
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Growth and nonlinear response of driven water bells
John M. Kolinski, Hillel Aharoni, Jay Fineberg, and Eran Sharon

Phys. Rev. Fluids 2, 042401 — Published  6 April 2017
DOI: 10.1103/PhysRevFluids.2.042401

http://dx.doi.org/10.1103/PhysRevFluids.2.042401


Growth and non-linear response of driven water bells

John M. Kolinski1, Hillel Aharoni1,2, Jay Fineberg1 and Eran Sharon1

1Department of Physics, The Hebrew University of Jerusalem,
Jerusalem 91904, Israel

2Department of Physics, University of Pennsylvania,
Philadelphia, 19104 USA

(Dated: March 7, 2017)

A water bell forms when a fluid jet impacts upon a target and separates into a 2-dimensional sheet. Depending
on the angle of separation from the target, the sheet can curve into a variety of different geometries. We show
analytically that harmonic perturbations of water bells have linear wave solutions with geometry-dependent
growth. We test the predictions of this model experimentally with a custom target system, and observe growth
in agreement with the model below a critical forcing amplitude. Once the critical forcing amplitude is ex-
ceeded, a nonlinear transcritical bifurcation occurs; the response amplitude increases linearly with increasing
forcing amplitude albeit with a fundamentally different spatial form, and distinct nodes appear in the amplitude
envelope.

When a jet of fluid strikes a target with sufficient velocity,
it separates from the target and forms a smooth 2-dimensional
sheet of fluid in the shape of a bell. Such fluid structures punc-
tuate our daily experience, from sprinklers in the garden to so-
phisticated systems for heat transfer and fuel injection. Water
bells adopt a rich variety of geometries at steady-state, when
surface tension and fluid inertia are balanced. The bell shape
depends on the angle of separation from the target, the liq-
uid rheology, and the fluid injection conditions[1–7]. Studied
in detail for flat sheets, these 2-dimensional fluid structures
also admit wave solutions with remarkably rich dynamics in-
cluding growth[8, 9], and instability[5, 10–13]. While geom-
etry plays a dominant role in the physics governing thin elas-
tic sheets[14–16], the effect of geometry on the dynamics of
driven curved water sheets remains unexplored; even the lin-
earized regime remains elusive[17]. Here, we first present a
linearized model for the wave dynamics of a driven curved
water bell, and experimentally verify its predictions for suf-
ficiently weak forcing. We then show that the water bells
undergo a distinct bifurcation to nonlinear structures, whose
nodal character had previously been (mistakenly) interpreted
to be due to linear waves.

We perturb the fluid sheet in our experiments by tempo-
rally varying the separation angle Ψ about its mean value at
steady-state Ψ0. We do this by adjusting the height, δ, of a
collar surrounding the jet’s cylindrical flat target (Fig. 1 (a)).
The brass cylinder and collar have a gap of less than 100 µm.
Adjusting δ results in a linear change of Ψ in the low forcing-
frequency limit[6]. With this target structure, we drive Ψ in
time: Ψ(t) = Ψ0 + Cδ(t) = Ψ0 + ∆Ψ(t), and probe the
dynamic response of the sheet. Here, C = 0.23 degrees/µm
is the constant of proportionality between Ψ0 and δ.

We control ∆Ψ(t) by driving δ with either an electro-
magnetic shaker[18] or a long-throw piezoelectric linear
actuator[19] that provide an angular precision of 90 arc sec-
onds. The water jet velocity u is set by air pressure applied to
a variable-volume fluid reservoir; in all experiments u = 4.1
m/sec unless otherwise specified. Once the bell is formed,
we image its silhouette with a fast camera recording at 1 to
5 kHz, with an exposure time of less than 100 µsec to en-

sure accurate detection of the bell’s edge. Images recorded
in this fashion for steady-state bells with different separation
angles are shown in Fig. 1 (a), at left. Ψ0 is set by control-
ling the initial offset of δ before the excitation is applied. The
sheet responds to ∆Ψ(t) by forming waves along its surface,
as shown in Fig. 1 (a) (right panel). We determine the wave
amplitude normal to the average surface by comparing the in-
stantaneous shape to the average background shape (Fig. 1
(b)). At our excitation frequencies (100-1000Hz) the spatial
wavelength of the response of the system varies between 1-
10 mm with amplitudes of approximately 100 µm; therefore,
the long-wavelength approximation is satisfied. A typical ex-
ample of the resulting amplitude is shown in Fig. 1 (c). We
mitigate the effects of gravity by using a small 1 mm diameter
jet with a high flow-rate; water bell shapes were identical for
jets aligned both along and perpendicular to gravity. All of
our experiments were in the smooth-sheet regime[12], where
the sheet is stable to shear instabilities[10].

The steady-state shape of the water bell is set by a balance
of fluid inertia and surface tension[1, 7]; this balance can be
written in terms of the mean curvature H as

4γH = ρha, (1)

where γ is the surface tension, ρ is the fluid density, h is the
sheet thickness and a is the centripetal acceleration. Analysis
yields a length-scale L = Wu

4πγ , which sets the radial extent of
a water bell for finite separation angles, where W is the mass
flux. The fluid velocity u is constant throughout the bell when
perturbations are small[20]. Using the length L and time L/u
scales we form dimensionless variables, e.g. radius r̃ = r/L

or frequency f̃ = fL/u.
Anti-symmetric modes[8], where the water sheet deflects

from its mean position but does not dilate in thickness, suc-
cessfully describe the dynamics of flat water bells[9, 13] in
the long-wavelength λ/h >> 1 limit. We apply a similar
analysis to arbitrary bell geometries, where the curved geom-
etry alters the profile of the sheet thickness h as a function of
the arc length beyond the target s. A more detailed derivation
is provided in Appendix A. We rewrite the force balance Eq. 1
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FIG. 1. Water bell shapes and amplitude measurement. a) The
steady-state bell shape is determined by the fluid velocity u (typ. 4-6
m/sec) and separation angle Ψ0. Examples at left: from top to bot-
tom, Ψ0 = 27◦, 21◦ & 15◦ . Our two-component target geometry is
shown schematically in the inset; this re-directs the fluid flow to con-
trol Ψ(t). When Ψ is forced periodically, waves propagate through
the bell, as shown at right. b) The bell silhouette is determined by
edge detection applied to the image. Amplitudes of the perturbed
bell (blue) were measured normal to the time-averaged profile, as
depicted by the arrow in the inset. c) The amplitude is plotted as a
function of the arc length s of the background profile.

in dimensionless form:[
∂

∂t̃
+

∂

∂s̃

]2

r̃ − r̃ ∂
2r̃

∂s̃2
=

(
∂r̃

∂s̃

)2

− 1. (2)

The bell’s steady-state shape r0(s) can then be found by as-
suming time-independence for fixed Ψ0. For small perturba-
tions around r0, Eq. 2 can be linearized to yield the dispersion
relation

(ω̃ − k̃)2 = r̃0k̃
2 − d2r̃0

ds̃2
− 2i

dr̃0

ds̃
k̃. (3)

Eq. 3 has two wave solutions, one propagating rapidly and
one propagating slowly. The geometry-dependent imaginary
terms correspond to growth or decay of the applied pertur-
bation. Solving for the amplitude response using Eq. 3 as de-
scribed in Appendix A, we can directly compare with the mea-
sured response of the water bell. We find that all perturbations
are unstable. The growth rate is proportional to dr̃0

ds̃ and thus
depends on the bell shape. This dependence on geometry re-
sults from both the curvature of the bell and the thinning of the
spreading sheet - the thinner sheet contains less mass per unit
area, and thus deviates further from the mean shape, leading
to the growth of a perturbation. We find that the slowly propa-
gating mode grows more rapidly, and that this term dominates
the response of the driven water sheet. The extent, however,
to which it dominates is a strong function of geometry and
forcing frequency. A similar growth mechanism arises for flat
fluid sheets[8, 9, 12, 17]. We note that in previous analysis

of flat water bells, the amplitude response is treated as either
constant along the water bell[13] or empirically fitted[17]. In
the high-frequency limit, where λ/L < 1, Eq. 3 prescribes
mode velocities of the simple form:

v± = (1±
√
r̃0)u, (4)

where the velocity added (subtracted) from the fluid velocity
is the Taylor-Culick velocity set by the local sheet thickness

vtc =
√
r̃0u =

√
2γ
ρh .

To test our theory with experiments, we calculate the ampli-
tude response described by the dispersion relation Eq. 3 (see
Appendix A). The measured growth is not due to the Kelvin-
Helmholtz instability, as the Weber number based on the jet
diameter (< 300)[21] is below the threshold value (500-800)
for this instability[5, 22]. Our water bells are therefore in the
smooth-sheet regime[12].

We measure the bell response for a variety of Ψ0 driven
over a range of different frequencies and compare the ob-
served response with the predicted growth. We reduce the
forcing amplitude, ∆Ψ < 0.2◦[23], to keep the disturbance
as small as possible, and therefore most consistent with the
anticipated range of validity of the calculation. Examples for
two very different water bell shapes are shown in Fig. 2 (a).
Negative (positive) values of the imaginary component of the
phase Im{k±} correspond to growth (decay). In Fig. 2 (b),
we plot this quantity normalized by its peak value for the
slow- and fast-propagating modes as a function of s along
a bell driven at 80 Hz for Ψ0 = 37◦. Strikingly, we pre-
dict that the fast-propagating mode will decay, whereas the
slow-propagating mode will grow. The results are shown in
the red dashed line in Fig. 2 (c). The observed water bell re-
sponse (solid line) agrees well with the theoretically predicted
response (dashed line) for very different water bells driven at
both 80 Hz with Ψ0 = 19◦ & 37◦ in Fig. 2 (c) and 200 Hz
with Ψ0 = 14.7◦ & 32◦ in Fig. 2 (d).

When the amplitude of the applied forcing exceeds a critical
value, we observe a strikingly different amplitude response,
and the agreement with the growth predicted in our linearized
model abruptly breaks down. We see that rapid growth of the
bell’s response only occurs after ∆Ψ exceeds a critical value
∆Ψc ∼ 0.5◦. For ∆Ψ > ∆Ψc, the amplitude response grows
linearly with ∆Ψ, as shown in Fig. 3. As this occurs, the form
of the amplitude envelope changes dramatically, as shown in
Fig. 3 (inset). Beyond ∆Ψc, the second-harmonic amplitude
both appears and increases linearly with ∆Ψ, as shown by the
square symbols in Fig. 3. Only in this regime does the spa-
tial profile of the amplitude envelope possess the clear nodal
structure. We surmise that the same nonlinear behavior is at
the root of the nodal structure observed previously, for the
case of the forced flat water bell[13, 17] in the smooth-sheet
regime[12].

As the amplitudes increase, the nodes denoted in the inset
of Fig. 3 become more pronounced. This pronounced nodal
structure at large amplitudes indicates that the fast and slow
modes contribute roughly equally to the response. This is in
striking contrast to the unequal growth predicted by the linear
theory and observed for small excitation amplitudes (Fig. 2).
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FIG. 2. Linear growth at small forcing amplitudes ∆Ψ < 0.3◦.
a) Two water bells with Ψ0 = 37◦ (top) and 19◦ (bottom). b) The
growth rate Im{k} for a water bell driven at 80 Hz with Ψ0 = 37◦

is plotted as a function of arc-length for the fast k+ and slow k−
modes. Negative (positive) values of Im{k} correspond to growth
(decay). The predicted amplitudes (dashes) agree quantitatively with
the experimental data (solid lines) for c) f = 80 Hz and d) 200 Hz
with Ψ0 = 14.7◦ & 32◦. Representative error bars are included at
the right of each plot. Values of A are scaled to coincide at a single
point; the key spatial features of the calculations and experiment are
in good agreement.

In Fig. 3 we considered the behavior of the superposed non-
linear modes at a point. In separating the two modes in this
regime, we can explore their spatial and temporal behavior
beyond ∆Ψc. In Fig. 4 we present space-time plots of the
two separated modes within the nonlinear regime. The modes
were separated via spatial filtering with a cut-off wave num-
ber k = 2πf/u ≈ 1.5mm−1. The instantaneous amplitudes
undergo perfect destructive interference at the nodes, as seen
at s = 5, 8, and 10 mm in Fig. 4 (b).

Up to this point we have considered the amplitude response
of perturbations to the bell. Let us now consider the phase
velocities of the fast and slow modes independently. Super-
imposed on the data in Figs. 4 (c) & (d) are trajectories of
constant phase t±, calculated using the steady-state profiles
of the bell r0(s) and the linear phase velocities v± of Eq. 4,

t±(s) =

∫ s

0

ds

v±(r0(s))
. (5)

Despite the clearly nonlinear amplitude response, the pre-
dicted phase trajectories perfectly correspond with our mea-
surements in Fig. 4 (c) & (d). This demonstrates that nonlin-
ear frequency shifts are small, and thus the linear dispersion
relation accurately describes the wave speeds beyond ∆Ψc.

The water bell geometry, set by Ψ0, alters the relationship
between s and h (and thus vtc), changing the locations where
the slow and fast mode constructively and destructively inter-
fere. Whereas in Fig. 4, we considered a single example, in
Fig. 5 we demonstrate that the linear theory quantitatively pre-
dicts nodal locations of waves within the nonlinear regime in

FIG. 3. Departure from linear growth at forcing amplitudes ∆Ψ >
0.5◦. The amplitude of the bell’s response as measured at the emer-
gent anti-node A1 (indicated by grey rectangle inset), remains small
until a critical value of ∆Ψc ∼ 0.5◦ is exceeded. For ∆Ψ > ∆Ψc,
spatial features of the amplitude envelop change dramatically, and
the nodal structure emerges; a node is seen at s ∼ 1.6cm. Here
f = 200 Hz and Ψ0 = 14.7◦. A phenomenological model of the
non-linear character of the water bell’s response is developed in Ap-
pendix B. Colors in the main graph correspond to the response pro-
files shown in the inset; open squares denote the amplitude of the
2nd harmonic, which grows from zero after the threshold ∆Ψc is
exceeded. A similar bifurcation is observed at other frequencies in
the high-frequency limit f̃ � 1. Error bars represent typical values
of the standard deviations of A1 over the gray region plotted in the
inset.
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FIG. 4. Instantaneous profiles for a driven water bell (∆Ψ ≈ 1.4◦,
f̃ ≈ 7.5). a) The nodes in the amplitude envelope appear as faint
green. b) Instantaneous profiles as a function of s. Line colors corre-
spond to the colored horizontal lines in (a). Well-defined nodes ap-
pear at several values of s. Separated slow (c) and fast (d) modes are
obtained by spatially filtering the raw data with a cut-off frequency
k = 2πf/u ≈ 1.5mm−1. Modes are coupled to the bell’s geom-
etry by vtc, whose local value is a function of Ψ0. Trajectories of
constant phase (lines) calculated using steady-state bell parameters,
agree well with measured values.
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FIG. 5. Nodal structure for water bells of arbitrary geometry. (a)
Non-dimensional nodal locations collapse onto a single line for each
value of Ψ0; changing Ψ0 sweeps out a nodal location surface as a
function of f̃ and r̃, indicated by the arrow. Nodal locations for two
bells driven over a range of frequencies are compared with predic-
tions (solid lines) and measurements for n = 1 & n = 2 (symbols;
colors indicate different n). Experimental data agree well with the
predictions. (inset) Raw data of normalized amplitude and predicted
nodal locations corresponding to the red curve and points in main
plot.

general. To do this, we hold Ψ0 constant as we sweep over
the forcing frequency. Node locations depend on the node in-
dex n, and the water bell parameters L, u and Ψ0. For each
Ψ0, nodal locations are predicted to be well-defined func-
tions of dimensionless frequencies fL/nu and distances r/L.
Comparison of the predicted nodal locations with experiment
(Fig. 5) shows excellent agreement. Each different value of
Ψ0 sweeps out a universal surface for the nodal location.

Our experiments and theory illuminate the dominant role of
geometry in the dynamics of driven water bells. These effects
are observed by geometry-dependent growth of slow and fast
propagating modes in the linear regime. Surprisingly, it is the
nonlinear saturation of the predicted growth that ultimately
leads to the nodal patterns observed in driven water bells. For
∆Ψ > ∆Ψc, both the fast and slow modes contribute equally
to the amplitude envelope with comparable amplitudes. These
two non-linear modes linearly increase with the driving, em-
pirically locking onto one another. It is this nonlinear locking
of the two modes that gives rise to the clear nodal structure
along the bell. This is in stark contrast with the very different
growth rates for these two modes that appear for ∆Ψ < ∆Ψc.
Empirically, this nonlinear behavior does not significantly af-
fect the dispersion relations of the fast and slow modes, as
non-linear phase shifts are small.

How do the fast and slow modes attain comparable ampli-
tudes for ∆Ψ > ∆Ψc, when the linear growth of the fast mode
is so much less than the growth of the slow mode? A plausi-
ble scenario is that the growth of the slow mode saturates,
while the fast mode continues to rapidly grow until its ampli-
tude becomes comparable to the amplitude of the slow mode,
resulting in the observed interference pattern. The linear in-

crease ofA1 for ∆Ψ > ∆Ψc suggests a normal form for these
dynamics that is dominated by a quadratic saturation term, the
hallmark of a transcritical bifurcation. The phenomenological
description provided in Appendix B captures all of the domi-
nant features of the data plotted in Fig. 3. Whereas quadratic
saturation is prohibited for systems with reflection symmetry,
a curved water bell loses this symmetry, once perturbed about
a finite separation angle; a finite negative perturbation from
Ψ0 is not equivalent to a positive one, leading to the observed
linear growth of A1 beyond the critical forcing. The devel-
opment of a weakly nonlinear theoretical description of these
dynamics is a logical next step in understanding this new in-
stability.

Important questions concerning stability of the water bell
for large ∆Ψ and the effects of geometry on atomization of
the fluid due to bell breakdown remain open.
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Appendix A: Development of geometry-dependent growth
theory

The equation of motion for the water bell is:

4γH = ρha

2γ

(
r′′√

1− r′2
−
√

1− r′2
r

)
=

W

2πru

(∂t + u ∂s)
2r√

1− r′2
.

(A1)

As in the text, r is the radius of the bell, W is the mass flux
of the jet, u is the velocity of the fluid, which is assumed to
be constant and tangent to the water sheet, γ is surface ten-
sion, and ′ represents derivatives with respect to s, the arc-
length coordinate. ρ and h are the water density and the lo-
cal thickness of the fluid sheet, respectively, and the equality
W = 2πrhρu results from mass conservation. Defining the
characteristic length L = Wu

4πγ and the non-dimensional vari-
ables r̃ = r

L , s̃ = s
L , t̃ = ut

L , yields our main text Eq. (2):[
∂

∂t̃
+

∂

∂s̃

]2

r̃ − r̃ ∂
2r̃

∂s̃2
=

(
∂r̃

∂s̃

)2

− 1, (A2)

To find the steady-state shape of the bell we set the time
derivatives ∂

∂t̃
to zero; then assuming r(0) = 0 and r′(0) =

cos Ψ0 we get

r̃0(s̃) = 1−
√

1 + s̃2 − 2s̃ cos Ψ0. (A3)
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Perturbing Eq. A2 around the steady state solution (A3), i.e.
substituting r̃(s̃, t̃) = r̃0(s̃) + δ(s̃, t̃) into Eq. A2, yields

[
∂

∂t̃
+

∂

∂s̃

]2

δ = r̃0δ
′′ + r̃′′0 δ + 2r̃′0δ

′ + δδ′′ + δ′2. (A4)

When considering only small perturbations, one can keep only
linear terms in δ to get

[
∂

∂t̃
+

∂

∂s̃

]2

δ = r̃0δ
′′ + r̃′′0 δ + 2r̃′0δ

′, (A5)

which after a Fourier transform becomes our main text Eq.
(4), the dispersion relation for small perturbations:

(ω̃ − k̃)2 = r̃0k̃
2 − r̃′′0 − 2ir̃′0k̃. (A6)

In order to solve for the amplitudes of the waves, we first
explicitly solve Eq. A6 for the two local complex wave num-
bers k±ω,Ψ0

at every point:

k±ω,Ψ0
(s) =

ω̃ − ir̃′0 ±
√
ω̃2r̃0 − 2iω̃r̃′0 + (r̃0 − 1)r̃′′0 − r̃′20

(1− r̃0)L
.

(A7)
Here the dependence on Ψ0 and s comes from the water bell’s
steady-state solution r0(Ψ0, s) (Eq. A3). In order to solve for
the amplitude, we integrate the phase along the water bell as
follows:

A±ω,Ψ0
(s) = A±(s0) exp i

∫ s

s0

dσk±ω,Ψ0
(σ), (A8)

where s0 is the arclength matching the initial radius of the
target, via the relation r0(s0) = rtarget. Because the target
clampsA such thatA+(s0)+A−(s0) = 0, the total amplitude
can be written for any value of s as:

Aω,Ψ0,s0(s) =

A0

(
e
i
∫ s
s0
dσk+

ω,Ψ0
(σ) − ei

∫ s
s0
dσk−ω,Ψ0

(σ)
)
.

(A9)

Eq. A9 can be integrated for an arbitrary water bell geometry
in order to calculate A(s).

Appendix B: Phenomenological model for non-linear response
of the water bell

We observe an abrupt bifurcation of the water bell’s re-
sponse beyond a critical forcing ∆Ψc. In order to understand

the non-linear character of this response, we consider the fol-
lowing normal form. For simplicity, we consider the normal
form for only a single mode:

τ
∂A

∂t
= εA+ gA2. (B1)

HereA is the order parameter that represents the distance from
the unstable solution, Eq. A9, for ε > 0. Here, the saturation
term scales as A2 due to the broken up-down symmetry; this

FIG. 6. The responseA as described by the phenomenological model
in Eq. B1 is plotted as a function of ε. A is the generalized response,
representing distance from the linear solution at a fixed value of t (s
in our experiment). ε represents the distance from the critical forcing
from our experiments, (∆Ψ − ∆Ψc)/∆Ψc. The phenomenologi-
cal model captures all the key features observed in our experimental
data, both below and above ∆Ψc, including the linear increase of A
in the non-linear regime.

enables the linear increase in A for ∆Ψ > ∆Ψc. We note that
this is an equation for A as a function of t, not of s, but the
two are related by s = vt, where v is the advective velocity
of the mode. In terms of the quantities we measured, ε ∼
(∆Ψ − ∆Ψc)/∆Ψc. Eq. B1 can be solved analytically, and
its closed form solution is:

A(t) =
A0A∞e

αt

A0(eαt − 1) +A∞
, (B2)

whereA0 = A(t = 0),A∞ = ε/g is the saturation amplitude,
and α = ε/τ is the growth rate of the instability.

Does this model qualitatively describe the response of the
water bell observed in our experiment? In order to answer
this question, we examine the behavior of A around the crit-
ical value ε = 0, as shown in Fig. 6. Here, the generalized
features of an initially slow rise, followed by a rapid rise be-
yond ε = 0 and a convergence on a linear increase with ε are
all captured by this simple model, demonstrating qualitative
similarity to the behavior observed in our experimental data,
shown in Fig. 3.

Extending Eq. B1 to include both the fast and slow modes,
and a coupling term, both captures the nodal structure and
reproduces the non-linear locking mechanism described in the
text.
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