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Abstract

Although the roll/streak structure is ubiquitous in both observations and simulations of pre-

transitional wall-bounded shear flow, this structure is linearly stable if the idealization of laminar

flow is made. Lacking an instability, the large transient growth of the roll/streak structure has been

invoked to explain its appearance as resulting from chance occurrence in the background turbulence

of perturbations configured to optimally excite it. However, there is an alternative interpretation

for the role of free-stream turbulence in the genesis of the roll/streak structure which is that the

background turbulence interacts with the roll/streak structure to destabilize it. Statistical state

dynamics (SSD) provides analysis methods for studying instabilities of this type which arise from

interaction between the coherent and incoherent components of turbulence. Stochastic structural

stability theory (S3T), which implements SSD in the form of a closure at second order, is used

in this work to analyze the SSD modes arising from interaction between the coherent streamwise

invariant component and the incoherent background component of turbulence. In pre-transitional

Couette flow a manifold of stable modes with roll/streak form is found to exist in the presence of

low intensity background turbulence. The least stable mode of this manifold is destabilized at a

critical value of a parameter controlling the background turbulence intensity and a finite amplitude

roll/streak structure arises from this instability through a bifurcation in this parameter. Although

this bifurcation has analytical expression only in SSD, it is closely reflected in both the dynamically

similar quasi-linear system, referred to as the restricted non-linear (RNL) system, and in DNS. This

correspondence is verified using ensemble implementations of the RNL and DNS systems. S3T also

predicts a second bifurcation at a higher value of the turbulent excitation parameter that results

in destabilization of the finite amplitude roll/streak equilibria. This second bifurcation is shown to

lead first to time dependence of the roll/streak in the S3T system and then to chaotic fluctuation

corresponding to minimal channel turbulence. This transition scenario is also verified in simulations

of the RNL and DNS systems. Bifurcation from a finite amplitude roll/streak equilibrium provides

a direct route to the turbulent state through the S3T roll/streak instability.
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I. INTRODUCTION

Streamwise roll vortices and associated streamwise streaks were identified in experiments

on transition in boundary layers [1] and observed in the near wall region of turbulent flows

[2–4]. These observations were subsequently corroborated by direct numerical simulations

(DNS) (cf. Kim et al. [5]) and the roll/streak structure is now understood to be central to

the dynamics of turbulence in wall-bounded shear flows.

There are two distinct dynamical problems central to understanding wall-turbulence:

transition from the laminar to the turbulent state and maintenance of the turbulent state.

The roll/streak structure, despite being hydrodynamically stable, is commonly agreed to be

involved in instigating transition from the laminar to the turbulent state in these flows. After

transition this structure persists but becomes highly variable in both space and time. This

time-dependent streamwise roll and streak structure is believed to be involved in the process

maintaining turbulence in shear flow that is referred to as the self-sustaining process [6–9].

Moreover, this self-sustaining mechanism appears to be quite general in that it operates not

only in the near-wall region but also, and independently, in the logarithmic layer [10, 11].

Our primary interest in this work is in the robust observation of the roll/streak structure

in wall-bounded shear flow prior to transition and in understanding the role of this structure

in the transition process. The prominence of the roll/streak in these flows presents a problem

because this structure is not an unstable eigenmode of the shear flow existing prior to

transition. The robust observation of the roll/streak structure was first rationalized by

appeal to the lift-up mechanism which describes the kinematic conversion of wall normal

velocity into streamwise streak velocity in sheared flows [12, 13]. This insight was later

advanced by recognition that the lift-up mechanism could be subsumed into the analytical

structure of generalized stability theory (GST) by which modal stability theory and non-

normal transient growth analysis are united [14–16]. While modal stability analysis provides

no reason to expect appearance of roll/streak structures, GST analysis predicts optimally

growing perturbations with the observed form [17, 18].

The success of optimal growth theory in predicting the roll/streak structure observed

in perturbed wall-bounded shear flow prior to transition appeared at first to be persuasive

that the explanation for observations of this structure in pre-transitional flow was secure.

Nevertheless, there remained a lingering doubt. For one thing, there is the regularity of
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the spacing and amplitude of the roll/streak in experiments [19, 20], which, as remarked

by Townsend [21], is characteristic of modal growth. And then there is the observation

that streamwise rolls decay in amplitude if background turbulence levels are sufficiently

low, consistent with predictions based on transiently growing optimals [22–24], while rolls

grow downstream in the presence of moderate levels of background turbulence intensity [25],

which is incompatible with transient growth and suggestive of an underlying unstable mode.

While the absence of roll/streak instability in an unperturbed wall-bounded shear flow is

established, pseudospectral theory [26, 27] reveals that a highly non-normal operator, such

as that of Navier-Stokes (NS) dynamics linearized about a strongly sheared flow, can be

destabilized by small perturbations to the dynamical operator itself. Consistently, it was

recently shown that an emergent instability with roll/streak structure arises from interac-

tion between the roll/streak structure and a field of background turbulence with sufficient

amplitude [28]. This instability does not have analytical expression in the linearized NS

dynamics of the laminar flow because it is not a linear instability of the laminar shear flow

but instead arises from systematic organization by the roll/streak structure of the Reynolds

stress associated with the incoherent background turbulence. The analytical expression for

this instability therefore exists only in the equations for the associated statistical state dy-

namics (SSD). The formulation of SSD used in this work to study this instability, referred

to as S3T, is a second order closure of the Navier-Stokes dynamics (NS) in which full non-

linearity is retained in the streamwise mean equation (first cumulant) while the dynamics of

the perturbation covariance (second cumulant) is linearized about the instantaneous stream-

wise mean flow. Nonlinear interaction occurs between the mean flow dynamics (defined as

flow components with streamwise wavenumber kx = 0) and the perturbation covariance

obtained from flow components with streamwise wavenumber kx 6= 0, while nonlinearity is

parameterized by a stochastic excitation in the perturbation dynamics rather than being

explicitly calculated. This quasi-linear formulation in which nonlinearity is parameterized

in the perturbation dynamics is referred to as the restricted nonlinear (RNL) approximation

to the full nonlinear Navier–Stokes dynamics (NL). In this work we use RNL to construct

finite ensemble approximations to the equivalently infinite ensemble of the S3T version of

SSD. Consistent with this usage, the perturbation equations making up the ensemble in an

RNL-based approximation to S3T are used only to calculate an approximate covariance.

As a consequence phase information is not retained for the perturbation fields, only their

4



second order correlations being relevant to a second order SSD.

As alluded to above, the approximation to the perturbation covariance obtained using

RNL dynamics can be systematically improved by forming a mean covariance from an en-

semble of RNL perturbation equations sharing a single mean flow. In the case that an

N -member ensemble is used to approximate the covariance the SSD approximation is re-

ferred to as RNLN [29]. In the limit N → ∞ S3T dynamics is recovered. RNL has the

advantage that it can be easily implemented at high resolution while retaining the analyt-

ical restrictions of S3T. Moreover, simulations made using RNL can be compared to the

same DNS implementation that was restricted to obtain the RNL system [11, 30].

Further insight can be obtained by proceeding similarly with the NS equations by formally

writing the full dynamics in mean/perturbation form and then calculating an ensemble

average second order closure using an N -member ensemble of perturbation equations sharing

a single mean flow in a manner parallel to the method used in constructing RNLN but

retaining full nonlinearity in the individual perturbation equations of the ensemble. This

closure will be referred to as NLN . When it converges NLN corresponds to a complete

cumulant expansion of the SSD solved up to second order. We find that in our example

problem satisfactory convergence of RNLN and NLN is obtained for N as small as 10.

Consider a Couette flow subjected to a random excitation that is statistically streamwise

and spanwise homogeneous and has zero mean with respect to time and space averaging.

S3T predicts a bifurcation occurring at a critical amplitude of the excitation in which an un-

stable roll/streak structure emerges as an instability of the S3T dynamics. It is important at

this point to be clear about what entity is being referred to as unstable. The unstable mode

we are studying arises as an eigenmode with roll/streak structure at infinitesimal amplitude

that eventually grows sufficiently to become a nonlinearly equilibrated finite amplitude equi-

librium that retains roll/streak structure. The existence of coherent roll/streak structures in

the flow is therefore explained by the growth and equilibration of this unstable mode. It is

perhaps more correct to say that the flow is unstable to this roll/streak structure than to say

that this roll/streak structure is unstable, which would admit the alternative interpretation

that the finite amplitude roll/streak structure is itself unstable. At sufficiently high back-

ground turbulence levels the finite amplitude roll/streak structure proceeding from the S3T

unstable mode does become itself subject to secondary instability leading to transition to a

self-sustaining turbulent state as we will show. The perturbative S3T instability connects

5



directly to the finite amplitude roll/streak structure which becomes secondarily unstable,

but these secondary instabilities are not of roll/streak form. There is an analogy between

equilibrated finite amplitude roll/streak structures in S3T and exact coherent structures in

laminar flow [31–36], although exact coherent structures are finite amplitude isolated equi-

libria that do not connect to infinitesimal instabilities of the spanwise independent laminar

flow as the S3T roll/streak structures do. While S3T finite amplitude roll/streak structures

become secondarily unstable only when these roll/streak reaches high amplitude under ex-

citation by strong background turbulence, the isolated exact coherent structures generally

support secondary instabilities, for example those discussed in Deguchi & Hall [36, 37] in

their investigation of the stability of the finite amplitude states in vortex-wave interaction

theory (VWI). We remark that once its secondary instability becomes supported the coher-

ent equilibrium S3T roll/streak structure is rapidly destroyed. This observation suggests

that physically realistic levels of background turbulence should excite the parasitic modes

of exact coherent structures as well. In order to maintain such unstable structures it is

necessary to eliminate naturally occurring sources of perturbations that would necessarily

excite the parasitic modes to which these structures are vulnerable. In contrast, the S3T

instability results from organization of the background disturbances which constitutes its

energy source so rather than being detrimental to it, the S3T mode growth rate increases

with increasing background disturbance amplitude.

Returning now to the S3T instabilities with roll/streak form; as the background turbu-

lence excitation is increased, at first the streamwise and spanwise averaged mean flow differs

little from the laminar Couette profile while superimposed on this profile is a fixed point

finite amplitude roll/streak structure. With further increase in the excitation amplitude

another critical value is exceeded at which the flow transitions to turbulence. The existence

of these three statistical regimes under increasing levels of background turbulence: the near

laminar state, the near laminar with superimposed finite amplitude equilibrated roll/streak

structure, and the turbulent regime characterized by chaotic fluctuation of the roll/streak

structure in Couette flow was predicted using S3T [28]. The purpose of this paper is to

determine whether these predictions made using S3T are reflected in ensemble RNL and NL

SSD approximations and to analyze the convergence to the S3T predictions obtained using

the RNLN and NLN approximations as N →∞.
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FIG. 1: Left: Growth rate of the two most unstable S3T eigenfunctions about the spanwise
homogeneous S3T equilibrium as a function of the excitation amplitude of the background
turbulence, ε. Right: The structure of the corresponding eigenfunctions with growth rate
(a) and (b) for excitation amplitude ε/εc = 2. Shown are contours of the streak velocity,
Us, and velocity vectors of the components (V,W ) plotted on a (y, z) plane cross-section.
The structure of these eigenfunctions does not change appreciably for ε/εc < 6. At ε = εc
the S3T spanwise uniform equilibrium bifurcates to a finite amplitude equilibrium with

perturbation structure close to that of the most unstable eigenfunction shown in (a). The
channel is minimal with Lx = 1.75π and Lz = 1.2π, the Reynolds number is R = 400, and

the stochastic forcing excites only Fourier components with streamwise wavenumber
kx = 2π/Lz = 1.143. The critical εc sustains a background turbulent field with mean

energy 0.14% of the Couette flow energy.

II. FORMULATION OF S3T

Consider a plane Couette flow with streamwise direction x, wall-normal direction y and

spanwise direction z in which background turbulence is maintained by stochastic excitation

applied throughout the flow. The lengths of the channel in the streamwise, wall-normal

and spanwise direction are respectively Lx, 2h and Lz. The channel walls are at y/h =

−1 and 1. Spatial and temporal averages are denoted by square brackets with a subscript

denoting the independent variable over which the average is taken, i.e. spanwise averages by

[ · ]z = L−1z
∫ Lz

0
· dz, time averages by [ · ]t = T−1

∫ T
0
· dt, with T sufficiently long. Multiple

subscripts denote an average over the subscripted variables in the order they appear, i.e.

[ · ]x,y
def
= [ [ · ]x ]y. The vector velocity u is decomposed into its streamwise mean, denoted

by U(y, z, t)
def
= [u(x, y, z, t)]x, and the deviation from this mean (the perturbation) denoted
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u′(x, y, z, t) so that u = U + u′. The pressure gradient is similarly decomposed as ∇p =

∇ (P (y, z, t) + p′(x, y, z, t)). Velocity is non-dimensionalized by the velocity at the wall, Uw,

at y/h = 1, lengths by h, and time by h/Uw. The non-dimensional NS equations decomposed

into an equation for the mean and an equation for the perturbation are:

∂tU + U · ∇U +∇P −∆U/R = − [u′ · ∇u′]x , (1a)

∂tu
′ + U · ∇u′ + u′ · ∇U +∇p′ −∆u′/R = − (u′ · ∇u′ − [u′ · ∇u′]x ) +

√
ε f ′(x, y, z, t) ,

(1b)

∇ ·U = 0 , ∇ · u′ = 0 , ∇ · f ′ = 0 (1c)

where R = Uwh/ν is the Reynolds number. The velocities and the stochastic excita-

tion f ′ satisfy periodic boundary conditions in the z and x directions and no-slip bound-

ary conditions in the cross-stream direction: U(x,±1, z, t) = (±1, 0, 0), u′(x,±1, z, t) =

f ′(x,±1, z, t) = 0. The stochastic excitation is applied only to the streamwise varying

Fourier components of the flow. It is nondivergent, has zero ensemble mean, 〈f ′〉 = 0 (the

ensemble mean over excitation realizations being denoted 〈·〉) , and is delta correlated in

time and statistically homogeneous in the x and z directions. Delta correlation in time of

the excitations implies that the energy input by the stochastic excitation is independent

of the flow state and can be parameterized by ε in (1b). The x, y, z components of U are

(U, V,W ) and the corresponding components of u′ are (u′, v′, w′). The streak component of

the streamwise mean flow is denoted by Us and defined as

Us
def
= U − [U ]z . (2)

The streamwise mean cross-stream and spanwise velocities, V and W , are found to primar-

ily constitute the roll vortices. We also define the streak energy density, Es = [U2
s /2]y,z,

the roll energy density, Er = [(V 2 +W 2)/2]y,z, and the perturbation energy density Ep =

[|u′|2/2]x,y,z. Energy is injected from the moving walls at rate I = (2R)−1
[
∂yU |y=1 + ∂yU |y=−1

]
z

and at rate ε from the appropriately normalized stochastic forcing. Energy is dissipated at

rate D = R−1 [|∇ × u|2]x,y,z. With Ic and Dc we denote the energy injection and dissipation

rates of the Couette flow.

The S3T dynamics is a SSD governing the evolution of the first two cumulants consisting
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of the streamwise mean flow, U = (U, V,W ) or U
def
= (Ux, Uy, Uz), and the second cumulants

that are the same time covariances of the Fourier components of the velocity fluctuations,

û′α,kx , where the index α = x, y, z indicates the velocity component in the Fourier expansion

of the perturbation velocity u′ :

u′(x, y, z, t) =
∑
kx>0

Re
(
û′kx(y, z, t) eikxx

)
, (3)

with kx the streamwise wavenumbers that are excited by the stochastic excitation. We

similarly expand the excitation in its Fourier components f̂ ′kx . In this study we will limit the

stochastic excitation to only the streamwise fundamental wavenumber kx = 2π/Lx and as a

result the subscript kx in the velocity and excitation components can be dropped without

ambiguity. Because in the S3T equations the perturbation-perturbation interactions are not

included, this choice of excitation implies that the S3T flow field perturbations have power

only at the streamwise component that is forced. The covariance variables of S3T are the

covariances of the velocity components of Fourier component kx between point 1
def
= (y1, z2)

and point 2
def
= (y2, z2) evaluated at the same time:

Cαβ(1, 2) =
〈
û′α(1)û′∗β (2)

〉
, (4)

which is a function of the coordinates of the two points (1) and (2) on the (y, z) plane and

of time (∗ denotes complex conjugation). The S3T equations are:

∂tUα + Uβ∂βUα + ∂αP −∆Uα/R = −1

2
Re
(
∂yCyα(1, 1) + ∂zCzα(1, 1)

)
, (5a)

∂tCαβ(1, 2) = Aαγ(1)Cγβ(1, 2) + A∗βγ(2)Cαγ(1, 2) +Qαβ(1, 2) , (5b)

∂aUa = 0 , ∂̂α(1)Cαβ(1, 2) = ∂̂∗β(2)Cαβ(1, 2) = 0 , (5c)

with summation convention on repeated indices and the operator ∂̂
def
= (ikx, ∂y, ∂z) (for a

derivation cf. [28]). The operator Aαβ(1) (or Aαβ(2)) is the operator governing the quasi-

linear evolution of streamwise varying perturbations in (1b) with streamwise wavenumber

kx = 2π/Lx linearized about the instantaneous streamwise mean flow U(1) (or U(2)) and 1

(or 2) indicates that the operator acts on the 1 (or the 2) variable of C(1, 2). Qαβ(1, 2) are

the spatial covariances of the kx Fourier components of the forcing components, f̂i, and are
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FIG. 2: Bifurcation diagram for the Couette problem. Shown is the time mean of the
maximum value of the streak amplitude, Us as a function of the stochastic excitation
amplitude, ε, for an NL1 simulation (red), an ensemble NL10 simulation (green), an
ensemble NL100 simulation (blue), and an ensemble RNL100 simulation (black). The

critical bifurcation value has been determined from stability analysis of the S3T system
and it has been confirmed that this value is closely approximated using RNL100. For

ε/εc < 1, S3T predicts that the streamwise streak and roll amplitude is zero. At ε = εc the
S3T spanwise uniform equilibrium bifurcates giving rise to a finite amplitude equilibrium

with roll and streak. The NL1 and NL10 simulations exhibit fluctuating streak/roll
structures and one standard deviation of the fluctuations correspond to the shaded regions

in the figure. The fluctuations in the ensemble NL100 and RNL100 simulations are small
and only those associated with NL100 are shown. Other parameters as in Fig. 1.

defined as 〈
f̂α(1, t1)f̂

∗
β(2, t2)

〉
= δ(t1 − t2)Qαβ(1, 2) . (6)

Using S3T we can find roll/streak structures that are independent of time because their

forcing derives from a converged covariance obtained from an equivalently infinite ensemble

of independent realizations. These fixed point equilibria are imperfectly reflected in indi-

vidual realizations because fluctuations in the covariance arise due to the finiteness of the

equivalent ensemble of statistically independent structures that fit in the channel. These

fluctuations in the covariance result in imperfect correspondence with the underlying equi-
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librium structure revealed by S3T (cf. [38, 39]). In order to verify that the S3T fixed point

does in fact underly the dynamics of the roll/streak structure observed in RNL and NS

it is useful to obtain solutions lying on the continuum from the single realization solution

to the infinite ensemble S3T fixed point solution. S3T dynamics is approached by RNLN

simulations as N →∞. The RNLN system is governed by the system of equations

∂tU + U · ∇U +∇P −∆U/R = −〈[u′ · ∇u′]x〉N , (7a)

∂tu
′
n + U · ∇u′n + u′n · ∇U +∇p′n −∆u′n/R =

√
ε fn

′(x, y, z, t) , (7b)

∇ ·U = 0 , ∇ · u′n = 0 , ∇ · f ′n = 0 (7c)

where n = 1, · · · , N indicates the ensemble member, and 〈·〉N indicates an average over the

N ensemble members. Note that in correspondence with S3T dynamics the perturbation-

perturbation interaction in (1b) is ignored.

In a similar manner we can define ensemble NLN simulations correspond to the first two

components of a converged expansion in cumulants. NLN is governed by the system of

equations:

∂tU + U · ∇U +∇P −∆U/R = −〈[u′ · ∇u′]x〉N , (8a)

∂tu
′
n + U · ∇u′n + u′n · ∇U +∇p′n −∆u′n/R = − (u′n · ∇u′n − [u′n · ∇u′n]x ) +

√
ε fn

′(x, y, z, t) ,

(8b)

∇ ·U = 0 , ∇ · u′n = 0 , ∇ · f ′n = 0 (8c)

We are interested in whether the analytical predictions of the S3T equations are ap-

proached in RNLN and NLN simulations as N increases. Results are presented for the

minimal Couette flow channel of Hamilton, Kim & Waleffe [7] at R = 400 (based on chan-

nel half-width) with streamwise length Lx = 1.75π, spanwise length Lz = 1.2π and channel

half-width Ly = 1. The gravest streamwise wavenumber kx = 2π/Lx is stochastically ex-

cited using independent compact support cross-stream velocity and cross-stream vorticity

structures in (y, z). Numerical calculations employ Ny = 21 grid points in the cross-stream

direction and 32 harmonics in the spanwise and streamwise directions. Other stochastic

excitations produce only qualitative differences in the results. A study of the S3T dynamics
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FIG. 3: Top panels: Snapshot of the streamwise mean flow from an NL1 simulation at
stochastic excitation amplitude ε/εc = 3. Shown are contours of the streamwise mean

velocity U (left top), streak velocity, Us (right top) and velocity vectors of the components
(V,W ) in the (y, z) plane at t = 1000 of the simulation. Bottom panels: The corresponding

streamwise mean flow for the S3T system at ε/εc = 3. This figure shows that the
equilibrium roll/streak regime predicted by S3T is reflected in single realizations of the NL
equations. The development of the roll/streak structure in a NL1 simulation can be seen in
MOVIE1 (cf. supplementary materials). The development of the roll/streak equilibrium in

a S3T equilibrium simulation can be seen in MOVIE2 (cf. supplementary materials).
Parameters are as in the previous figures.

of this channel model was reported in [28].

III. COMPARISON OF ROLL/STREAK BIFURCATION AND STRUCTURE IN

S3T, RNLN AND DNSN

The S3T SSD (5) supports spanwise uniform fixed point solutions with streamwise mean

flow form Ue = (Ue(y), 0, 0) and associated spanwise covariance Ce(y1, y2, z1 − z2). Taking
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FIG. 4: Snapshots at times t = 640, 720, 800, 880 of the contours of the streak velocity,
Us, and velocity vectors of the components (V,W ) plotted on a (y, z) plane cross-section

from an NL1 simulation at stochastic excitation amplitude ε/εc = 3. This figure shows the
persistence of the organized structure in NL1. This structure and its persistence stem from

the underlying equilibrium state that exists for this excitation amplitude in the S3T
dynamics. The other parameters are as in the previous figures.

ε = 0, recovers the laminar Couette flow Ue = y with Ce = 0. As ε increases the equilibrium

streamwise mean flow, Ue(y), departs from the Couette flow. Stability of these spanwise

uniform S3T equilibria can be determined as a function of ε using the S3T equations (5)

linearized about these fixed points [28].

Eigenvalues and the associated mean flow eigenfunction structure for the first two most

unstable S3T modes are shown in Fig. 1. The complete associated eigenfunctions comprise

both a mean flow component (δU(y, z), δV (y, z), δW (y, z)), which is shown in Fig. 1, and

a covariance component δC(y1, y2, z1, z2). The structure of the mean flow component of

these eigenfunctions changes only slightly as the amplitude of the forcing, ε, increases. The
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eigenfunctions consist of low and high speed streamwise streaks together with roll circulations

exactly collocated to reinforce the streak velocity. Despite being more highly dissipated by

diffusion, the mean flow eigenfunction which becomes unstable first as ε increases is not

the eigenstructure with the gravest spanwise wanumber kz = 2π/Lz = 1.67, shown in Fig.

1b, but the second spanwise harmonic with wavenumber kz = 4π/Lz = 3.33, shown in Fig.

1a. Destabilization of these roll/streak eigenfunctions can be traced to a universal positive

feedback mechanism operating in turbulent flows: when incoherent turbulence is perturbed

by a coherent streak, the streak distorts the incoherent turbulence so as to induce ensemble

mean Reynolds stresses forcing streamwise mean roll circulations configured to reinforce the

streak perturbation that gave rise to them (cf. [28]). The modal streak perturbations of the

fastest growing eigenfunctions induce the strongest such feedback (when account has been

taken for viscous damping).

We note that neutral mode and critical layer based self-sustaining process (SSP) theo-

ries such as the vortex-wave interaction theory (VWI) predict structures at variance with

the S3T unstable modes we obtain. As shown in Fig. 1a,b organization of the Reynolds

stress by the streak (even at perturbational amplitude) results in a smooth domain-wide

forcing of the roll circulation. At high Reynolds number in the neutral mode SSP and VWI

mechanisms this interaction is localized at the critical layer [32, 34, 36, 40]. The interaction

between perturbations and mean flow in neutral mode and VWI theories by necessity occurs

near the the critical layer in the inviscid limit because according to the non-acceeleration

theorem at steady state and in the absence of forcing and dissipation there is no interac-

tion between mean and perturbations except at the critical layer [41–43]. In S3T there is

forcing and consequently the interaction is not required to be concentrated in the vicinity

of the critical layer. The modes we calculate organize distributions of Reynolds stress with

divergence exactly coherent with the mode roll structure, as is required of a mode solution,

and not in any sense concentrated at a critical surface. In fact the lack of any evidence for

concentration of Reynolds stress divergence at a particular cross-stream location either in

our stable roll/streak regime or in our self-sustaining turbulence simulations argues against

a mechanism relying on an interaction localized at a critical surface.

S3T stability analysis determines the critical excitation, εc, at which the spanwise homo-

geneous turbulent equilibrium state becomes unstable. For the parameters of our example

problem this εc corresponds to maintaining in the Couette flow a perturbation field with
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mean energy density 0.14% of the energy density of the Couette flow. For ε > εc a symme-

try breaking occurs with the emergence of mean flow structures in the form of the fastest

growing eigenfunction which is shown in Fig. 1a. Over a finite interval εc < ε < εt the

unstable S3T eigenfunction equilibrates nonlinearly to form finite amplitude S3T equilibria

with roll/streak structure qualitatively similar to the corresponding eigenfunction (for our

examples εt/εc ≈ 5.5).

A bifurcation diagram showing the maximum of the streak velocity, Us, and of the stream-

wise mean cross-stream velocity, V , is shown as a function of ε in Fig. 2 . The indicated

critical εc was determined by S3T stability analysis. For ε/εc < 1 the equilibrium is spanwise

independent with no coherent roll/streak structure. The equilibrium values shown in Fig. 2

were obtained using RNL100 simulations. These RNL100 equilibria have been verified to be

very close to the infinite ensemble S3T equilibria.

Single NL and ensemble NL integrations allow us to study the correspondence between

the infinite ensemble predictions of S3T analysis and NL turbulence. While finite ensemble

simulations produce fluctuating roll/streak structures we find that even in the case of a

realization simulation, corresponding to N = 1, a clear roll/streak structure emerges for

ε > εc which exhibits great persistence and has the same structure as that predicted by S3T

analysis. An indicative comparison between an S3T equilibrium roll/streak structure and a

snapshot of the corresponding roll/streak from an NL1 simulation at ε/εc = 3 is shown in

Fig. 3.

While the S3T equilibria are fixed points, the corresponding roll/streak structure in the

NL1 simulation reflect the time independence of the S3T equilibria imperfectly. However, it

is persuasive that the analytical structure revealed by S3T analysis underlies the behavior

seen in the NL1 simulation; for example see the snapshots shown in Fig. 4. Noise driven

fluctuations of the ensemble structure are also apparent in the bifurcation diagram shown

in Fig. 2 in which the mean and variance of the maximum streak, Us, in NL1 and NL10 are

indicated. The reflection of the analytical S3T bifurcation is clearly seen in the NL10 results

and near convergence is obtained in the NL100 results.

We have demonstrated that the unstable roll/streak modes and associated finite ampli-

tude S3T equilibria that are revealed by S3T analysis give rise to the structure observed in

pre-transitional turbulent Couette flow in both NL and ensemble NL simulations. However,

the stable S3T modes supported in the S3T stable the interval (0 < ε/εc < 1) are also
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FIG. 5: Contours of streak velocity, Us, and vectors of roll components (V,W ) plotted on a
(y, z) cross-section for the first 4 PODs of the streamwise mean flow fluctuations of an NL1

forced at ε/εc = 0.75. The PODs come in pairs. The first pair of PODs which account for
82% of the energy of the fluctuations of the streamwise mean flow has the structure of the
least damped S3T mode which because of the synergistic mechanism revealed by S3T is
not the gravest mode in the channel. This figure shows that the fluctuations in the NL1

simulations reveal the S3T stable modes. Other parameters as in the previous figures.

important structures in the dynamics of pre-transitional turbulence. While not excited in

the fluctuation free S3T dynamics, these stable S3T modes are robustly excited by fluctu-

ations in the forcing in NL1 simulations (cf. [38, 39, 44]). Correspondingly, for subcritical

excitation (0 < ε/εc < 1) the mean flow of NL or ensemble NL simulations reveals a ubiqui-

tous tendency to form roll/streak structures with temporally variable (y, z) structure arising

from excitation of the stable manifold of S3T eigenmodes. A POD analysis (cf. [45]) of the

streamwise mean flow reveals the dominance of this component of the variability which is

accounted for by excitation of these roll/streak structures predicted by S3T (cf. [46]). For
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FIG. 6: Evolution of energy input rate, I/Ic and dissipation rate, D/Dc, from the laminar
state to the turbulent state in an NL1 simulation (squares-solid) and in an S3T simulation

(crosses-solid) with background turbulence excitation parameter ε/εc = 9. Symbols are
marking intervals of 10 units of time. The metastable state is characterized by

D/Dc ≈ 1.7. Parameters as in the previous figures.

example, the first 4 POD’s of NL1 at ε/εc = 0.75, shown in Fig. 5, have the structure

predicted by the S3T eigenmodes. Consistent with S3T analysis the first POD corresponds

to the mode with spanwise wavenumber kz = 4π/Lz, which corresponds to the least stable

eigenfunction at this ε/εc. Note that all POD’s exhibit exact alignment of the roll circu-

lations with the streaks. This provides confirmation of the S3T prediction that these are

the modal structures predicted by S3T. Consistent with these stable modes being excited

by turbulent fluctuations, as ε/εc → 1 fluctuations of roll/streak form exhibit enhanced

variance (cf. Fig. 2) which is indicative of approach to a bifurcation and is a phenomenon
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FIG. 7: Evolution of the streak energy, Er, roll energy, Er, and perturbation energy Ep, in
an S3T integration at ε/εc = 9 under spanwise homogeneous forcing. The flow is initialized
with a small random streamwise mean perturbation with spanwise dependence in order to

break spanwise symmetry. The spanwise symmetric S3T equilibrium is unstable and a
quasi-steady state emerges by time t = 200 with the roll/streak structure shown in Fig. 8.
At this supercriticality the roll/streak structure (cf. Fig. 9) is an unstable fixed point of

the S3T dynamics and the flow transitions to the turbulent state. Other parameters as in
the previous figures.

analogous to that of critical opalescence on approach to a fluid phase transition.

IV. TRANSITION TO TURBULENCE

At background turbulence excitation parameters exceeding εt (εt/εc ≈ 5.5 for the chosen

parameters) the finite amplitude roll/streak equilibria are no longer S3T stable and the

flow transitions to a turbulent state, which is self-sustaining and persists even when the

background turbulence excitation parameter is subsequently set to ε = 0 (cf. [28]). RNL1

and NL1 also transition to essentially similar self-sustaining turbulence. Example trajectories

of transition from the laminar equilibrium state to the turbulent attractor for NL1 and S3T
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FIG. 8: Snapshots of the streamwise mean flow as it undergoes S3T transition to
turbulence under stochastic forcing. Shown are contours of the streak velocity, Us, and
velocity vectors of the components (V,W ) plotted on the (y, z) plane. A quasi-steady

roll/streak is first formed (cf. left panel) with with input energy rate I/Ic ≈ 1.7 and the
structure of the fastest growing S3T instability (cf. Fig. 1) which has spanwise

wavenumber kz = 4π/Lz. At about t = 550 the flow transitions through oscillations to a
turbulent roll/streak with a dominant kz = 2π/Lz structure. The transition period can be
extended by enforcing the mirror symmetry of the streak-roll structure about the streak

maximum. Other parameters as in the previous figures.

are shown in Fig. 6.

A typical evolution of the perturbation energy density, Ep, streak energy density, Es, and

roll energy density, Er, of background turbulence excitation parameter ε/εc = 9 is shown

in Fig. 7 for the case of S3T. The S3T integration was initialized with a small random

streak perturbation. The flow transitions to turbulence at time T ≈ 550. In this transition

process the roll/streak emerges at first as an S3T instability which equilibrates by time

T ≈ 200 to the quasi-equilibrium finite amplitude roll/streak structure shown in the left

panel of Fig. 8. This quasi-equilibrium is associated with an energy input-rate I/Ic ≈ 1.7,

which lies approximately midway between the value associated with the laminar state and

that associated with the statistical mean of the turbulent state. At these parameters there

exists near this quasi-equilibrium a symmetric unstable equilibrium, shown in Fig. 9, which

can be converged to by suppressing spanwise asymmetries. The roll/streak structure that

emerged in the S3T in the presence of realistic spanwise asymmetric perturbations breaks by

exciting the unstable directions of the unstable equilibrium at about T ≈ 550 and the flow

transitions to turbulence. While this pathway to turbulence is typical in all S3T simulations

with ε > εt the timing of transition depends on the structure of the initialized state which

determines the projection on the instability of the S3T equilibrium state. For example, if

the flow state at ε/εc = 9 is constrained to have no perturbations breaking mirror-symmetry
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FIG. 9: The unstable roll/streak S3T equilibrium at ε/εc = 9. Shown are contours of the
streak velocity, Us, and velocity vectors of the components (V,W ) plotted on a (y, z) plane

cross-section. Other parameters as in the previous figures.

in the spanwise direction the flow equilibrates to the unstable roll/streak structure shown

in Fig. 9 without ever transitioning to turbulence, while if the initial flow state includes a

rich spectrum of such perturbations the meta-stable period is appreciably shortened.

This sequence of events, with rapid break-down of the finite amplitude roll/streak struc-

ture, is observed in NL1 simulations at ε/εc = 9 when the simulation is initialized with

the laminar state. The roll/streak structure associated with the underlying S3T instability

arises at first, as in the S3T simulation, but then rapidly transitions to the turbulent state.

Snapshots of the roll/streak structure during this transition, which occurs by T = 90, are

shown in Fig. 10.
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FIG. 10: Snapshots of the streamwise mean flow as it undergoes transition to turbulence in
a NL1 simulation under stochastic forcing. with ε/εc = 9. Shown are contours of the streak

velocity, Us, and velocity vectors of the components (V,W ) in the (y, z) plane. A
quasi-steady roll/streak initially forms, by T = 65, that swiftly breaks down and the flow
transitions to turbulence. The transition is as in the S3T simulation (cf. Fig. 7 and Fig.

8), except that the flow passes through the metastable state rapidly. Other parameters as
in the previous figures.

V. CONCLUSION

SSD makes available to analysis the manifold of nonlinear instabilities associated with

the systematic organization of the background turbulence by coherent structures. In this

work the S3T implementation of SSD was used to study instabilities of this type and their

nonlinear extensions in a minimal channel configuration of Couette flow. At first a man-

ifold of stable modes with roll/streak form is supported as the parameter controlling the

background turbulence intensity, ε, is increased from zero. The least stable mode of this

manifold is destabilized at a critical excitation designated εc and a finite amplitude stable

fixed point with roll/streak structure arises for excitations between εc and a second critical

value for which the finite amplitude equilibrium roll/streak is destabilized, designated εt.

For excitation exceeding εt the roll/streak equilibrium is unstable to spanwise asymmetric

perturbations and becomes time-dependent resulting in the establishment of the turbulent

state with spanwise wavenumber approximately half that of the equilibrium state. This

sequence of states and transitions suggests a route to turbulence in a developing boundary

layer. In order to study these SSD states and their dynamics in more detail their corre-

spondence to realization dynamics was examined making use of a comparison among the

predictions of S3T and ensemble implementations of a quasi-linear model sharing the dynam-

ical restrictions of S3T (RNLN) and the associated nonlinear model (NLN). Although the
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SSD instabilities and their associated fixed point nonlinear equilibria and time dependent

statistical mean attractor states have analytical expression only in the S3T implementa-

tion of the equivalently infinite ensemble SSD dynamics, the predicted dynamics is clearly

reflected in both the dynamically similar quasi-linear system (RNL1) and in DNS (NL1).

This correspondence was further examined using ensemble implementations of the RNL and

DNS systems. As a consequence of sharing the same dynamical restrictions, the RNLN

system converges to S3T an N → ∞. Remarkably, the NLN system, which corresponds to

a full closure for this problem, also converges to close correspondence with S3T as N →∞.

This convergence is reflected in similar bifurcation behavior as well as similar equilibrium

structures for the stable fixed point equilibria. Additionally, S3T also predicts a second

bifurcation at a higher value of the turbulent excitation parameter that results in destabi-

lization of the finite amplitude roll/streak equilibria and establishment of a turbulent state

corresponding to minimal channel turbulence. This scenario constitutes a mechanism for

bypass transition to the turbulent state. Comparison with NL1 reveals that this mechanism

in fact is responsible for bypass transition in the case that the transition is instigated by

background turbulence rather than by an optimal perturbation imposed at sufficiently high

amplitude.
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