

the other hand, at small wavenumbers, the effect of the DF model vanishes and the LES-DF

spectra approach those of LES. These dynamics are easily explained by transforming Eq. (6)

into Fourier space, which indicates that the DF-modeled velocity spectrum is (1+b2κ2) times

the resolved one when b is spatially uniform, with κ the wavenumber modulus.

The energization of the near-cutoff scales in LES-DF is accompanied with an increase in

intermittency of the velocity gradients. This is observed in Fig. 2, which shows that the tails

of the probability density function (PDF) of the LES-DF velocity gradients become wider

than those of LES, with a corresponding increase in the flatness. The enhanced spatial

intermittency of the near-cutoff scales caused by the DF-modeled subgrid velocity (7) is

also observed in the cross-sectional contours shown in Fig. 3 for the same flow. However,

it should be emphasized that the DF-modeled velocity ui has the same wavenumber range

of spectral content as the resolved velocity ui and therefore it is not a full-scale quantity

as in DNS. This implies that the intermittency of the small scales in the DNS is not fully
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FIG. 2. Ensemble-averaged PDF of the velocity gradient ∂u1/∂x1 in DNS (2563 grid points), LES

(323) and LES-DF (323) at Reλ = 85, including corresponding values of skewness (S) and flatness

factors (F ). The DF-model constant b is spatially uniform and is obtained using the dynamic

procedure described in Sec. IIIB.

recovered by LES-DF, as observed in Fig. 3 and quantified by the differences between DNS

and LES-DF flatness coefficients of the velocity gradients in Fig. 2. Further implications of

this deficit for particle-laden flows are discussed in Sec. IV.

In contrast to other types of filters that require arbitrary truncation of series expansions

for inversion, the deconvolution operation made in the DF model (6) is formally exact.

When expressed as ui = ui + b2∂2ui/∂xj∂xj , the filtered velocity is reminiscent of the first

two terms in the series expansion of a box-filtered velocity [36], with exception that here the

Laplacian acts upon ui instead of ui. In this way, the DF model (6) could be interpreted as

an approximate de-averaging of the resolved velocity. However, the DF model, along with

the dynamic procedures described below for the coefficient b, do not exactly represent a

de-averaging operation, but rather a more general deconvolution that satisfies consistency

constraints on the subgrid energetics. The DF model (6) can be utilized for integrating

the motion of mono- or polydisperse clouds of particles with arbitrary inertia. It acts

dispersively or anti-dispersively depending on the value of the corresponding Stokes number

of the particles (defined below), and can propagate information of large-scale local anisotropy

into the subgrid scales.
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FIG. 3. Instantaneous mid-plane cross section of the contours of the velocity magnitude (solid

contours) in homogeneous-isotropic turbulence at Reλ = 85. (a) DNS (2563 grid points), (b) LES

(323), and (c) DF-modeled subgrid velocity field in LES-DF (323). The symbols ℓ and uℓ denote,

respectively, the integral length and velocity scales. The DF-model constant b is spatially uniform

and is obtained using the dynamic procedure described in Sec. IIIB.

In this study, an important approximation is made when using Eq. (6), namely, that

ui is the implicitly filtered velocity computed from LES using Eqs. (3)-(4), as opposed to

being the one resulting from the solution of the Navier Stokes equations explicitly filtered

with a differential filter for complete consistency. Unless explicit filtering is used [37], it

is not warranted that the closure (6) is fully consistent with the model for the SGS stress

tensor T LES

ij in Eq. (4). This inconsistency is palliated below with a dynamic procedure for

the model parameter b in Eq. (6) that makes the DF model consistent with the energetics

predicted by the model for the SGS stress tensor of the carrier phase, T LES

ij .

III. DYNAMIC PROCEDURES FOR THE MODEL PARAMETER

Two dynamic procedures for computing the model parameter b are described in this

Section. As shown in Sec. IV, both procedures lead to similar results in the range of

parameters considered here, with the one described in Sec. III B being consistently observed

to produce better agreement with DNS results.
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A. Dynamic procedure based on dissipation matching (LES-DF(ǫ))

The first dynamic procedure is referred to as LES-DF(ǫ) and imposes consistency between

the SGS dissipation calculated from the model for the carrier-phase SGS stress tensor,

ǫLES

SGS
= −T LES

ij Sij, and the one obtained from the DF model for particles, ǫDF

SGS
= −T DF

ij Sij,

where Sij = (1/2)(∂ui/∂xj+∂uj/∂xi) is the strain rate of the resolved velocity field and T DF

ij

is an SGS stress tensor directly obtained from the differential-filter formulation, as explained

below. Note that a similar dynamic approach, albeit in a different model, has been used in

an earlier work on SGS velocity estimation that yields improved results [38].

The description of the dynamic procedure begins by deriving an equation for the SGS

stress tensor T DF

ij = uiuj − uiuj . Recursive use of the differential-filter definition (6) for

computing the expression

uiuj =

[

ui −
∂

∂xk

(

b2
∂ui

∂xk

)][

uj −
∂

∂xm

(

b2
∂uj

∂xm

)]

(10)

and subtracting it from

uiuj = uiuj −
∂

∂xk

(

b2
∂uiuj

∂xk

)

, (11)

yields the partial differential equation

T DF

ij −
∂

∂xk

(

b2
∂T DF

ij

∂xk

)

= Rij , (12)

with Rij an auxiliary tensor given by

Rij = 2b2
∂ui

∂xk

∂uj

∂xk
+

∂

∂xn

(

b2
∂ui

∂xn

)

∂

∂xp

(

b2
∂uj

∂xp

)

, (13)

where the filtered velocities ui are the LES resolved ones. A comparison of the differential-

filter definition (6) with Eq. (12) leads to

T DF

ij = Rij , (14)

where the overbar in Rij refers to the differential-filter operator acting on Rij .

The consistency condition between the SGS dissipations predicted by both models, ǫDF

SGS
=

ǫLES

SGS
, can be expressed as

T DF

ij S̄ij = T LES

ij S̄ij. (15)

This consistency is enforced by multiplying Eq. (12) by S̄ij and substituting Eq. (15) in the

resulting expression, which gives

T LES

ij Sij − b2
∂2T DF

ij

∂xk∂xk
Sij − 2b

∂b

∂xm

∂T DF

ij

∂xm
Sij = RijSij, (16)
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where Rij is given by in Eq. (13) and T DF

ij is parameterized by the unknown b as in Eqs. (13)-

(14).

Equation (16) represents a non-linear partial differential equation whose solution b pro-

vides the local value of the model parameter. The simulations presented in this study,

however, employ a spatially uniform b obtained by solving a much simpler, volume-averaged

version of Eq. (16), namely

〈

αijS̄ij

〉

b4 +
〈

βijS̄ij

〉

b2 −
〈

T LES

ij S̄ij

〉

= 0, (17)

where the bracketed operator 〈·〉 indicates volumetric averaging. This corresponds to en-

forcing the consistency condition (15) on volume average, which is particularly suitable for

the present study focused on triply periodic flows. In this formulation, αij and βij are given

by

αij =
∂2ui

∂xk∂xk

∂2uj

∂xm∂xm

, (18)

βij = 2
∂ui

∂xℓ

∂uj

∂xℓ
+

∂2T DF

ij

∂xk∂xk
. (19)

The positive root b2 > 0 of Eq. (17) corresponds to the physically relevant solution for the

model parameter.

In principle, Eq. (17) is an implicit equation for the dynamic coefficient b that has to be

solved iteratively at each time step, because the term involving T DF

ij in βij depends on the

unknown b. In order to reduce the associated computational cost, an approximate solution

is to linearize the second term on the left-hand side of Eq. (17) by making

〈

Sij

∂2T DF

ij

∂xk∂xk

〉

≃

〈

Sij

∂2T LES

ij

∂xk∂xk

〉

, (20)

which transforms Eq. (17) into a biquadratic equation where all terms are known. The

positive root of this equation yields the first approximation b0 to the dynamic coefficient.

Figure 4(a) shows that this simplification leads to a relative error

e = 〈ǫDF

SGS
− ǫLES

SGS
〉 / 〈ǫLES

SGS
〉 (21)

of order 18% for the flow in Figs. 1-3. To reduce this error, a second iteration can be

performed by using b0 to compute the tensor Rij in (13), and subsequently solving the elliptic

differential equation (12) for the tensor T DF

ij . Upon updating βij in (19) with the resulting

10
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FIG. 4. Sample time histories of (a) the relative error e (Eq. (21)) using the dissipation-matching

procedure, and (b) the spatially uniform coefficient b determined dynamically from both procedures

using Eqs. (17) and (23).

T DF

ij , a positive root b1 is obtained by solving Eq. (17) again. After two iterations, error

values of order 2% are observed in the simulations, as shown in Fig. 4(a), which indicates

the iterative method converges rapidly. Nonetheless, Fig. 4(b) shows that the values b0 and

b1 are of similar order despite the reduction in the relative error. This two-step iterative

procedure is adopted in the simulations presented below.

B. Dynamic procedure based on kinetic-energy matching (LES-DF(k))

An alternative and simpler dynamic procedure, denoted as LES-DF(k), can be formulated

by constraining the SGS kinetic energy from the DF model, kDF

SGS
= T DF

kk /2, to be equal to

the one calculated from the LES model, kLES

SGS
= T LES

kk /2, where T DF

kk is given by Eq. (14).

Substitution of the consistency requirement kDF

SGS
= kLES

SGS
into Eq. (12) leads to the expression

T LES

kk − b2
∂2T LES

kk

∂xℓ∂xℓ

− 2b
∂b

∂xm

∂T LES

kk

∂xm

= Rkk, (22)

where Rkk is given by in Eq. (13).

Equation (22) is a non-linear partial differential equation that provides the spatial dis-

tribution of b. If b is assumed to be spatially uniform, as done in the simulations presented

below, a much simpler, volume-averged version of Eq. (22) has to be solved, namely

〈α〉b4 + 〈β〉b2 − 〈γ〉 = 0, (23)
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where the coefficients α, β and γ are given by

α =
∂2uk

∂xℓ∂xℓ

∂2uk

∂xm∂xm

, (24)

β = 2
∂uk

∂xℓ

∂uk

∂xℓ
+

∂2T LES

kk

∂xℓ∂xℓ
, (25)

γ = T LES

kk , (26)

with b2 > 0 corresponding to the physically relevant root. In triply periodic flows, the

volume average of the coefficient β in Eq. (25) simplifies to 〈β〉 = 2ǫr/ν, where ǫr =

〈ν(∂uk/∂xℓ)(∂uk/∂xℓ)〉 is the resolved dissipation. Note that there is no approximation

required in order to enforce the consistency condition for the SGS kinetic energies, which is

satisfied exactly. The same method has been extended to model unfiltered scalars in LES

by imposing consistency in the subgrid variance [34].

In the simulations performed in this study, the SGS dissipation-matching and kinetic-

energy-matching dynamic approaches described above lead to similar values of the coefficient

b, as shown in the time series in Fig. 4(b). It is worth mentioning that Eqs. (17) and (23)

yielded only one single positive root b2 > 0 during the computations. Additionally, the

resulting mean values of b correspond to differential filters with the same second moment as

a spherical top-hat filter of radius 1.4∆−1.5∆, which suggests that the dynamic procedures

yield realistic values of the effective filter width.

Spatially varying coefficients b could be computed, in a first approximation, by solving the

biquadratic equations (17) or (23) locally in space without the volume-averaging operators,

which are equivalent to Eqs. (16) or (22) when the gradients of b are neglected. It is

noteworthy that the LES-DF(k) dynamic procedure yields b = 0 in the limit γ → 0, as in

regions close to the wall in wall-resolved LES of channel flows where the SGS model for the

particles would automatically become deactivated. However, it should be stressed that it

is only when b is spatially uniform -as in the cases addressed below- that the DF-modeled

velocity field (6) is guaranteed to be incompressible. Computations with spatially varying b

deserve further assessment and are deferred to future work.

IV. MODEL PERFORMANCE

The focus of this section is on examining the performance of the proposed LES-DF model

in predicting dispersed-phase statistics. A description of the computational setup is given
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first, followed by an account of the main results.

A. Computational setup

Results are presented below in Sections IVB1-IVB3 for DNS, LES with the resolved

velocity ui used in place of the unfiltered velocity ui in Eq. (2), and LES with the DF-

modeled velocity (6) used for ui instead. In the notation, the acronyms LES-DF(ǫ) and

LES-DF(k) indicate that the coefficient b, which is assumed to be spatially uniform, is

obtained through the procedure described in Sec. IIIA (Eq. 17) or Sec. III B (Eq. 23),

respectively. The computations involve numerical integrations of the mass and momentum

conservation equations (3)-(4) in a triply periodic domain. The baseline Reynolds number

based on the Taylor microscale is Reλ = 85. The calculations are conducted on staggered,

uniform cartesian grids of 2563 points for DNS, and 323 points for LES. These grids translate

into maximum resolutions κmaxℓk = 1.6 and 0.2, respectively, where κmax is the largest

wavenumber resolved by the grid and ℓk = (ν3/ǫ)1/4 is the Kolmogorov length.

Additional DNS and LES results at larger Reλ and higher resolutions are reported in

Section IVB5 in a supporting role to address the behavior of the SGS particle model in

a broader range of parameters. These cases are computed at Reλ = 136 with a 5123 grid

for DNS (κmaxℓk = 1.6) and both 1283 and 643 for LES (κmaxℓk = 0.4 and κmaxℓk = 0.2,

respectively).

Constant kinetic-energy linear forcing is applied in the momentum equation (4) to sustain

the turbulence and compute stationary statistics (see Ref. [39] for details). In order to

account for the unresolved portion of the energy that is not captured in LES, the values of

the resolved kinetic energy injected in the LES correspond to 82% (for the 323 grid, Reλ = 85

case), 90% (for the 643 grid, Reλ = 136 case) and 96% (for the 1283 grid, Reλ = 136 case)

of the corresponding DNS kinetic energy. This resolved energy is obtained by filtering the

DNS with a box filter that has the filter width equal to the LES grid spacing ∆.

The numerical scheme consists of finite-difference energy-conserving discretizations of

second-order central in space and fourth-order Runge-Kutta in time [40]. In order to inte-

grate the particle equation of motion, the carrier-phase velocity is interpolated at the particle

position using a tri-linear interpolation. Higher-order interpolation schemes were employed

but they did not show any substantial modification of the results.
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Once the flow has reached a statistically steady state, Np = 5×2563 and 5×5123 particles

are randomly seeded in all the Reλ = 85 and Reλ = 136 cases, respectively. In order to study

the performance of the DF-model in predicting the DNS particle-concentration spectra,

an Eulerian number-density field n is calculated in all cases by projecting the Lagrangian

particles onto the nearest DNS grid point. Data collection starts once a sufficiently long time

compared to the particle relaxation time ta has passed after seeding the particles. Ensemble-

averaged statistics are extracted from 10 snapshots recorded during 16tℓ, where tℓ = ℓ/uℓ

is the integral time computed with the integral length ℓ and velocity uℓ. The characteristic

Stokes number

Stk = ta/tk, (27)

ranges from 0.1 to 10 in the simulations, with tk = ℓ2k/ν being the Kolmogorov turnover

time. This corresponds to SGS Stokes numbers in the range

StSGS = (ℓk/∆)2/3Stk ∼ 0.02− 2 (28)

for all LES cases, where use of Kolmogorov scaling has been made in order to rewrite Eq. (5)

in the form (28).

In these computations, the SGS stress tensor T LES

ij is calculated using the dynamic

Smagorinsky (DS) model [41, 42] along with the least-squares approach in Ref. [43] for

the determination of the dynamic constants. Yoshizawa’s closure for the SGS kinetic en-

ergy, with the model constant obtained dynamically from the DS model as in Ref. [42], is

employed for the LES-DF computations when the kinetic-energy matching dynamic proce-

dure in Sec. III B is used to determine b. Additional computations were performed using the

minimum-dissipation (MD) model [44]. However, since MD does not yet provide a closure

for the SGS kinetic energy, the Yoshizawa constant was also determined by the dynamic pro-

cedure of Ref. [42]. Although the predictive capabilities are enhanced near the LES cutoff

when the MD model is used, no significant differences were observed in the dispersed-phase

statistics with respect to the ones obtained using the DS model, except for particular aspects

pointed out in Section IVB4 that are related to preferential-concentration metrics at the

upper end of the range of Stokes numbers explored here, when particles interact predomi-

nantly with near-cutoff eddy scales. Note that the change of model for the SGS stress T LES

ij

requires no modifications in the formulation of the dynamic procedures presented in Sec. III.

The ensemble-averaged dispersed-phase statistics analyzed below include PDFs of the
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carrier-phase velocity at the particle position, along with PDFs of particle acceleration,

Fourier spectra of the energy of the particle concentration fluctuations, and radial distri-

bution functions (RDFs). Formal explanations of these standard metrics can be found

elsewhere [6, 7, 20].

B. Discussion of results

1. Carrier-phase velocity sampled by particles

The prediction of the PDF of the carrier-phase velocity sampled by the particles is con-

siderably improved with the LES-DF model, particularly with the kinetic-energy-matching

dynamic procedure (LES-DF(k)), as shown in Fig. 5. The PDF of this quantity is computed

by creating a histogram upon collecting the carrier-phase velocity vector u1 interpolated at all

positions of all particles during their flight trajectories. For tracers and very heavy particles,

the DNS PDFs resemble, respectively, those of the Lagrangian and Eulerian carrier-phase

velocities, both characterized by nearly-Gaussian flatness factors F ∼ 3.0 since the tails of

the distributions correspond to large-scale eddy motions.

The utilization of LES-DF leads to flatness factors of the carrier-phase velocity sampled

by the particles closer to DNS. For instance, for Stk = 0.1, the PDF predicted by DNS

has a flatness F = 2.86, while the LES-DF(k) predicts F = 2.81. These are in contrast

to the smaller value F = 2.76 obtained from LES without model for the SGS velocity.

Improved predictions are also observed in the central region of the PDFs, which corresponds

to velocities of small-scale eddies sampled by particles. The same trends are observed for all

tested Stokes numbers.

2. Particle acceleration

The LES-DF model yields enhanced results for the PDF of the particle-acceleration com-

ponent ap,1 = (4/3)πρpa
3(dup,1/dt) and for the particle-acceleration vector magnitude |ap|,

as observed in the main panels in Fig. 6. The increased intermittency introduced by the

DF-modeled SGS velocity, shown in Figs. 2 and 3, translates into results closer to DNS by

creating longer tails in the PDFs of ap,1. The upper row in Fig. 6 shows that the improve-

ment becomes particularly visible at small Stokes numbers, where the particles are subject
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FIG. 5. DNS (2563 grid), LES (323) and LES-DF (323) normalized ensemble-averaged PDFs of

the carrier-phase velocity component u1 interpolated at the particle position for Reλ = 85 and

different Stokes numbers (see legend in left upper panel for line types). The PDFs are symmetric

with respect to u1 = 0. Linear and log-transformed PDFs are provided on each horizontal semi-axes

to improve visualization of results.

to the accelerations caused by the small-scale rapidly turning eddies that are not captured

in LES but are only partially modeled in the LES-DF approach, so that the likelihood of the

particles having large accelerations is significantly increased and shifted toward the DNS.

For instance, for Stk = 2.0, the flatness of the PDF of ap,1 predicted by LES is F = 4.27,

while LES-DF(k) gives F = 4.78, the latter being closer to the DNS value F = 5.16.

In connection with the improved predictions of ap,1 is the much better agreement with

the DNS PDFs of the particle-acceleration vector magnitude |ap| = (ap,iap,i)
1/2 when the
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particle-acceleration component ap,1 and particle-acceleration vector magnitude |ap| (insets) for

Reλ = 85 and different Stokes numbers (see legend in left upper panel for line types).

LES-DF model is used, as shown in the insets in Fig. 6. In the absence of subgrid intermit-

tency, LES without model for SGS velocity fluctuations leads to under-prediction of |ap|,

particularly at small Stokes numbers where the particles become tracers of a large portion of

the small eddies. On the other hand, utilization of LES-DF shifts the maximum-probability

peak of |ap| toward larger values, leading to a remarkable match with the DNS PDFs. A gen-

eral conclusion observed here with regard to particle acceleration is that the kinetic-energy

matching dynamic procedure of Sec. III B leads to more accurate predictions in comparison

with the dissipation-matching one. Additional statistics regarding particle kinematics, such
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as the mean curvature angle of the particle trajectories, have been shown in a recent study

(see Fig. 3 in Ref. [45]) to be correctly recovered by the LES-DF model presented here.

3. Preferential concentration

The results presented above for the particle acceleration statistics depend only weakly

on localized turbulence phenomena, in that extreme particle accelerations are achievable

by simply augmenting the carrier-phase velocity sampled by the particles with large fluc-

tuations. In principle, such externally imposed fluctuations do not need to be correlated

with the resolved dynamics of turbulence structures. They may be modeled in the particle

frame as random, time-dependent disturbances of ui in Eq. (2) which induce rare events

that increase the flatness of the acceleration distribution, as in stochastic modeling [20].

This approach is, however, incapable of predicting other types of phenomena that largely

depend on spatially localized turbulence dynamics, such as the preferential concentration of

particles [35, 46]. In preferentially-concentrated regimes (i.e. Stk ∼ 1), the particles move

with the large eddies while slipping on the small ones, which are known to bear the highest

internal intermittency of vorticity and strain rate. In this way, the particles are centrifuged

from small intense vortices and accumulate in interstitial strained regions giving rise to char-

acteristic filamentous zones where the number-density of particles is large compared to the

mean.

It is noteworthy that the DF-modeled SGS velocity (7) requires spatially localized in-

formation of the resolved field and therefore has some potential to reverse the erroneous

trends observed in preferential-concentration metrics computed from LES. Figure 7 shows

the Fourier energy spectra En of the particle-concentration spatial fluctuations relative to

the mean. Specifically, Fig. 7 quantifies the characteristic scales and spectral intensities

associated with the structures of the number-density field n. In particular, the DNS spectra

shows that the wavenumber of the peak spectral intensity decreases with increasing Stk,

while the variance of n (i.e. the integral of the spectrum) evolves non-monotonically with

Stk and reaches a maximum at Stk ∼ 1. This is in agreement with known dynamics by

which the preferential-concentration effect in homogeneous-isotropic turbulence is most in-

tense when Stk ∼ 1, causing accumulation of particles in small-scale structures that lead

to maximum spatial variance of n. The LES without model for the SGS velocity, on the
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FIG. 7. DNS (2563 grid), LES (323) and LES-DF (323) ensemble-averaged particle concentration

spectra for Reλ = 85 and different Stokes numbers (see legend in left upper panel for line types).

other hand, under-predicts the peak wavenumber for Stk . 1, thereby indicating that the

characteristic sizes of the most energetic structures of n are vastly larger than in DNS. It

also over-predicts the energy associated with those structures for Stk > 1.

A similar problem is observed in Fig. 8 for RDFs, which quantify the likelihood of finding

particles at a radial distance r from a test particle. Specifically, LES without model for

the SGS velocity under-predicts the RDF for Stk . 1 and over-predicts it for Stk > 1.

These findings suggest that LES yields accumulation of particles in too long and slender

zones for Stk . 1. Conversely, LES predicts the correct characteristic size of accumulation

zones yet with excessive concentration of particles with respect to DNS when Stk > 1.

These erroneous LES behaviors can be easily illustrated in physical space for Stk = 1.0, as

done in Fig. 9(a-d). The size of the accumulation zones predicted by LES can be visually
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correlated with those of the flow structures shown in Fig 3(b), which lack the small-scale

spatial intermittency necessary to cause accumulation of particles in the much shorter and

spottier filaments observed in DNS.

The utilization of the LES-DF model proposed here, which injects spatial intermittency

in the number density n through the modeled SGS velocity u′

i, shifts the peak wavenumber

of the spectra En in Fig. 7 toward higher DNS-like values for Stk . 1, and decreases the

excess in particle-concentration energy for Stk > 1. Similarly, LES-DF generally corrects the

erroneous trends of LES for the RDF while maintaining the non-monotonic behavior with

respect to Stk. However, it should be emphasized that the SGS velocity u′

i does not contain

turbulence structures smaller than the grid size, as described in Sec. II. Therefore, although

the overall results are clearly improved with the utilization of the model, the capabilities of
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model constant b is obtained using the dynamic procedure in Sec. IIIB.

LES-DF to recover the DNS preferential-concentration statistics are limited, as evidenced in

Figs. 7 and 8. In all cases, the dynamic procedure based on kinetic-energy matching yields

the best model performance.

An interesting case for illustrating the action of the DF model is that of Stk = 1 shown

in Fig. 9(e), which indicates that the model acts to anti-disperse the particles generating

sharper filaments with higher concentration (see red arrows in Fig. 9(e)) but of roughly the

same scale as in LES, in agreement with the statistical quantifications shown in Figs. 7 and
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8 (right upper panels). A model aimed at fully matching DNS scales and concentration

energies of the particle clouds requires physics-based regeneration of turbulence over an

extended range of wavenumbers beyond the grid cutoff. Such regeneration of the subgrid

scales cannot be achieved with the present model, which is intrinsically limited to scales near

the grid cutoff, and must involve the study of local turbulence characteristics sampled by the

particle clouds, perhaps using spatially localized basis functions such as wavelets [47, 48].

4. Effects of the SGS model for the carrier-phase stress

An enhancement in predictions of particle accumulation can be achieved with LES-DF

using the MD model for the SGS stress tensor of the carrier phase [44], but such improvement

is only noticeable at relatively large Stokes numbers, as shown in Fig. 10 (lower row). In

this range of Stk values, the particles interact predominantly with the near-cutoff eddies, as

indicated by the near-unity values of the associated SGS Stokes number (i.e. StSGS = 0.6

for Stk = 4.0, StSGS = 1.1 for Stk = 7.0, and StSGS = 1.6 for Stk = 10.0). Since the MD

model is less dissipative than the DS and is known to capture more accurately the turbulent

eddies near the grid cutoff [44], an improved match with the DNS concentration spectra is

achieved, particularly at Stk = 10 (see Fig. 10, lower right panel). Similar improvements

are found in the RDF statistics. These considerations illustrate the relevance of the model

for the SGS stress tensor of the carrier phase in predicting spatial distributions of particles

in regimes when they interact most intensely with turbulence scales near the grid cutoff,

particularly in computations performed on coarse grids such as the ones presented here.

5. Effects of the Reynolds number and grid resolution

Figure 11 shows the performance of the LES-DF model compared to DNS and LES at

higher Reynolds numbers and different grid resolutions. A number of general conclusions

can be extracted from these results. As expected, the agreement between LES and DNS

improves as the LES grid resolution increases. Additionally, that increment of LES grid

resolution results in a diminishing relevance of the model since there is less amount of fluc-

tuations in the subgrid scales and the dynamic model coefficient b becomes correspondingly

smaller. Remarkably, LES-DF is able to largely improve the dispersed-phase statistics pre-
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minimum-dissipation model) for Reλ = 85 and different Stokes numbers (see legend in left upper

panel for line types).

dicted by LES on a 643 grid. For instance, the LES-DF on a 643 grid produces better

predictions for particle acceleration and RDF statistics than those obtained from LES on a

1283 grid. Similarly, in all cases the model corrects the spurious trends caused by LES on

the concentration spectra that were discussed in Section IVB3.

V. CONCLUSIONS

A dynamic model for LES of particle-laden turbulence has been proposed in this study.

The model formulation is relatively simple, does not entail any significant computational
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three different Stokes numbers (columns).
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overhead, and is flexible enough to be deployed in any type of flow solvers and grids, includ-

ing unstructured setups. The model is based on elliptic differential filters. The only model

parameter, which is related to the effective filter width, is determined dynamically by im-

posing consistency constraints in the subgrid energetics. Therefore, no tuning of parameters

is required. Two different dynamic procedures are described, one based on matching the

dissipation provided by the model with that of the model used for the SGS stress tensor of

the carrier phase, and another one based on matching their SGS kinetic energies. Through-

out the computations, it is observed that the latter procedure consistently yields the best

agreement with DNS. In particular, the performance of the model is tested in large-eddy

simulations of homogeneous-isotropic turbulence laden with particles, where improved agree-

ments with DNS are observed in the dispersed-phase statistics for a wide range of Stokes

numbers, including particle acceleration, local carrier-phase velocity, particle-concentration

energy spectra, and RDF.

There are several aspects that are worthy of further investigation. For instance, particle

collisions and two-way coupling effects have been neglected in these computations, although

the probability of collisions and the mass loading may be significantly increased within

the clouds of preferentially concentrated particles. In principle, a collision model can be

incorporated in Eq. (2) that does not require subgrid-scale modeling. Note however that

the correct prediction of RDF and number-density distribution statistics, or equivalently,

of preferential-concentration physics, are important for the quantification of collisions [6,

7]. Similarly, the two-way coupling force on the gas largely depends on the position and

acceleration of the particles [49]. The fact that improvements are observed in all of the

aforementioned statistics when the DF model is used suggests that its characteristics may

be beneficial for the prediction of these processes in LES.

The subgrid model that has been described here transcends particle-laden flows and

may be employed in other types of problems in LES that require modeling for the SGS

velocity. These relate to relevant applications in two-phase flows such as liquid-gas interface

modeling [50], in which an SGS velocity is used to model interface distortion and breakup,

and in chemically-reacting flows, where the utilization of an SGS velocity model is central

to the quantification of small-scale flame corrugations leading to deflagration-to-detonation

transition [51].
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[1] A. L. Sánchez, J. Urzay, and A. Liñán. The role of separation of scales in the description of

spray combustion. Proc. Combust. Inst. 35, 1549–1577 (2015).

[2] J. Urzay, M. Bassenne, G. I. Park, and P. Moin. Characteristic regimes of subgrid-scale cou-

pling in LES of particle-laden turbulent flows. Annual Research Briefs, Center for Turbulence

Research, Stanford University, pp. 3–13 (2014).

[3] V. Armenio, U. Piomelli, and V. Fiorotto. Effect of the subgrid scales on particle motion.

Phys. Fluids 11, 3030-3042 (1999).

[4] J. G. M. Kuerten and A. Vreman. Can turbophoresis be predicted by large-eddy simulation?

Phys. Fluids 17, 011701 (2005).

[5] C. Marchioli, M. Salvetti, and A. Soldati. Some issues concerning large-eddy simulation of

inertial particle dispersion in turbulent bounded flows. Phys. Fluids 20, 040603 (2008).

[6] G. Jin, G. W. He, and L. P. Wang. Large-eddy simulation of turbulent collision of heavy

particles in isotropic turbulence. Phys. Fluids 22, 055106 (2010).

[7] B. Ray, and L. R. Collins. Preferential concentration and relative velocity statistics of inertial

particles in Navier-Stokes turbulence with and without filtering. J. Fluid Mech. 680, 488–510

(2011).

[8] M. J. Cernick, S. W. Tullis, and M. F. Lightstone. Particle subgrid scale modelling in large-

eddy simulations of particle-laden turbulence. J. Turbul. 16, 101–135 (2014).

[9] G. He, G. Jin, and Y. Yang. Space-time correlations and dynamic coupling in turbulent flows.

Annu. Rev. Fluid Mech. 49, 1–21 (2017).

[10] A.D. Gosman, and E. Ioannides. Aspects of computer simulation of liquid-fueled combustors.

J. Energy 7, 482-490 (1983).

[11] Q. Wang, and K. Squires. Large eddy simulation of particle-laden turbulent channel flow.

26



Phys. Fluids 8, 1207-1223 (1996).

[12] K. Fukugata, S. Zaharai, and F. Bark. Dynamics of Brownian particles in a turbulent channel

flow. Heat Mass Trans. 40, 715–726 (2004).

[13] B. Shotorban, and F. Mashayek. A stochastic model for particle motion in large-eddy simula-

tion. J. Turbul. 7, 1–13 (2006).

[14] P. Fede, O. Simonin, P. Villedieu, and K. Squires. Stochastic modeling of the turbulent subgrid

fluid velocity along inertial particle trajectories. Proceedings of the Summer Program, Center

for Turbulence Research, pp. 247-258. (2006).

[15] A. Berrouk, D. Laurence, J. Riley, and D. Stock. Stochastic modeling of inertial particle

dispersion by subgrid motion for LES of high Reynolds number pipe flow. J. Turbul. 8, 1-20

(2007).

[16] M. Bini, and W. Jones. Particle acceleration in turbulent flows: a class of nonlinear stochastic

models for intermittency. Phys. Fluids 19, 035104 (2007).

[17] J. Pozorski and S. Apte. Filtered particle tracking in isotropic turbulence and stochastic

modeling of subgrid-scale dispersion. Int. J. Multiphase Flow 35, 118–128 (2009).

[18] G. Jin, and G. He. A nonlinear model for the subgrid timescale experienced by heavy particles

in large eddy simulation of isotropic turbulence with a stochastic differential equation. New

J. Phys. 15, 035011 (2013).

[19] M. Gorokhovski, and R. Zamansky. Lagrangian simulation of large and small inertial par-

ticles in a high Reynolds number flow: Stochastic simulation of subgrid turbulence/particle

interactions. Proceedings of the Summer Program, Center for Turbulence Research, pp. 37-46.

(2014).

[20] J. P. Minier. On Lagrangian stochastic methods for turbulent polydisperse two-phase reactive

flows. Prog. Energy Combustion Sci. 50, 1-62 (2015).

[21] J. Bardina, J. H. Ferziger, and W. C. Reynolds. Improved subgrid scale models for large-eddy

simulation. AIAA Paper 80-1357 (1980).

[22] S. Liu, C. Meneveau, and J. Katz. On the properties of similarity subgrid-scale models and

deduced from measurements in a turbulent jet. J. Fluid Mech. 275, 83-119 (1994).

[23] A. W. Cook. Determination of the constant coefficient in scale similarity models of turbulence.

Phys. Fluids 9, 1485-1487 (1997).

[24] B. Shotorban, and F. Mashayek. Modeling subgrid-scale effects on particles by approximate

27



deconvolution. Phys. Fluids 17, 081701 (2005).

[25] J. G. M. Kuerten. Subgrid modeling in particle-laden channel flow. Phys. Fluids 18, 025108

(2006).

[26] W. Michalek, J. Kuerten, J. Zeegers, R. Liew, J. Pozorski, and B. Geurts. A hybrid stochastic

deconvolution model for large-eddy simulation of particle-laden flow. Phys. Fluids 25, 123302

(2013).

[27] C. Gobert, and M. Manhart. Subgrid modelling for particle-LES by spectrally optimised

interpolation (SOI). J. Comput. Phys. 230, 7796-7820 (2011).

[28] B. Ray, and L. R. Collins. A subgrid model for clustering of high-inertia particles in large-eddy

simulations of turbulence. J. Turbul. 15, 366–385 (2014).

[29] S. Murray, M. F. Lightstone, and S. Tullis. Single-particle Lagrangian and structure statistics

in kinematically simulated particle-laden turbulent flows. Phys. Fluids 28, 033302 (2016).

[30] M. Germano. Differential filters for the large-eddy numerical simulation of turbulent flows.

Phys. Fluids 29, 1755–1757 (1986a).

[31] M. Germano. Differential filters of elliptic type. Phys. Fluids 29, 1757–1758 (1986b).

[32] S. Bose, and P. Moin. A dynamic slip boundary condition for wall-modeled large-eddy simu-

lations. Phys. Fluids 26, 015104 (2014).

[33] G. I. Park, J. Urzay, M. Bassenne, and P. Moin. A dynamic subgrid-scale model based on

differential filters for LES of particle-laden turbulent flows. Annual Research Briefs, Center

for Turbulence Research, Stanford University, pp. 17–26 (2015).

[34] M. Bassenne, and J. Urzay. A dynamic approximate deconvolution model for unfiltered scalars

in LES. Annual Research Briefs, Center for Turbulence Research, Stanford University, pp. 105–

106 (2016).

[35] K. D. Squires and J. K. Eaton. Preferential concentration of particles by turbulence. Phys.

Fluids 3, 1169-1178 (1991).

[36] N. Okong’o, and J. Bellan. A priori subgrid analysis of temporal mixing layers with evaporating

droplets. Phys. Fluids 12, 1573–1591 (2000).

[37] S. Bose, and P. Moin. Grid independent large-eddy simulation using explicitly filtering. Phys.

Fluids 22, 105103 (2010).

[38] N. Park, and K. Mahesh. A velocity-estimation subgrid model constrained by subgrid scale

dissipation. J. Comput. Phys. 226, 4190-4206 (2008).

28



[39] M. Bassenne, J. Urzay, G. I. Park, and P. Moin. Constant-energetics physical-space forcing

methods for improved convergence to homogeneous-isotropic turbulence with application to

particle-laden flows. Phys. Fluids 28, 035114 (2016).

[40] H. Pouransari, M. Mortazavi, and A. Mani. Parallel variable-density particle-laden turbulence

simulation. Annual Research Briefs, Center for Turbulence Research, Stanford University,

pp. 43-54 (2015).

[41] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale eddy viscosity

model. Phys. Fluids 3, 1760–1765 (I1991).

[42] P. Moin, K. Squires, W. Cabot, and S. Lee. A dynamic subgrid scale model for compressible

turbulence and scalar transport. Phys. Fluids 3, 2746–2757 (1991).

[43] D. K. Lilly. A proposed modification of the Germano subgridscale closure method. Phys. Fluids

4, 633–635 (1996).

[44] W. Rozema, H. J. Bae, P. Moin, and R. Verstappen. Minimum-dissipation models for large-

eddy simulation. Phys. Fluids 27, 085107 (2015).

[45] B. Kadoch, M. Bassenne, M. Esmaily-Moghadam, K. Schneider, M. Farge, and W. J. T.

Bos. Multi-scale geometrical Lagrangian statistics: Extensions and applications to particle-

laden turbulent flows. Proceedings of the Summer Program, Center for Turbulence Research,

Stanford University, pp. 53–62 (2016).

[46] A. Robinson. On the motion of small particles in a potential field of flow. Comm. Pure Appl.

Math. 9, 69–84 (1956).

[47] M. Bassenne, J. Urzay, and P. Moin. Spatially-localized wavelet-based spectral analysis of

preferential concentration in particle-laden turbulence. Annual Research Briefs, Center for

Turbulence Research, Stanford University, pp. 3–16 (2015).

[48] M. Bassenne, J. Urzay, and P. Moin. Extraction of coherent clusters in particle-laden turbulent

flows using wavelet filters. Annual Research Briefs, Center for Turbulence Research, Stanford

University, pp. 105–119 (2016).

[49] A. Ferrante, and S. Elghobashi. On the physical mechanisms of two-way coupling in particle-

laden isotropic turbulence. Phys. Fluids. 15, 315–329 (2006).

[50] M. Herrmann, and M. Gorokhovski. A large eddy simulation subgrid model for turbulent

phase interface dynamics. In ICLASS 2009, 11th Triennial International Annual Conference

on Liquid Atomization and Spray Systems.

29



[51] F. Ciaraldi-Schoolmann, I. R. Seitenzahl, and F. K. Röpke. A subgrid-scale model for
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