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Abstract

Most bubbles contain a mixture of vapor and incondensible gases. While the limit cases

of pure vapor and pure gas bubbles are well studied, much less is known about the more

realistic case of a mixture. The bubble contents continuously change due to the combined

effects of evaporation and condensation and of gas diffusion in the liquid and in the bubble.

This paper presents a model for this situation and illustrates by means of examples several

physical processes which can occur: a bubble undergoing a temporary pressure reduction,

which makes the liquid temporarily superheated; a bubble subjected to a “burst” of sound; a

bubble continuously growing by rectified diffusion of heat in the presence of an incondensible

gas.
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I. INTRODUCTION

A bubble in a liquid usually contains a mixture of vapor and a permanent gas.

There is a vast literature dealing with the two limits in which one of the constituents

predominates while the other one is essentially negligible [see e.g. 1–7]. The physical

basis for these approximations consists, on the one hand, in the relatively low vapor

pressure of many liquids of practical interest at normal conditions and, on the other,

in the ordinarily slight solubility and small diffusion coefficients of gases in liquids. To

illustrate the former point it may be mentioned, for example, that the vapor pressure

of water at 20 ◦C is only 2.3 kPa and, therefore, its effects in processes taking place at

room temperature and normal pressure are small. Because of the small gas solubility

in most liquids, in normal boiling, the gas flux into the bubble is orders of magnitude

smaller than the vapor flux, which therefore controls the growth rate of the bubble.

There are several situations, however, in which the presence of gas in a bubble

mostly filled with vapor or, conversely, of vapor in a bubble mostly filled with gas,

has important effects. In sonoluminescence, for example, the bubble expansion is

huge, the collapse very rapid, and vapor strongly affects the maximum temperature

reached by the bubble content [8, 9]. When a vapor bubble condenses, a small gas

pocket full of the gas that diffused into the bubble during its growth is left behind.

In flow cavitation, collapsing vapor bubbles leave behind many small gas bubbles

produced by the same process [see e.g. 3]. In both cases, these small gas bubbles may

act as nucleation sites for the generation of new bubbles. Liquid degassing by boiling

is another important process that relies on the combination of gas and vapor effects.

When boiling takes place in an acoustic field, as in liquid degassing operations [see

e.g. 10, 11] or in enhanced boiling heat transfer [see e.g. 12–15], the presence of gas

inside the bubbles strongly affects their behavior during the compression phase of the

pressure and gives rise to a faster growth by rectified diffusion of mass and heat as

will be seen below.
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The present paper is devoted to the theoretical study of several situations which

illustrate the strong effect of permanent gases on vapor bubbles. We consider the

consequences of gas diffusion into a growing vapor bubble, the slowing down of the

condensation process and the enhanced growth by rectified diffusion. For the latter

case, we investigate the formation of a gas-rich layer adjacent to the bubble surface,

which decreases the flux of vapor toward the surface according to a well-known mecha-

nism [see e.g. 16], which, however, has not been investigated in this particular context.

The liquid we consider is water and the gas CO2, whose large solubility brings out

more clearly the effects that we illustrate. Furthermore, the closeness between the

adiabatic index of water vapor and CO2 permits some approximations which greatly

simplify the mathematical model.

Literature on the general topic of gas-vapor bubbles is not plentiful. Nigmatulin

& Khabeev [17] presented a mathematical model for the dynamics of spherical gas-

vapor bubbles and illustrated a few of its predictions for a bubble abruptly exposed

to a higher and a lower ambient pressure. Building on this work, Nigmatulin et

al. [18] mostly focused on the oscillations and resonant behavior of gas-vapor bub-

bles. The latter topic was also addressed in a study by Nagiev & Khabeev [19] In

all of these studies the vapor mass flux at the liquid surface was calculated from the

Hertz-Knudsen relation with a small accommodation coefficient equal to 0.04, which

was a reported (but not universally accepted) value at the time. More recent results,

from both molecular dynamics simulations and experiment, however, point to a sig-

nificantly larger value, in fact very close to 1 [see e.g. 20–23]. This much larger value,

which is used in the present study, has a considerable effect on the numerical results

produced by the theory and is one of the reason that justify the present study. Fur-

thermore, the parameter space is large and the available examples do not illustrate a

number of processes on which we focus here.
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II. MATHEMATICAL MODEL

Throughout this paper, we will assume the bubble to remain spherical. For a sta-

tionary bubble, the validity of this assumption depends on the stability of the spherical

shape. While a rather complete stability theory for gas bubbles is available [see e.g.

6, 9], the matter has not been investigated for vapor bubbles specifically. Generally

speaking, there are two destabilizing mechanisms. One is of kinematic nature and oc-

curs during contraction of the bubble. The other one is dynamical, similar in nature

to the Rayleigh-Taylor instability, and it occurs when compression of the bubble con-

tent slows down the inward motion of the bubble wall. Phenomena involving vapor

bubbles are usually less violent than those encountered in acoustic cavitation and,

therefore, one may expect the Stability of the spherical shape to be less of an issue

in this case. In any event, broadly speaking, stability prevails provided the velocity

and acceleration of the interface are not too large.

We describe the radial motion of the bubble by the Rayleigh-Plesset equation

corrected for slight compressibility effects of the liquid [see e.g. 6, 24]:

(

1− Ṙ

cL

)

RR̈+
3

2

(

1− Ṙ

3cL

)

Ṙ2 =
1

ρL

(

1 +
Ṙ

cL
+

R

cL

d

dt

) (

p− P − 2σ

R
− 4µL

Ṙ

R

)

.

(1)

Here R is the bubble radius, p the pressure in the bubble, P the ambient pressure, σ

the interfacial tension coefficient, and ρL, µL and cL the liquid density, viscosity and

speed of sound; dots denote time differentiation and the subscript L liquid quantities.

The radial dynamics of the bubble is strongly influenced by the way in which the

internal pressure p depends on time. In order to determine this dependence accurately,

it is necessary to consider the processes taking place in the bubble interior and at the

liquid interface.
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A. The bubble interior

The gas-vapor diffusion process is governed by the diffusion equation:

ρ
dC

dt
= ∇∇∇ · (ρD∇∇∇C) , (2)

or, more explicitly,
∂C

∂t
+ v

∂C

∂r
=

1

r2ρ

∂

∂r

(

r2ρD∂C

∂r

)

. (3)

Here C = ρV /ρ, with ρ = ρV + ρG the total density of the gas-vapor mixture, is the

vapor mass fraction, d/dt denotes the convective derivative with radial velocity v, D
is the binary diffusion coefficient and r is the radial distance from the bubble center.

For perfect gases with molecular mass MV and MG we have

pV =
MGC

MV + (MG −MV )C
p , pG =

MV (1− C)

MV + (MG −MV )C
p , (4)

with p the total pressure equal, by Dalton’s law, to pV +pG; here and in the following

the indices V and G refer to vapor and gas, respectively.

With the neglect of viscous dissipation, the enthalpy equation for a gas mixture

is, in conservation form,

∂

∂t
(ρh− p) +∇∇∇ · (ρhv) = −∇∇∇ · q , (5)

in which h is the enthalpy, v the velocity field, and q the heat flux vector given by [see

e.g. 25, 26]

q = −k∇∇∇T − (cpV − cpG)TρD∇∇∇C , (6)

with k the thermal conductivity, cp the specific heat at constant pressure and T the

absolute temperature. Pressure and temperature diffusion effects are important only

in rather extreme cases [see e.g. 28] and have been disregarded. For a mixture of

perfect gases we may write

ρh− p =
p

γG − 1
+ ΓpV =

p

γV − 1
− ΓpG , (7)
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where γ is the adiabatic index, pV tand pG the vapor and gas partial pressures and

Γ =
γG − γV

(γG − 1)(γV − 1)
. (8)

If the molecules of both vapor and gas consist of the same number of atoms and both

behave as perfect gases, γG = γV and Γ = 0. For the case of CO2 and water vapor

we have γV ≃ 1.33 and γG ≃ 1.28, so that Γ ≃ −0.54.

Following earlier work [18, 29, 30], we assume that the bubble internal pressure is

spatially uniform and only a function of time because of the very small inertia of the

gas-vapor mixture. With this approximation and (7), upon integration, we find from

(5) an expression for the velocity of the gas-vapor mixture in the bubble, namely

(

1− γV − 1

γV
Γ
pG
p

)

v =
γV − 1

γV p

[

−q − r

3

ṗ

γV − 1
+ ΓEG

]

, (9)

with q the radial component of q and

EG =
1

r2

∫ r

0

r2
∂pG
∂t

dr . (10)

In the numerical calculations we will proceed assuming that the contribution of

EG is negligibly small. The effects of this approximation and its consistency will be

demonstrated with a numerical example in figures 14. For the time being we provide a

crude estimate of the magnitude of the term EG by approximating pG by a polytropic

relation, pG/pG0 = (R0/R)3κ, with pG0 and R0 reference values and κ a polytropic

index. In this way we find

∣

∣

∣

∣

ΓEG

(r/3)ṗ/(γV − 1)

∣

∣

∣

∣

≃ 3κ
|γG − γV |
γG − 1

∣

∣

∣

∣

∣

Ṙ

ṗ

∣

∣

∣

∣

∣

pG
R

≃ 3κ
|γG − γV |
γG − 1

∆R

R

pG
∆p

, (11)

with ∆p and ∆R estimates of the internal pressure and radius changes. For ∆R ∼ R

and the preceding terms conservatively estimated to be a number of order 1, the ratio

in the left-hand side of this relation is of the order of pG/∆p. For a bubble containing

mostly vapor, ∆p is strongly dependent on the surface temperature, the effect of
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which is magnified by the large numerical value of the latent heat (about 3,500 Pa/K

for water near 100 ◦C). The ratio may therefore be expected not to be large if the

vapor is the dominant component of the bubble contents. Results for the converse

case in which the gas is dominant can be found by switching the indices V and G in

all the preceding expressions, including the definition of EG, and a similar conclusion

would hold, particularly in the case of a cold liquid where the vapor density is low

and the vapor pressure would change very little. When the amounts of gas and vapor

are comparable, use of the simplification can be justified only when γV ≃ γG.

To determine the temperature field inside the bubble we use the gas enthalpy equa-

tion in non-conservation form observing that the simultaneous use of the conservation

and non-conservation forms of this equation is equivalent to the use of the equations

of conservation of mass and enthalpy. For a two-component mixture of perfect gases

the enthalpy equation takes the form

ρ
dh

dt
− ṗ = ∇∇∇ · [k∇∇∇T + (cpV − cpG)TρD∇∇∇C] . (12)

Since h = [cpVC + cpG(1− C)]T , we have

ρdh = ρ (cGcpG + cV cpV ) dT + ρT (cpV − cpG)dC = (ρGcpG + ρV cpV ) dT + ρT (cpV − cpG)dC

=

(

γV
γV − 1

p− ΓpG

)

dT

T
+ ρT (cpV − cpG)dC , (13)

and the enthalpy equation (12) becomes, after subtraction of some terms that repro-

duce the diffusion equation (2),

γV
γV − 1

(

1− γV − 1

γV
Γ
pG
p

)

p

T

dT

dt
= ṗ+∇∇∇ · (k∇∇∇T ) + (cpV − cpG)ρD∇∇∇C · ∇∇∇T . (14)

B. The liquid

To complete the mathematical formulation it is also necessary to model the trans-

port of heat and of mass in the liquid. For the former, unlike the previous treatment
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of the gas-vapor mixture, we disregard the effects of diffusion and use the energy

equation for a pure substance:

∂TL

∂t
+

R2

r2
Ṙ
∂TL

∂r
= DL∇2TL , (15)

where DL is the liquid thermal diffusivity. Since significant temperature non-

uniformities are confined to the immediate neighborhood of the bubble wall, we dis-

regard compressibility corrections to the incompressible velocity field (R2/r2)Ṙ. In

using this relation we implicitly neglect the very small difference between the liquid

velocity at the interface and Ṙ.

Gas diffusion in the liquid is described by

∂ρg
∂t

+
R2

r2
Ṙ
∂ρg
∂r

= DL∇2ρg , (16)

in which DL is the mass diffusivity in the liquid. Here, since the liquid density

is essentially constant irrespective of the amount of dissolved gas, it proves more

convenient to use the dissolved-gas density ρg directly rather than the mass fraction

as inside the bubble.

C. Interface conditions

At the bubble wall we impose the conservation of energy in the form

kL
∂TL

∂r

∣

∣

∣

∣

r=R

+ q(R, t) = Lṁ , (17)

where L is the latent heat and ṁ is the vapor mass flux (positive for evaporation):

ṁ = ρsCs

[

Ṙ − v(R, t)
]

+ ρD∂C

∂r

∣

∣

∣

∣

r=R

, (18)

where the subscript s denotes surface values, and the conservation of the gas mass:

ρs(1− Cs)
[

Ṙ− v(R, t)
]

− ρD∂C

∂r

∣

∣

∣

∣

r=R

= DL

∂ρg
∂r

∣

∣

∣

∣

r=R

. (19)
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In addition, we impose the continuity of temperature and Henry’s law:

ρg(R, t) = S
pG(R, t)

H(T )
, (20)

in which pG is the gas partial pressure on the gas side of the interface, S =

ρLMCO2
/ML, with MCO2

and ML the molecular masses of CO2 and the liquid, is

a conversion factor from moles to density; for the CO2-water system considered here

Henry’s constant H(T ) is well represented by the correlation [31]

H(T ) = exp

(

−6.8346 +
1.2817× 104

T
− 3.7668× 106

T 2
+

2.997× 108

T 3

)

; (21)

H and T are in units of MPa and K, respectively. The saturation vapor pressure is

affected very little by the dissolved gas and we use the Clausius-Clapeyron equation

in the form appropriate for a pure liquid-vapor system

dpV
dTs

=
L(Ts)ρV,s

Ts

. (22)

The boundary conditions of the problem couple many fields and their imposition

requires some care. The first step is to obtain an equation for ṗ from (17). For

this purpose we substitute (18) for ṁ into (17), with (9) used for v and (6) for q.

Evaluating the result at the bubble surface we have an equation for ṗ:

R

3γV p
αṗ+ Ṙ =

kL
LρsCs

∂TL

∂r

∣

∣

∣

∣

r=R

− D
Cs

∂C

∂r

∣

∣

∣

∣

r=R

(23)

+ (
γV − 1

γV p
α− 1

LρsCs

)[

(cpV − cpG)TsρsD
∂C

∂r

∣

∣

∣

∣

r=R

+ kG
∂T

∂r

∣

∣

∣

∣

r=R

]

+
γV − 1

γV p
αEG

where all the terms in the right-hand side are evaluated at r = R and we have set

α = [1− Γ(γV − 1)pG/(γV p)]
−1 for simplicity of writing.

An equation for Ṫs, the time derivative of the surface temperature, can also be

found starting from (17): for this purpose we again use (18) to express ṁ, eliminate

v − Ṙ from (19) and q from (6) to find

kL
∂TL

∂r

∣

∣

∣

∣

r=R

− k
∂T

∂r

∣

∣

∣

∣

r=R

=

(

L

1− Cs

+ (cpV − cpG)Ts

)

ρsD
∂C

∂r

∣

∣

∣

∣

r=R

+
LCs

1− Cs

DL

∂ρg
∂r

∣

∣

∣

∣

r=R

.(24)
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Upon taking the time derivative following the interface this becomes an equation for

Ṫs. It may be preferable to take the time derivative after introducing the coordinate

transformation, shown below in (28), that places the interface at r/R = 1.

For the vapor concentration at the bubble surface we use (4): upon taking the

time derivative, recalling that, at the bubble surface, pV is determined by the surface

temperature, we find an equation for Ċs = (d/dt)C(R(t), t):

Ċs = MGMV

ṗV p− pV ṗ

[MGp+ (MV −MG)pV ]2
, (25)

where

ṗV =
ρV L

Ts

Ṫs (26)

Alternatively, ṗV can be calculated from (4) to find

ṗV =
MG

MV

pĊ − C(1− µC)ṗ

(1− µC)2
(27)

Finally, the gas density on the liquid side of the interface is obtained from Henry’s

law (20).

III. NUMERICAL METHOD

The numerical method used to solve the energy and diffusion equations inside and

outside the bubble is an extension of the one used in several earlier papers [24, 32, 33]

to which the reader is referred for details. We introduce the variables

y =
r

R(t)
, x =

ℓ

ℓ+ r −R(t)
, (28)

which map the intervals 0 ≤ r ≤ R(t) and R(t) ≤ r < ∞ to 0 ≤ y ≤ 1 and 1 ≥ x > 0,

respectively. For the liquid energy equation the length scale ℓ is taken to be a multiple

B of the thermal penetration length
√
DLτ :

ℓ = B
√

DLτ , (29)
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where DL is the appropriate diffusivity (for mass or heat) and τ a characteristic time

scale for the dimensionless constant B we typically take B = 10. The temperature

and concentration fields both inside and outside the bubble are then expanded in

a truncated series of Chebyshev polynomials and the partial differential equations

turned into a system of ordinary differential equations by collocation. In view of the

zero-derivative condition at the bubble center and at infinity we only use the even

polynomials. We found that 33 terms in all the expansions were sufficient to give

converged results. The system of ordinary differential equations was solved by means

the package LSODI.

In order to validate the code we checked its performance in the limit of a bubble

completely filled with vapor finding results in agreement with the earlier ones of [24].

IV. RESULTS

The situation considered in this paper is characterized by too many parameters to

lend itself to an exhaustive investigation and we shall content ourselves with a few

results illustrating the main phenomena.

The first example, shown in figure 1, is that of a 1 mm-radius vapor bubble in water

at 90 ◦C under an ambient pressure of 101.3 kPa. We contrast the bubble behavior

in water containing no dissolved gas (dotted line) with that in water saturated with

CO2 at 100 ◦C (solid line) and at 25 ◦C (dashed line). In the presence of dissolved

gas, the collapse is markedly slowed down. Water saturated with CO2 at 20 ◦C is

actually super-saturated at 100 ◦C, which causes the bubble to start slowly growing

once the excess vapor initially present has condensed. In these three cases, at the

initial time, the bubble contains only vapor with no CO2. This initial condition is

somewhat artificial when the liquid contains dissolved gas, but it permits a better

comparison among the three situations.

The rapid and heavily damped oscillations visible at the beginning of the collapse
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FIG. 1: A pure vapor bubble in water with no dissolved gas at 90 ◦C and 101.3 kPa

ambient pressure quickly collapses (dotted line). The collapse is markedly slowed

down if dissolved CO2 is present in the liquid. The solid line is for water saturated

with CO2 at 100 ◦C and the dashed line for water saturated with CO2 at 25 ◦C. In

this latter case the liquid is saturated at its temperature of 90 ◦C and, after the

condensation of the vapor, the bubble begins to grow by gas diffusion.

in figure 1 can be understood recalling the role of latent heat in providing the effective

“stiffness” of a vapor bubble [7, 24]. The initial rapid collapse deposits latent heat

at the bubble surface, the temperature increases above saturation, the pressure rises

and causes a temporary reversal of the collapse. Upon expansion the bubble surface

cools, the pressure falls, and a second rapid collapse follows. These oscillations are

very rapidly damped and the bubble soon settles down to a quasi-equilibrium situation

characterized by a surface temperature fixed at the saturation level and, at this point,

it starts its slow diffusive growth.

As a second example (figures 2 to 5), we consider a bubble which is subjected for a

short time to a pressure low enough to render the liquid superheated. This is a simple
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FIG. 2: Radius vs. time of a gas-vapor bubble in CO2-saturated water at 100◦C and

101.3 kPa. The liquid temperature is 100 ◦C and the ambient pressure 101.3 kPa

except for 5 ms < t < and 10 ms, when it is reduced so that the liquid is

superheated by 5 ◦C. The initial bubble radius is 100 µm.
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FIG. 3: Total gas mass in the bubble vs. time for the case of the previous figure.
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FIG. 4: Total vapor mass in the bubble vs. time for the case of figure 2.

model of a situation which may arise, for example, in flow boiling when bubbles are

transported through a low-pressure region. A qualitatively similar behavior would

be found in a subcooled boiling situation when buoyancy removes bubbles from the

heated wall and brings them to a region of colder liquid. These results are for a

bubble with an initial radius R(0) = 100 µm in water at T∞ = 100 ◦C. The water is

saturated with CO2 at 100
◦C and p∞ = 101.3 kPa, so that ρg,∞ = 0.488 kg/m3. The

ambient pressure is 101.3 kPa, except for 5 ms < t < 10 ms, when it falls to Psat(95

◦C) = 0.8453 kPa. The initial gas pressure in the bubble is 101.3 kPa, so that the

total bubble internal pressure is nearly twice as large as the ambient pressure. Thus,

as the radius vs. time graph of figure 2 shows, the bubble starts to grow already at t

= 0 before the pressure is lowered. The rate of growth increases very rapidly when the

pressure is lowered at t = 5 ms. During this growth the gas partial pressure decreases.

The subsequent pressure recovery causes a rapid condensation of some vapor and an

abrupt contraction of the radius. The rapid oscillations near t = 10 ms are similar to
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FIG. 5: Global gas mass fraction vs. time for the case of figure 2.

those visible at the initial stages of the collapse in figure 1 of the previous example.

The bubble contraction is arrested and eventually reversed by the combination of a

vapor pressure increase, due to the temperature increase of the bubble surface caused

by the release of latent heat, and the compression of the permanent gas. The radius

reached during this stage is such that the total pressure in the bubble is close to the

ambient pressure. Since this total pressure is the sum of the gas and vapor pressure,

at the bubble surface the gas is now undersaturated and a concentration gradient

exists which causes a slow growth of the bubble as gas diffuses into it from the liquid.

Figures 3, 4, and 5 are the gas mass, vapor mass, and overall gas mass fraction vs.

time in the bubble. The gas mass, shown in figure 3, increases during the entire pro-

cess, while the vapor mass, shown in figure 4, rapidly decreases after repressurization.

It is noteworthy that, during the period covered by the simulation, the total gas mass

in the bubble increases by an order of magnitude. Even if the bubble were brought in

contact with liquid cold enough to condense most of the vapor, its radius would still

be more than twice as large as the initial value. This is the origin of the many small

bubbles that are visible in subcooled boiling away from the hot region. The gas mass
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0 50 100
0

25

50

ωt/2π

R
/
R

0

FIG. 6: Radius vs. time of a gas-vapor bubble in water saturated with CO2 at 25

◦C. The liquid temperature is 100 ◦C. The ambient pressure is

101.3×(1 + 0.3 cosωt) kPa for 0≤ t < 30 ms, and is 101.3 kPa thereafter; the sound

frequency is ωt/2π = 1 kHz. The initial bubble radius is 100 µm.

fraction, shown in figure 5, rapidly declines during the initial growth phases because

the diffusion of heat is so much faster than that of mass that the bubble growth is

almost entirely due to vapor generation.

Another interesting case is that of a bubble growing by rectified diffusion due to a

“burst” of sound. This case is considered in figures 6 (bubble radius vs. time), 7 (gas

mass vs. time), and 8 (vapor mass vs. time). The initial bubble radius is 100 µm, the

water temperature T∞ = 100 ◦C, and the ambient static pressure P∞ = 101.3 kPa.

The liquid contains CO2 corresponding to saturation at 25 ◦C, ρg,∞ 1.52 kg/m3. Due

to the low diffusivity of gases in liquids, this would be a typical scenario for water

saturated with gas at the lower temperature and brought to a boil. A 1 kHz sound
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FIG. 7: Total gas mass in the bubble vs. time for the case of the previous figure.

Since the liquid is saturated with CO2 at 25 ◦, it is super-saturated at the

temperature of 100 ◦C to which this figure refers, and gas diffuses into the bubble.

pulse, with a pressure amplitude of 30.39 kPa (0.3 atm) is applied between 0 and 30

ms (0< ωt/2π < 30).

Figure 6 shows the bubble rapidly growing by rectified diffusion of both heat and

mass until, soon after it passes the resonant size, the sound is turned off. At this

point the bubble executes a few, strongly damped oscillations and starts shrinking

due to vapor condensation even though, as is clear from figure 7, its gas content keeps

growing.

As a final example, we compare the growth rate of an oscillating bubble contain-

ing only vapor with that of a bubble containing a gas-vapor mixture. The inhibiting

effect of even a small amount of incondensible gas on vapor condensation under con-

stant pressure conditions is well known [see e.g. 26, 27]. One might expect a similar

phenomenon here, which would lead to a faster growth of the bubble by rectified dif-

fusion because, for vapor to condense, it has to diffuse through a gas-rich boundary
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FIG. 8: Total vapor mass in the bubble vs. time for the case of figure 6.

layer near the bubble surface while no such hindrance affects vapor generation at the

interface.

That this is indeed the case is shown in figure 9, where the growth of a bubble

containing CO2 and water vapor (solid line) is compared with that of a pure vapor

bubble. Here T∞ = 100 ◦C, P∞ = 101.3 kPa, the acoustic pressure amplitude is

PA = 30.4 kPa, R(0) = 200 µm, Rres = 7.27 mm, ω/2π = 400 Hz. It is supposed

here that the water was saturated with CO2 at 25 ◦C (with a dissolved gas density

of 1.52 kg/m3), and was brought to 100 ◦C with no change in gas content rapidly

enough for the dissolved gas not to equilibrate. The calculation is started with an

initial gas mass of 5.9×10−11 kg, which corresponds to an initial vapor mass fraction

of approximately 25%.

The mechanism underlying the increased growth rate is the accumulation of incon-

densible gas near the bubble wall, which takes place when vapor condensation begins

at the start of the compression half-cycle: a concentration boundary layer builds up

near the wall and offers a barrier to further vapor condensation. The phenomenon is
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FIG. 9: Growth of a bubble containing CO2 and water vapor (upper line) compared

with that of a pure vapor bubble; the second panel shows an enlarged picture of the

interval 40 ≤ ωt/2π ≤ 60 which contains the time interval in the course of which

bubble executes large-amplitude oscillations. Here T∞ = 100 ◦C, P∞ = 101.3 kPa,

the acoustic pressure is 30.4 kPa (0.3 atm), R(0) = 0.2 mm, ω/2π = 400 Hz and the

bubble resonant radius is Rres = 7.27 mm; the liquid is saturated with dissolved gas

at 25 ◦C, and is therefore supersaturated by a factor of approximately 16 at the

liquid temperature used for the calculation; the initial vapor mass fraction inside

the bubble is 25%.

20



48.5 49
0.5

1

1.5

2

ωt/2π

R
/
R

re
s

A

B

C

FIG. 10: Detail of figure 9 with dots marking the times corresponding to the mass

fraction distributions shown in the following figure; A, ωt/2π = 48.66; B ωt/2π =

48.74; C ωt/2π = 49.19.

illustrated in figure 11 (where the lines are taken at the instants marked by large dots

in figure 10), which shows the gas mass fraction in the bubble at different times in

the neighborhood of the interface. Near the point of maximum radius (point A) the

gas concentration at the wall is small (note the logarithmic scale) but, as soon as the

compression phase begins, the gas concentration near the interface grows significantly

(point B) until it reaches a strong maximum when the radius reaches its minimum

(point C). It should be noted that the average gas mass fraction in the bubble is

less than 1%. The phenomenon is therefore quite sensitive to even small amounts of

incondensibles.

It is also interesting to consider the history of the bubble surface temperature and
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FIG. 11: Gas mass fraction distribution in the bubble at the three instants of time

marked in the previous figure. Notice the strong accumulation of gas near the

interface when the vapor condenses during the compression cycle.
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FIG. 12: The bubble surface temperature during a portion of the oscillations shown

in figure 9.

22



20 40 60
0

1

2

3

ωt/2π

p
,M

P
a

FIG. 13: The bubble internal pressure during a portion of the oscillations shown in

figure 9.

internal pressure for this case, which are shown in figures 12 and 13, respectively.

Both quantities undergo very large excursions even though the oscillation amplitude

of the bubble radius, while significant, is not very large. It is interesting to note, in

both figures, the secondary peaks up to about ωt/2π = 30. These structures are also

present in the radius response of figure 9, although they are less clear there. Their

origin lies in the fact that, as the bubble grows, the radius goes through values for

which nonlinear resonances occur. For a gas bubble this would result in a prolonged

time interval in the course of which a prominent second harmonic (in addition, of

course, to others) is present. For a vapor bubble the mean radius grows so rapidly

that only a few oscillations exhibit this nonlinear resonance.

To conclude, we illustrate for this case the effect of the neglect of the term EG

in (9) and (23). In principle, this term could be accounted for by integrating the

equations neglecting it, and then calculating EG from its definition (10) using the

approximate fields found in this way. Repeating the procedure would amount to an

iterative solution of the problem. While this is likely a rather impractical algorithm,

the procedure does afford us a way to check a posteriori the effect of the approximation

and its consistency by stopping at the first step. We show in figure 14 a comparison
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FIG. 14: A comparison of the vapor-gas velocity averaged over the bubble volume

as computed from (9) without the EG term (solid line) and corrected by including

this term estimated as explained in the text.
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between the volume-averaged velocity v calculated from (9) neglecting EG (solid line),

and including the first approximation found as just described (dots) for the example

of figures 9 and 10. The first panel is for the initial portion of the calculation while

the second one focuses on the very large-amplitude oscillations occurring for 40 ≤
ωt/2π ≤ 50. As can be seen, there is hardly any difference between the results with

or without EG, as could be expected on the basis of the considerations given before

after Eq. (10).

V. SUMMARY AND CONCLUSIONS

The purpose of this paper is to illustrate a variety of phenomena that can take

place when the liquid in which a vapor bubble is present contains a significant amount

of dissolved gas. In order to bring out the effects more clearly we have considered the

case of water with CO2, which has a relatively high solubility in this liquid. In many

practical cases boiling liquids are not degassed and failure to consider the diffusion of

gas into and out of bubbles can lead to erroneous conclusions. An extreme case is a

recent claim of persistent “vapor bubbles” in a cold liquid which are, in fact, bubbles

full of gas that diffused into very short-lived vapor bubbles.

In our first example, a bubble collapses in water subcooled by 10 K at normal

pressure. If only vapor is present the bubble quickly condenses in its entirety but,

if CO2 is dissolved in the liquid, it diffuses into the bubble and markedly slows the

collapse down. If the liquid is super-saturated with gas, the bubble first shrinks as

the vapor condenses, but then starts to slowly grow as more gas diffuses into it. In

a second example a small bubble in water with dissolved CO2 at 101.3 kPa ambient

pressure is briefly exposed to a lower pressure which causes the liquid to become

superheated by 5 K. The bubble quickly grows and, when the pressure recovers, it

remains much larger than the initial size due to the gas that has diffused into it
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during its growth. In another example the bubble is briefly exposed to an ultrasound

pulse which causes it to grow and, again, to persist due to the slow outward diffusion

of the gas it acquired. The spatial non-uniformities of the fields inside the bubble

can play an important role, among others, in the process of rectified diffusion of heat

when the bubble undergoes volume oscillations. The gas accumulates near the bubble

surface and hinders the condensation of the vapor during the compression phase thus

increasing the growth rate of the bubble.

The mathematical model and numerical method used to generate these results have

been described in some detail. The numerical solution is considerably simplified by

the use of an approximation justified when the gas contains mostly vapor, or mostly

gas, or when the ratios of the specific heats of vapor and gas are not too different.

An extension to the general case is possible retaining the same general framework,

although it would result in a more complex algorithm.
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