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Eddi et al. (Phys. Rev Lett. 102, 240401 (2009)) presented experimental results demonstrating
the unpredictable tunneling of a classical wave-particle association as may arise when a droplet
walking across the surface of a vibrating fluid bath approaches a submerged barrier. We here
present a new theoretical model that captures the influence of bottom topography on this wave-
particle association and so enables us to investigate its interaction with barriers. The coupled
wave-droplet dynamics results in unpredictable tunneling events. As reported in the experiments
by Eddi et al. and as is the case in quantum tunneling (Gamow, Nature (London) 122, 805 (1928)),
the predicted tunneling probability decreases exponentially with increasing barrier width. In the
parameter regimes examined, tunneling between two cavities suggests an underlying stationary
ergodic process for the droplet’s position.

INTRODUCTION

Eddi et al. [1] presented the results of an investiga-
tion of the tunneling of a walking droplet (henceforth
a “walker”) interacting with a submerged barrier. The
work [1] demonstrated that “this wave-particle associ-
ation has a nonlocality sufficient to generate a quan-
tumlike tunneling at a macroscopic scale”. The authors
show that the reflection and transmission of a walker over
a submerged barrier is unpredictable. Moreover, they
demonstrate that the crossing probability decreases ex-
ponentially with increasing barrier width as in the case
of quantum tunneling [2]. This hydrodynamic tunneling
has not previously been examined theoretically owing to
the difficulties in treating variable bottom topography. It
will be studied here in a one-dimensional (1D) configu-
ration with a reduced theoretical model; specifically, the
free surface is one dimensional while the fluid body is two
dimensional. This reduced model yields an explicit set of
differential equations for the wave-particle association in
confined domains.

We here present a new system of partial differen-
tial equations obtained from a systematic reduction of
the Navier-Stokes equations, leading to a hydrodynamic
pilot-wave model in a confined domain. This is the first
potential theory model that includes the feedback be-
tween the droplet and its guiding pilot-wave while ade-
quately accounting for general bottom topographies. Re-
cently, Pucci et al. [3] examined the non-specular reflec-
tion of walking droplets for a planar barrier. Numeri-
cal simulations were performed with a nearly monochro-
matic model developed by Faria [4], which simplifies po-
tential theory at a given wavenumber, corresponding to
the Faraday mode. The potential theory model, here
presented, captures probabilistic features of tunneling as
observed in laboratory experiments [1]. The model also
yields statistics for the droplet position that indicate an
underlying stationary ergodic process, as was reported

by Harris et al. [5] in their experimental investigation of
a walker in a circular corral.

Consider a fluid bath oscillating vertically at frequency
ω0. In the bath’s reference frame, the acceleration is
g(t) = g (1 + Γ sin(ω0t)), where g is the gravitational
acceleration and Γ the forcing amplitude. The fluid is
quiescent for Γ < ΓF , where ΓF is the Faraday thresh-
old. When Γ ≥ ΓF a subharmonic instability takes
place, leading to standing Faraday waves with the Fara-
day wavelength λF , as is prescribed by the water-wave
dispersion relation [6]. Walker [7] demonstrated that a
millimetric droplet can bounce indefinitely on the sur-
face of a vertically oscillating bath. Yves Couder and co-
authors [1, 8] discovered that when the parameter Γ ex-
ceeds the walking threshold Γw the bouncing droplet be-
comes unstable to lateral perturbations and executes hor-
izontal motion [9]. In this walking regime Γw < Γ < ΓF ,
the droplet bounces every two bath cycles, so with fre-
quency ω0/2, thereby achieving resonance with its Fara-
day wave field. The droplet is then guided by its un-
derlying pilot-wave, a spatially extended monochromatic
wave field with a Faraday period TF = ω0/2 [6]. We note
that while Γ is always below ΓF , the bouncing droplet
locally triggers the subharmonic, most unstable Faraday
wave mode [9, 10].

Central to the walker dynamics is the concept of path
memory [11]. The walker dynamics is non-local in time
and space, specifically the instantaneous force acting on
the drop depends on both its past and its environment.
Since the pilot-wave originates from its previous bounces,
the propulsive wave force depends on the walker’s his-
tory. In prior work, where the wave field is modeled in
terms of Bessel functions (see [9] and references therein)
the memory enters through the dimensionless parameter
Me = Td/[TF (1 − Γ/ΓF )], where Td is the decay time of
unforced waves. The memory increases as Γ → ΓF , when
the waves are more persistent. In the present work, where
the wave generation is modeled explicitly, this parame-
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ter Me does not arise in the theoretical formulation, but
memory is naturally controlled through the vibrational
acceleration Γ and the fluid viscosity ν.
In this article, we consider configurations with one or

two cavities. The 1D configuration has the attractive fea-
ture that it is restricted to normal incidence on the bar-
rier, as is difficult to achieve in laboratory experiments
[1]. The authors of that study state “We can wonder if
the output, reflection, or crossing is still probabilistic for
a given angle” and note that walkers with normal inci-
dence have a higher probability of tunneling. Our 1D
system necessarily treats only normal incidence, but nev-
ertheless exhibits highly unpredictable tunneling events.
We consider the (free space) wave-particle model [10],

here adapted to a 1D configuration and extended to per-
mit domains of arbitrary cross-section. The single-cavity
configuration is displayed in figure 1. We choose a cav-
ity of just a few Faraday wavelengths so that the droplet
is strongly confined. In the two-cavity simulations, the
droplet may cross the barrier and so tunnel from one
cavity into the other (see figures 6 and 7). This highly
confined configuration ensures that many tunneling at-
tempts take place in a reasonable amount of time.

The wave-droplet model

The wave model consists of a weakly viscous quasi-
potential theory [10]. The wave elevation is denoted
by η(x, t) and the velocity potential, satisfying Laplaces
equation in the fluid domain, by φ(x, z, t). The fluid has
density ρ, surface tension σ and kinematic viscosity ν.
The free surface wave equations at z = 0 are given by

∂φ

∂t
= −g(t)η +

σ

ρ

∂2η

∂x2
+ 2ν

∂2φ

∂x2
− 1

ρ
Pd(x−X(t)), (1)

∂η

∂t
=

∂φ

∂z
+ 2ν

∂2η

∂x2
, (2)

where the pressure term Pd in equation (1) indicates the
presence of the droplet, which acts as a wave-maker at
X(t) during the contact time. This wave system is cou-
pled to the droplet’s horizontal trajectory equation:

m
d2X

dt2
+ c F (t)

dX

dt
= −F (t)

∂η

∂x
(X(t), t). (3)

The magnitude of the propulsive wave force imparted
during impact with the surface is prescribed by F (t), and
also appears in the damping coefficient. In a simplifica-
tion of the model in [10], the forcing term Pd(x −X(t))
and the coefficient F (t) =

∫
Pd dA are obtained by

assuming that the droplet undergoes a periodic verti-
cal motion, with period TF , and that the bath surface
acts on the droplet like a linear spring during the con-
tact time Tc = TF /4. In the present model F (t) =
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FIG. 1. a): Cavity geometry: L=1.cm, h=0.50cm, with an
adjacent shallow region of depth 0.02cm. Wave profiles are
shown in units of TF , at the phase when drop-bath contact
is initiated. The Faraday wavelength is 0.47cm. The thick
curve indicates the horizontal position of the droplet. The
sloshing of the pilot-wave promotes the oscillatory motion of
the droplet. b-c): Hopf bifurcation apparent in a single cav-
ity as the droplet evolves from a static bouncing state to an
oscillating state with increasing Γ: b) Γ = 4.95; c) Γ = 5.0.
The cavity shape is indicated at the bottom. The wave pro-
files in b) and c) were removed for the sake of clarity.

(2π2mg/(ω0Tc)) sin(π τ(t)/Tc), where τ(t) = t mod TF

(0 ≤ τ < Tc) and F (t) = 0 otherwise, namely when the
droplet is in flight These choices are consistent with ex-
periments [12] and simulations of the full problem [10].
The wave-making term in (1) and the propulsive wave
force in (3) are responsible for establishing the feedback
between the waves and the droplet.
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FIG. 2. (A): Two cavities with the level curves from the
ξ−ζ coordinate system in the canonical domain: L = 1.5 and
Lb = 0.4. Each vertical curve arises by setting ξ(x, y) con-
stant, while each horizontal curve represents the level curve
given by ζ(x, y) constant. In the canonical domain these lines
represent a uniform Cartesian grid. Along the undisturbed
free surface, the corresponding grid-point spacing is highly
non-uniform. The same effect happens in the canonical do-
main when starting with a uniform grid in x. In the middle of
each cavity, as well as in the middle of the barrier, the Jaco-
bian matrix is approximately a multiple of the identity. The
mesh is almost Cartesian. There the metric coefficient M is
approximately constant, as shown in (B). Near the ends of the
cavities, M is highly variable, thus affecting the wave-speed
and promoting wave reflection.

ONE DIMENSIONAL MODEL REDUCTION AND
NUMERICAL IMPLEMENTATION

This section describes the mathematical and numeri-
cal details used to solve the above system. The reader
interested only in the results may proceed to section III.

Let the two-dimensional fluid domain be denoted by

Ω = {(x, z),−LT < x < LT ,−H(x) < z < 0}. At
any time t > 0 the velocity potential φ(x, z, t) satisfies a
boundary value problem, given by Laplace’s equation

φxx + φzz = 0, (x, z) ∈ Ω,

in the interior of the fluid, and a Neumann condition

dφ

dn
= 0,

along the impermeable bottom located at z = −H(x).
At the ends of the fluid domain (x = ±LT , for LT suffi-
ciently large) the flow is assumed to be at rest. There-
fore computing the vertical speed φz(x, 0, t) in equation
(2) requires solving for the corresponding harmonic func-
tion in the fluid domain. Through a mathematical ma-
nipulation of this term, one can avoid solving the above
elliptic boundary value problem within the fluid domain.
A boundary (Fourier-type) operator is constructed, tak-
ing into account the harmonic properties of φ. Having
this operator at hand, the two-dimensional model is re-
duced to an equivalent set of equations in one-dimension.
We now proceed to describing the construction of such
an operator.
First, consider the conformal mapping from a uniform

strip of unit height onto a corrugated strip, namely our
physical domain with the cavities. The lower boundary
is a polygonal line and the Schwarz-Christoffel mapping
[13] is well suited in this case. Consider these two strips
in the complex plane. The uniform strip, our canonical
domain, is in the complex w-plane, where w = ξ + iζ.
The physical domain is in the complex Z-plane, where
Z = x+iz. The mapping is given by the complex function
Z = F (w), where |dZ/dw|2 is equal to the Jacobian |J |
of the corresponding change of variables. The harmonic
functions x = x(ξ, ζ) and z = z(ξ, ζ) satisfy the Cauchy-
Riemann equations and therefore |J | = x2

ξ + x2
ζ . It also

follows for the velocity potential that

φξ(x, z) = φxxξ + φzzξ, φζ(x, z) = φxxζ + φzzζ .

By inverting a linear system [14], one obtains

φz =
1

|J | [−xζφξ + xξφζ ] .

This relation will be used for the Dirichlet-to-Neumann
(DtN) boundary operator. The undisturbed free surface
in the physical and canonical domains are given by z = 0
and ζ = 1 respectively. Therefore xζ(ξ, 1) ≡ 0 and the
Jacobian is given by |J |(ξ, 1) = x2

ξ(ξ, 1) ≡ M2(ξ). We de-
fine M(ξ) as our metric coefficient along the undisturbed
free surface. Computing the vertical speed along the free
surface amounts to

φz =
1

M(ξ)
φζ . (4)
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We are now in a position to express the vertical speed
φz only with information along the undisturbed free sur-
face, namely without solving Laplace’s equation in the
fluid domain. Recall that as a result of the conformal
mapping, the velocity potential φ is a harmonic func-
tion in both the physical and the canonical domains. In
the canonical domain (in the w-plane) the DtN opera-
tor is trivially obtained from the Fourier representation
of the corresponding Dirichlet data. In the w-plane, our
time-dependent Dirichlet data φ(x(ξ, 1), 0, t) = ϕ(ξ, t) is
represented by

ϕ(ξ, t) =
1√
2π

∫
∞

−∞

ϕ̂(k, t)eikξdk.

Using separation of variables we perform the harmonic
extension of the Dirichlet data into the unit strip, then
differentiate in ζ, which yields the Dirichlet-to-Neumann
operator in the w-plane:

φζ(ξ, 1, t) = DtNw[ϕ](ξ, t) ≡
1√
2π

∫
∞

−∞

k tanh(k)ϕ̂(k, t)eikξdk.

(5)
Using expressions (4) and (5), the variable-depth problem
is (analytically) reduced to one-dimension, in terms of x
along the undisturbed surface. In the physical domain,
we have that

DtNZ [ϕ](x, t) = φz(x, 0, t) =
1

M(ξ(x, 0))
DtNw[ϕ](ξ(x, 0)).

(6)
The notation indicates that the DtN operator is first com-
puted in the w-plane in terms of the ξ-variable (as given
in (5)), but needs to be evaluated in the physical domain.
This final step makes use of the relation ξ = ξ(x, 0), the
real part of the inverse-map evaluated along the undis-
turbed free surface. In other words, given a set of uni-
formly distributed points xj in the physical domain, we
will need to know their pre-images, ξj = ξ(xj , 0), in the
canonical domain in order to evaluate the vertical speeds
there and rescale accordingly, using the reciprocal of the
metric coefficient M .
It is also instructive to look at the long-wave (shallow

water) regime of this problem, even though we operate
in the intermediate-depth regime within each cavity. For
clarity we remove the shaking, the droplet, as well as sur-
face tension effects. Consider the linear potential theory,
wave problem, given by

φt = −gη (7)

ηt = φz , (8)

where φ(x, z, t) is harmonic in our fluid domain (the
corrugated strip) together with a Neumann condition
at the impermeable bottom. The initial conditions are
φ(x, 0, 0) = ϕ0(x) and η(x, 0) = η0(x). Using the for-
mulation discussed above, the dynamics can be reduced
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FIG. 3. We consider a single cavity of depth h = 0.5cm.
(A): Displays a single Fourier mode f(x) = cos(6πx/(2LT ))
along the free surface z = 0, where 2LT is the total length of
our computational domain. (B): The above Fourier mode is
displayed along the nodes’ pre-images ξj in the canonical do-
main. Namely, the mode is expressed as F (ξ) = f(x(ξ, 1)) =
cos(6πx(ξ, 1))/(2LT ). This function is not represented by a
single mode in ξ. (C): A detail of (A) in the middle of the
cavity. (D): A detail of (B) in the corresponding region of
(C) where the Jacobian is approximately 2. Note that in
this region (D) is merely a rescaling of (C). The nodes are
(approximately) uniformly spaced.

completely to the free surface. In other words, we write
that

ϕt = −gη (9)

ηt =
1√

2πM(ξ(x, 0))

∫
∞

−∞

k tanh(k)ϕ̂(k, t)eikξ(x,0)dk,

(10)
where the initial Dirichlet data is ϕ(x, 0) = ϕ0(x) and
the initial wave profile is η(x, 0) = η0(x). Eliminating η
from this system yields

ϕtt+
g√

2πM(ξ(x, 0))

∫
∞

−∞

k tanh(k)ϕ̂(k, t)eikξ(x,0)dk = 0.
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In the long-wave limit k tanh(k) ∼ −(ik)2 and the equa-
tion reduces to

ϕtt −
g

M(ξ(x, 0))
ϕξξ = 0.

Recalling that φξ = M(ξ(x, 0))φx, we have the long-wave
equation

ϕtt − g (M(ξ(x, 0))ϕx)x = 0 (11)

in the physical domain. Therefore, in the long-wave limit,
the presence of the cavities (encoded in the metric term
M) corresponds to a variable speed in the wave equation
(11). Consider the wave model used in [3, 4] and, for
clarity, remove the shaking, the droplet, as well as surface
tension effects. It can be recast in the form

φtt − g∇ · (b(x, y)∇φ) = 0, (12)

where a piecewise constant b is used, matching the Fara-
day wave speeds at the barrier’s different depths. This
nearly monochromatic model is not a shallow water
model, but is of the same class as (11).
The Fourier integral in (5) represents a pseudo-

differential operator with the symbol (i.e. Fourier multi-
plier) equal to k tanh(k). In our wave-regime of interest
the symbol can not be simplified. The underlying ef-
fect of the barrier, through its width and height, comes
into the model through the Fourier integral in a nontriv-
ial fashion, both through the metric term M as well as
the ξ = ξ(x, 0) relation. In figure 2-(A) we have two
cavities with a barrier. The Cartesian ξ − ζ coordinate
system in the w-plane becomes a highly distorted (or-
thogonal) curvilinear coordinate system in the Z-plane.
In 2-(B) the metric coefficient M , related to the Jaco-
bian, is graphed as a function of x. Given a uniform grid
ξm we have displayed Mm = M(ξ(xm, 0)) in the physical
domain, noting the irregular spacing of the markers.
The spatial derivatives of equations (1)-(3) are com-

puted using a Fourier spectral method. The shallow re-
gions, seen on the sides of the cavity in figure 1-a), extend
sufficiently far that periodic boundary conditions may be
applied at the ends of the horizontal domain. The normal
velocity φz(x, 0, t) is computed with an FFT through the
Dirichlet-to-Neumann operator.
As described above, the DtN operator is computed

in steps. Owing to depth variations in the fluid do-
main, the conformal mapping is computed using the
Schwarz-Christoffel Toolbox (SCT) [13], which numeri-
cally maps a polygonal-shaped (2D) fluid domain onto
a flat strip of unit height [14, 15]. The SCT chooses
the origin to be at the bottom and the undisturbed free
surface to be at ζ ≡ 1. The mapping Z = F (w) is
computed only once, at the beginning of a simulation.
Commands are readily available [16] to compute the Ja-
cobian as well as ξj = ξ(xj , 0) on a given grid. Note
that we use the mapping ξj ↔ xj established at the be-
ginning of a given simulation. We use Fast Fourier

FIG. 4. A single cavity of length L = 1.5cm and depth h =
0.5cm. Three vertical accelerations are considered. a): Γ =
4.4 yields an oscillatory droplet motion in the middle of the
cavity. b): When Γ = 4.7 the oscillatory droplet motion
approaches the cavity’s boundaries. c): When Γ = 5.2, the
onset of chaotic droplet motion is apparent.

transforms (FFTs) to compute the vertical speed (6)
in the physical domain: φz(x, 0, t) = DtNZ [φ](x, t) =
(F−1[G(k)F [φ]])/M(ξ(x, 0)), where F indicates an FFT
in the ξ-coordinate. Recall that the Fourier multiplier is
G(k) = k tanh k.

It is important to recall that for a given uniform grid
xj (j = 1, ..., J) along the free surface in the physical do-
main, the conformal mapping generates a nontrivial dis-
tortion in the canonical domain, as expressed through the
real part of the inverse map ξj = ξ(xj , 0). This distortion
gives rise to grid points ξj distributed in a very irregu-
lar fashion. The Fourier integral given in (5) is computed
with an FFT, which uses equally spaced points, therefore
the corresponding Dirichlet data ϕj needs to be interpo-
lated on a uniform grid in ξ. This interpolation is done
through the use of cubic splines. In order to describe the
main ideas, consider the following simple example with
the single cavity shown in figure 1. Take a single Fourier
mode along the physical free surface, which in the canon-
ical domain is no longer monochromatic, for example,
F (ξ) = exp(ikx(ξ, 1)). For graphing purposes, we con-
sider the Fourier mode f(x) = cos(6πxj/(2LT )), where
2LT is the total length of our computational domain. In
figure 3-(A) this function is displayed at the correspond-
ing grid points xj . This function is not monochromatic
in ξ, as is clearly evident in figure 3-(B). In 3-(C) we show
a detail in the interval x ∈ [−0.5, 0.5], inside the cavity,
where the Jacobian is approximately equal to 0.5. Com-
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FIG. 5. Two different cavity depths h are considered. Cav-
ity geometry: L = 1.cm with an adjacent shallow region of
depth 0.02cm. The vertical acceleration parameter Γ = 5.3 is
slightly stronger than in figure 1. Wave profiles are shown in
units of TF . a): A shallow cavity where the depth is equal to
h = 0.10cm. Even with a stronger shaking, the droplet goes
directly to a static bouncing state, guided by the underlying
field which becomes a standing wave. This depth is not favor-
able to walking and therefore, in the case with two cavities,
the fluid depth over the barrier will be hb = 0.092cm. b):
The depth in the cavity is equal to h = 0.25cm. The droplet
gradually evolves to a bouncing state.

paring with the detail of 3-(D) we see that, in this region,
there is merely a rescaling (by a factor of 2) of the node
spacing in this region. In the case of two cavities, figure
2 displays, in both (A) and (B), how a uniform grid in ξ
becomes highly distorted in the physical domain.
Keeping in mind this simple example where a

monochromatic mode gets modulated in frequency, we
perform an oversampling of grid points in our numerical
method when using the cubic splines. This procedure
generates additional grid point values of exp(ikx(ξ, 1) on
a finer uniform grid ξm (m = 1, ...,M · J), where M ≥ 1
indicates the oversampling rate. In our simulations we
used J = 128 and M = 4. On the uniform grid ξm, FFTs
are used to compute the Fourier integral corresponding
to the DtN operator in the canonical domain. Through
the use of cubic splines, the Neumann data, found on
the uniform grid points ξm, is interpolated onto the non-
uniform grid points ξ(xj , 0), namely the pre-image of the
original uniform grid points in the physical domain.
In summary the geometrical information of the cavi-

ties and barriers is encoded in the variable (metric) co-
efficient M and through the relation ξj = ξ(xj , 0) which
are defined along the undisturbed free surface, when a
simulation starts. The dynamics is thus reduced to a one-
dimensional problem containing depth effects. The time
evolution is performed with a second-order fractional-
step Verlet method.

RESULTS

The physical parameters are taken in the same
range as in [10]: droplet radius Ro = 0.035 cm,
σ = 20.9 dyn cm−1, ν = µ/ρ = 0.16 cm2s−1, ρ =
0.95 g cm−3 and forcing frequency ωo = 80Hz. The cor-
responding Faraday wavelength is λF ≈ 0.47 cm. We
adopt boundaries comparable to those examined in the
laboratory: adjacent to the main cavity is a shallow re-
gion that eliminates the meniscus on the side walls that
would otherwise arise. Since the droplet cannot walk in
sufficiently shallow layers, it is generally repelled by sub-
merged boundaries [3]. The pronounced decay of waves
over the shallow region is evident in figure 1-a).

Single cavity

We first consider a droplet confined to a single cavity
of size 1cm ≈ 2λF (see figure 1-a)). As the forcing ampli-
tude Γ increases, a Hopf bifurcation arises as depicted in
figure 1-b)-c). When Γ = 4.95, the droplet drifts towards
a static bouncing state at the center of the cavity and the
waves converge to a standing wave form. In the position-
velocity phase space, the droplet spirals towards a critical
point. With the same initial conditions, at Γ = 5.0, the
droplet now executes a regular oscillatory trajectory cor-
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FIG. 6. Two cavities of width L = 1.2cm and depth h =
0.5cm, separated by a barrier of width Lb = 0.4cm and depth
hb = 0.092cm. The forcing amplitude is Γ = 4.6 with ΓF ≈ 5
for the present geometry.

responding to a limit cycle in phase space. In this case,
the wave profiles are continuously sloshing in the strobed
visualization, as is evident in figure 1-a). In a sense, the
wave is acting as a time-periodic potential for the oscil-
lating droplet. A well known example of a particle under
the effect of an oscillating potential is Duffing’s equation,
however the potential and its corresponding time depen-
dence are prescribed from the start. For example, switch
off the feedback and prescribe the wave profile in the
droplet trajectory equation. Motivated by figure 1, we
choose η = V (X, t) = a[1 + cos((2π/λF )X − ε sin(ωst))],
a monochromatic sloshing wave with sloshing frequency
ωs and amplitude ε. The time-varying potential V (X, t)
thus plays the role of the wave η in the damped oscillator
(3). Expanding dV/dX in ε yields a generalized version of
a periodically forced Duffing’s equation, which is known
to yield chaos. Likewise, increasing Γ in our model leads
to chaotic motion of the droplet. For the wave-droplet
association, the underlying potential is dynamically gen-
erated rather than prescribed: the nature of the under-
lying wave field is not known a priori and the pilot-wave
problem is intrinsically more difficult. Nevertheless, in
the regime displayed in figure 1-a), characterized by the
periodic wave sloshing, it resembles a periodically vary-
ing potential.

The range of the droplet’s oscillations is limited by the
sloshing wave field which transfers to the droplet informa-
tion about the cavity’s boundaries. At higher memory,
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FIG. 7. Droplet tunneling at Γ = 4.6. Cavity geometry as
in figure 6: L = 1.2cm, h = 0.5cm, hb = 0.092cm. Observed
Faraday threshold ΓF ≈ 5. a) Lb = 0.4cm with tunneling
probability of 58%; b) Lb = 0.45cm with tunneling probabil-
ity of 19%. Same initial conditions. c) The wave field in an
interval from b) that includes a tunneling event.

this is not the case, as is evident in figure 4. In fig-
ure 4-b), at a higher vertical acceleration, the oscillatory
droplet motion approaches the boundaries of the cavity.
The onset of a chaotic trajectory, observed at higher Γ,
is depicted in figure 4-c).
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FIG. 8. a): Exponential decay of tunneling probability with
barrier width Lb. Two cavities of width L = 1.5cm each, are
considered. The barrier depth is hb = 0.092cm (triangles)
and hb = 0.090cm (squares). The time interval is 5000TF

for all observations reported. At least two different initial
droplet positions were considered for each barrier width. At
Lb = 5.2mm the second simulation (for a triangle) displayed
no tunnelling events. In the presence of a shallower barrier, as
depicted with squares, tunnelling stopped completely beyond
a barrier of width Lb = 4.7mm, within our number of at-
tempts. The lines represent the corresponding least-squares
fit. b): The dependence of tunneling probability on mem-
ory for two cavities of width L = 1.2cm and barrier widths
Lb = 0.40cm (circles) and Lb = 0.50cm (squares). The op-
timal tunneling regime is evident near Γ/ΓF = 0.92, where
ΓF ≈ 5.

Two cavities separated by a barrier

The choices of cavity length and barrier width were
made based on the simulations presented above, while
noting that combining two cavities reduces the Faraday
threshold even in the presence of a high barrier. We want
the barrier to be a forbidden walking region. The barrier
depth is chosen accordingly. In [1], the barrier depth was
hb = 0.1cm. In figure 5-a) we consider a single cavity
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FIG. 9. Single cavity oscillations: a) Γ = 5.0; b) Γ = 5.15; c)
Γ = 5.3. All with initial position at x = 0.45. d) Histograms
for periodic droplet motion reported in a), b) and c). Here
ΓF ≈ 6.1.

with depth h = 0.1cm. Even with a stronger forcing of
Γ = 5.3 the droplet moves directly to a static bounc-
ing state in the middle of the cavity. When the depth
is increased to h = 0.25cm the droplet moves towards a
bouncing state in an oscillatory fashion. These examples
play a role in our choice for the tunneling simulations. We
first investigated tunnelling events for a (reference) bar-
rier width of Lb = 0.40cm [1]. We chose the barrier depth
of hb = 0.092cm, slightly smaller than that considered in
the experiments, since it lead to a tunnelling probability
on the order of 50% for a cavity size of L = 1.2cm and
25% for L = 1.5cm.

We now examine the new model’s ability to capture
tunneling. In [1], the tunneling behavior was character-
ized in terms of the barrier width and walker speed. Since
the free walker speed is prescribed by Γ [9], we will use
Γ as the control parameter in our simulations. Figure
6 displays the geometry used in our study of tunneling.
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FIG. 10. Histograms of droplet position. Here, Γ = 4.6,
ΓF ≈ 5, L = 1.2cm, Lb = 0.45cm and depth hb = 0.092cm.
a) PDF for a single simulation with t ∈ [0, 25000TF ]. b)
PDF for 12 simulations with different initial droplet positions
(6 in each cavity) and t ∈ [0, 5000TF ]. c) PDF for a single
realization from the 12 simulations.

Two cavities of width L and depth h are separated by a
barrier of width Lb and depth hb. When Γ = 4.6, tunnel-
ing takes place relatively often. For Γ ≤ 4.3, the droplet
never escapes its initial cavity.

In figure 7, we compare the droplet trajectory for two
different values of the barrier width Lb. All other system
parameters are kept the same, including the droplet’s ini-
tial position within the cavity. The tunneling pattern, as
well as the tunneling probability, change dramatically in
response to a small change in Lb. As in [1], the prob-
ability of tunneling is here defined as the ratio between
the total number of tunneling events divided by the total
number of attempts. A detail of the wave field in figure
7-b) is displayed in figure 7-c). There is a robust fea-
ture common to all of our simulations with two cavities:
a failed attempt to tunnel is generally accompanied by
a pronounced standing wave in the neighboring cavity
(see figures 6 and 7) that serves to block the tunneling
attempt.

Figure 8-a) shows the exponential decay of the tunnel-
ing probability with barrier width Lb, for two different
barrier configurations. The cavity widths were taken to
be L = 1.5cm , while the barrier depth was taken to be
hb = 0.092cm (depicted with triangles) and hb = 0.090cm
(depicted with squares). The number of attempts de-
pends on the cavity width and for L = 1.5cm we ob-
served an average of 55 attempts per simulation. We first
considered hb = 0.092cm, and observed the exponential
decay of the tunneling probability from approximately
65% to 2%, as the barrier width increases from 0.36cm
to 0.52cm. Note that we do not expect the 1D dynami-

cal model reported herein to be in quantitative agreement
with 2D laboratory experiments by [1]. The least-squares
fit is satisfactory, and the exponential decay rate does
not change much as we change the barrier’s depth. For a
higher (shallower) barrier (hb = 0.090cm), the tunneling
probability is evidently smaller and the model responds
accordingly, as shown by the square markers. Despite the
configuration not being semi-infinite, as is usual in the
quantum tunnelling problem, we observed exponential
decay with barrier-width, except for specific cases where
resonance arises: the small cavity-length together with
the barrier-width are a multiple of the Faraday wave-
length, allowing for substantial forcing of blocking waves
in the other cavity. These resonant cases were more com-
mon for a cavity of length L = 1.2cm, where the average
number of tunnelling attempts (per simulation) was of
the order of 80.
Our theoretical model also leads to a novel predic-

tion. Figure 8-b) indicates an optimal Γ for tunneling,
above which blocker waves in the target cavity forbid it.
Close to the Faraday threshold, the prevalence of stand-
ing waves in the target cavity blocks most tunneling at-
tempts.
In figure 9, we display the oscillatory motion of a

droplet confined to a single cavity (L = 1.0cm) for
three values of Γ. Histograms of the droplet position
are presented in figure 9-d). In figure 10, we display the
probability density function (PDF) for a droplet walk-
ing between two cavities of L = 1.2cm and barrier depth
hb = 0.092cm. We consider the case where tunneling
is relatively unlikely (19%), as in figure 7-b). In figure
10-a) we present the results of a long simulation up to a
time t = 25000TF , for which 25 million droplet positions
are recorded. In figure 10-b) we consider the same con-
figuration but for 12 different initial droplet positions, 6
in each cavity. A single realization is displayed in figure
10-c), where the droplet is found more often in the right
cavity. Each simulation extends over 5000TF . For each
starting point, 5 million droplet positions are recorded
and then superposed. The PDFs 6-a) and 6-b) are re-
markably similar, suggesting the possibility of a station-
ary ergodic process for the random tunneling events and
related droplet positions. This behavior is also apparent
for other Γ values, as shown in figure 11 where only 6
initial positions were taken, but the limiting pattern of
the PDF is already emerging. We have reduced both the
forcing Γ and the barrier width Lb relative to figure 10.

CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a new theoretical model capable of
describing 1D pilot-wave dynamics over variable bottom
topography. We have used it to explore the dynamics
and statistics of tunneling and of walker motion in a con-
fined domain. In a single cavity, the droplet behaves as
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FIG. 11. Histograms of droplet position. Here, Γ = 4.5,
ΓF ≈ 5, L = 1.2cm, Lb = 0.40cm and depth hb = 0.092cm.
a) PDF for a single simulation with t ∈ [0, 30000TF ]. b) PDF
for only 6 simulations with different initial droplet positions
(3 in each cavity) and t ∈ [0, 5000TF ].

an oscillator that transitions into a chaotic trajectory at
sufficiently high memory.
When two cavities are considered, tunneling simula-

tions confirm that our theoretical model captures the ex-
ponential decay of the crossing probability with increas-
ing barrier width [1]. Tunneling simulations also indi-
cate an optimal memory range for crossing due to the
prevalence of blocker waves in the target cavity at high
memory. In [17], the authors studied the phenomenon
of quantum tunneling across a symmetric double-well
potential perturbed by a monochromatic driving force.
Playing a role roughly analogous to the blocker waves in
our hydrodynamic pilot-wave system, this periodic driv-
ing leads to the “coherent destruction of tunneling”, as
defined by the authors. The statistical behavior of our
system, specifically the emergence of a robust PDF, sug-
gests an underlying stationary ergodic process. While we
do not expect the 1D dynamical model reported herein
to be in quantitative agreement with 2D laboratory ex-
periments, we believe that it has considerable potential
in establishing the connection between chaotic particle-
wave dynamics and emergent quantum-like statistics, as
have been reported in a number of hydrodynamic quan-
tum analog systems [5, 18, 19].
The authors would like to thank the referees for their

valuable comments. The authors would also like to
thank Dr. C. Galeano-Rı́os (IMPA), Dr. G. Pucci,
Dr. L. Faria and M. Biamonte (MIT) for their com-
ments. AN was supported by CNPq under (PQ-1B)
301949/2007-7, FAPERJ Cientistas do Nosso Estado

project #102.917/2011 and the MIT-Brazil Program.
AN is grateful to the University of Bath, Math. Dept.

and to MIT, Math. Dept., for hosting him as a visiting
professor during periods of this research. PAM was sup-
ported by a Royal Society Wolfson award and a CNPq-
Science without Borders award #402178/2012-2. JWMB
was supported by NSF through grant CMMI-1333242,
the MIT-Brazil Program and the CNPq-Science With-
out Borders award #402300/2012-2.

[1] A. Eddi, E. Fort, F. Moisy, and Y. Couder, “Unpre-
dictable tunneling of a classical wave-particle associa-
tion,” Phys. Rev Lett., 102, 240401–1 (2009).

[2] G. Gamow, “The quantum theory of nuclear desintegra-
tion,” Nature (London), 122, 805 (1928).
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