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We study the effect of a no-slip rigid boundary on the dynamics of a flexible helical filament
rotating in a viscous fluid, at low Reynolds number conditions (Stokes limit). This system is taken
as a reduced model for the propulsion of uni-flagellar bacteria, whose locomotion is known to be
modified near solid boundaries. Specifically, we focus on how the propulsive force generated by the
filament, as well as its buckling onset, are modified by the presence of a wall. We tackle this problem
through numerical simulations that couple the elasticity of the filament, the hydrodynamic loading,
and the wall effect. Each of these three ingredients is respectively modeled by: the Discrete Elastic
Rods method (for a geometrically-nonlinear description of the filament), Lighthill’s slender body
theory (for a nonlocal fluid force model), and the method of images (to emulate the boundary).
The simulations are systematically validated by precision experiments on a rescaled macroscopic
apparatus. We find that the propulsive force increases near the wall, while the critical rotation
frequency for the onset of buckling usually decreases. A systematic parametric study is performed
to quantify the dependence of the wall effects on the geometric parameters of the helical filament.

I. INTRODUCTION

Locomotion of microorganisms through the rotation
of a flagellum (a slender helical filament) in a viscous
fluid is ubiquitous [1, 2], and representative of 90% of
marine bacteria [3]. During the past two decades, there
has been significant progress in understanding flagellar
propulsion through experiments [4–7], computation [8–
10] and theory [11–14]. The primary challenge in predic-
tively modeling this fluid-structure interaction problem
arises from the need to fully couple the geometrically-
nonlinear structural mechanics of the flagellum with an
accurate description of the hydrodynamic loading in-
duced by the viscous fluid. Recent efforts have mod-
eled this system as a Kirchhoff elastic rod [15], coupled
to the fluid with resistive force theory (RFT)[16], and
established that the flagellum can undergo a buckling
instability [10]. However, subsequent experiments have
shown that whereas RFT provides a satisfactory quali-
tative description of the phenomena, an accurate quan-
titative analysis requires a non-local hydrodynamic force
model that accounts for the interaction between the flow
induced by distant parts of the filament [17]. Ref. [9]
has indeed employed a non-local slender body descrip-
tion, coupled with Kirchhoff’s theory of rods to study
the deformation of a helical rod under rotation or axial
flow, but only up to linear order of the deflection [9].
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More recently, we have investigated the propulsion and
instability (buckling) of a helical elastic rod rotated in
a viscous fluid, by a combination of Lighthill’s slender
body theory (LSBT) [16] and the Discrete Elastic Rods
(DER) [18, 19] method for a geometrically nonlinear de-
scription of the flexible filament [20, 21].

Near a boundary, bacterial locomotion can be signifi-
cantly modified, when compared to swimming in the bulk
of a fluid bath [22–27]. For example, V. alginolyticus, a
uni-flagellated bacterium, moves forward and backward
by alternating the rotational direction of its flagellum in
a zigzag pattern [28]. A rigid boundary modifies this pat-
tern to run and arc traces; the cells swim linearly during
forward motion and curve sharply when moving back-
ward [5]. The effect of boundaries on Escherichia coli,
a multi-flagellated bacterium, has also been investigated
in detail. Three-dimensional tracking of its trajectories
demonstrated that the swimming speed is changed near
a boundary, whose presence also leads to an attractive
interaction [22]. Moreover, experiments have also shown
that E. coli traces clockwise circular paths near solid sur-
faces [24, 27, 29].

Hydrodynamic interaction has been suggested as the
main mechanism behind the aforementioned experimen-
tal observations [24, 30]. Theoretical studies that include
this interaction date back to almost half a century when
Blake [31, 32] introduced the method of images for the
fundamental solutions of Stokes flow (e.g. the Stokeslet)
in the presence of a wall. Based on this method, resis-
tive drag coefficients were developed to approximate the
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force on a rigid slender body close to a no-slip boundary
or between two such boundaries [33]. This method was
modified for applications in conjunction with the method
of regularized Stokeslets, and applied to model a cilium
near a boundary [34]. A distinct and more recent nu-
merical approach to the study of wall-effects was pro-
posed in Ref. [14], which enhanced the boundary element
method for propulsion from a rigid flagellum connected to
spherical cell body [35] to include a rigid wall. A review
of boundary integral, boundary element, and immersed
boundary methods often used in elastohydrodynamic sys-
tems can be found in Refs. [36–38].

The theoretical developments and experimental find-
ings mentioned above have paved the way for a number of
recent computational and modeling studies for bacterial
locomotion near boundaries [12, 14, 26, 39–41]. Addition-
ally, several simplified physical models have been devel-
oped to explain specific aspects of the wall-effect [12, 42].
For example, the circular motion of E. coli was explained
by an elaborate model consisting of a rigid helical flag-
ellum and a spherical body with the RFT fluid model
[24]. Subsequently, a reduced model for a bacterium
near boundary, consisting of two spheres of different radii
connected by a dragless rod, was used for a quantitative
analysis of the circular trajectory [42]. These studies were
followed by a more generic model to account for such vari-
ety of boundary-driven modifications to flagellar locomo-
tion [13] where an axisymmetric swimmer is described as
a linear combination of fundamental solutions to Stokes
flow, and the contribution of each singularity is adjusted
to account for the wall-effects. Numerical methods for
the boundary effect coupled with elasticity in spermato-
zoa [43] and cilia [44] have also been developed.

However, none of the above studies considered a flexi-
ble helical flagellum in the presence of a wall. Motivated
by the geometric nonlinearities during turning [7], tum-
bling [45], bundle formation [46] and polymorphic trans-
formations [47, 48], we have recently combined precision
model experiments with numerical simulations to demon-
strate a wealth of interesting dynamics of a slender elastic
rod rotating in a viscous fluid. Our findings included a
critical angular velocity above which the rod buckles due
to excessive fluid loading [20, 21]. Scale-invariance of the
mechanics of this problem allowed us to perform exper-
iments with a macroscopic analog model to inform the
original microscopic system. Our numerical tool com-
bined DER [18, 19] – a computational tool used in the
animation industry for visually dramatic simulation of
hair, fur and other rod-like objects – with LSBT [16] – a
framework that models the viscous drag on a slender rod
to account for the long-range hydrodynamic interaction
between distant parts of the rod. This forms the appro-
priate foundation to examine wall-effects on flexible rods
in viscous fluid, which is yet to be addressed.

Here, we systematically explore the effect of a no-slip
planar wall on the propulsive force and onset of buck-
ling instability in a helical elastic rod rotating in viscous
fluid. We implement a numerical simulation that uses the

method of images [31] to include wall-effects in our afore-
mentioned framework of DER coupled with LSBT. Pre-
cision experiments with a macroscopic analog of the flag-
ellum are performed to validate our simulations. Since
the rod is a slender elastic structure, there is a critical
angular velocity above which buckling can occur [10, 20].
We analyze the onset of this instability as the distance
from the boundary is varied, and find excellent agree-
ment between experiments and simulations, without any
fitting parameters. We then probe the numerical tool to
quantify the propulsive force generated in the presence of
a wall, and observe increased propulsion as the flagellum
gets closer to the boundary. Through systematic sweeps
of parameter space in biologically relevant regimes, we
identify the enhancement in propulsion in rods similar in
geometry to natural flagella, as well as the shift in phase
boundary for instability.

Our paper is organized as follows. In §II, we present
the basis of the numerical simulations, followed by a de-
scription of the experimental setup in §III. In §IV, we
compare numerical and experimental results for the onset
of instability of the rotating rod, as a function of distance
from the boundary. The simulation tool is then probed
to quantify the variation in propulsive force. In §V, we
then systematically quantify the variation in wall-effect
with the geometry of the helix, with a focus on biolog-
ically relevant regimes. Finally, in §VI, we present our
conclusions and suggest potential avenues for future re-
search.

II. NUMERICAL MODEL

We develop a numerical model that combines three
components: (i) DER, (ii) LSBT, and (iii) method of im-
ages. Whereas each of these three ingredients has been
previously investigated on their own (see the literature
review in §I), they are used in concert in this study to
simulate the deformation of a linear elastic rod of arbi-
trary geometry due to hydrodynamic forces from a vis-
cous fluid medium, in the presence of a rigid wall. This
section is organized as follows. A description of DER is
provided in §II A, and its coupling with LSBT in §II B;
this coupled framework was introduced in Ref. [20]. In
§II C, we detail the procedure to include the method of
images for a no-slip wall, which is the primary and novel
aspect of the current study. The geometry and boundary
conditions of the problem are then discussed in §II D.

A. Discrete Elastic Rods

We use the DER method [19] to model the helical fila-
ment as a linear elastic rod. Kirchhoff’s theory of elastic
rods [15] represents the centerline of the rod by an arc-
length parameterized curve, γ(s), and the angular evolu-
tion of the tangent-aligned orthonormal material direc-
tors by θ(s). The local strains in the deformed configura-
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FIG. 1. (a) Discrete rod described by the vertices xi (red
dots) and edges ei (dashed arrows). A reference ({di

1,d
i
2, t

i})
and a material ({mi

1,m
i
2, t

i}) frame are associated with each
edge, ei = xi+1 − xi. (b) Schematic diagram of the problem
used in the numerical simulations. The real flagellum (red) is
composed of a series of nodes, xp, along the arc-length param-
eterized by s. An imaginary flagellum (green) is positioned
as a mirror image of the real flagellum about the z axis, such
that for each real node, xp = (xp, yp, w), there is an image
node at Xp = (xp, yp,−w). The clamped end of the real flag-
ellum is rotated about the helix axis with a prescribed angular
velocity, ω.

tion can be captured by the curvature, κ(s) = ||γ′′(s)||,
twist (evaluated from θ′(s)), and axial stretch. At every
time step within the discrete setting employed by DER,
based on the balance between the elastic forces and the
relevant external forces, the rod configuration is updated.
For future numerical implementations, we recommend
starting with an existing DER code [49], and adding the
boundary conditions and the external forces (detailed in
subsequent sections). Details on the numerical proce-
dure that underlies DER can be found in Ref. [19]. In
the following, we provide a summary of this method.

a. Kinematic representation. In the discrete setting
(see Fig. 1a), the discrete curve is composed of (n+2) ver-
tices x0, . . . ,xn+1, and (n+1) edges e0, . . . , en such that
ei = xi+1 − xi. Each edge, ei, has an associated mate-
rial frame {mi

1,m
i
2, t

i}, and reference frame {di1,di2, ti}.
The reference directors, di1 and di2, rotated about the
tangent, ti, by an angle θi align with the material direc-
tors, mi

1 and mi
2. The reference frame, {di1,di2, ti}, is a

time-parallel adapted orthonormal frame; this reference
frame is not necessarily the same as the material frame
despite they share the tangent, ti, as one of the direc-
tors. This frame stays adapted to the centerline through
parallel transport [19] in time. As DER proceeds from
one time step to the next, the reference frame is rotated
by the minimum amount needed to keep it adapted. The
material frame, as well as any other adapted frame, can
then be represented by an angle, θi, that rotates about
the shared tangent, ti, from the reference to the material
frame.

At every time step, DER solves for the balance of forces
at the following degrees of freedom: 3(n+2) nodal coordi-
nates of the vertices, xi, and (n+ 1) angular orientations
of material frame, θi. We now sequentially introduce the
strains, elastic energies, and forces in terms of this kine-
matic representation.

b. Strains. The axial strain associated with an edge,
ej , is

εj =
|ej |
|ej |r

− 1. (1)

Hereafter, quantities with subscript r indicate evaluation
in the stress-free state.

The material curvatures associated with node xi are

κ
(1)
i =

1

2

(
mi−1

2 + mi
2

)
· (κb)i, (2a)

κ
(2)
i = −1

2

(
mi−1

1 + mi
1

)
· (κb)i, (2b)

where (κb)i is the curvature binormal,

(κb)i =
2ei−1 × ei

|ei−1|r|ei|r + ei−1 · ei . (3)

This quantity is a measure of misalignment between two
consecutive edges. If φi is the turning angle between two
consecutive edges [see Fig. 1(a)], the norm of curvature
binormal is |(κb)i| = κi = 2 tan(φi/2).

The twist in the discrete setting associated with edge
ei at time tk can be expressed as

mi(tk) = ∆θi +mi(tk), (4)

where ∆θi = θi(tk) − θi(tk−1) and mi is the reference
twist associated with the twist of the reference frame [19].

c. Elastic energies. For a rod with Young’s mod-
ulus, E, and shear modulus, G, the elastic energies –
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stretching, bending, and twisting – are given by

Es =
1

2

n∑
j=0

EA
(
εj
)2 |ej |r, (5a)

Eb =
1

2

n∑
i=1

EI

li

[(
κ
(1)
i −

(
κ
(1)
i

)
r

)2
+
(
κ
(2)
i −

(
κ
(2)
i

)
r

)2]
,

(5b)

Et =
1

2

n∑
i=1

GJ

li

(
mi −mi

r

)2
, (5c)

respectively, where li = 1
2

(
|ei|r + |ei−1|r

)
is the vertex-

based Voronoi length, and A is the area of cross-section.
We assumed an isotropic homogeneous rod with uniform
stretching stiffness, EA, bending stiffness, EI, and tor-
sional stiffness, GJ , in the expressions for energy.

d. Elastic forces. Let us denote the degrees of free-

dom as q =
(
x0, θ

0, . . . ,xn, θ
n,xn+1

)T
, which is a vector

of size 4n+ 7. For each degree of freedom qi, the elastic
forces (associated with xi) and elastic moments (associ-
ated with θi) are

Fi = − ∂

∂qi
(Es + Eb + Et) , (6)

where 0 ≤ i < 4n + 7. To advance from time step tk
to tk+1 = tk + ∆t, DER applies Newton’s method to
solve for increments to positions, ∆q = q(tk+1)− q(tk),
and velocities, ∆q̇ = q̇(tk+1) − q̇(tk) in the following
equations of motion,

M∆q̇−∆tF (q(tk) + ∆q) = ∆tFext, (7a)

∆q−∆t∆q̇ = ∆t q̇(tk), (7b)

where M is the lumped mass matrix, and Fext is a vec-
tor of size 4n + 7 containing the external forces (asso-
ciated with xi) and external moments (associated with
θi) at time step tk. For computational efficiency, the
integration scheme in DER is implicit on elastic forces
and requires the Hessian of the elastic energy, Jij =
∂2

∂qi∂qj
(Es + Eb + Et), with 0 ≤ i, j < 4n+ 7.

In this time marching scheme, the external loading on
a rod can be included by the Fext term in Eq. (7). We
consider hydrodynamic loading as an external loading in
this study, and express this force in terms of the nodal
coordinates in the subsequent sections.

B. Lighthill Slender Body Theory

We used LSBT to model the viscous drag experienced
by a slender rod in motion within a viscous fluid, and
couple this into the DER framework describe above. A
detailed account of the coupling between LSBT and DER
can be found in Ref. [20] where we first developed the
method and validated it against experiments. In the re-
mainder of this section, we briefly review the LSBT-DER

implementation, without yet considering the presence of
a wall, which will be introduced in §II C, below.

The primary Green’s function (or fundamental singular
solution) of Stokes flow is the Stokeslet, which describes
the flow associated with a singular point force [32]. Other
fundamental solutions can be obtained from its deriva-
tives, and are known as rotlets, stresslets, potential dou-
blets, and higher-order poles [50]. Along the centerline
of the rod parameterized by the arc-length parameter,
s, LSBT assumes a series of Stokeslets and dipoles, and
provides a relationship between the local velocity, u(s),
on the centerline and the force per unit length, f(s),

u(s) =
f⊥(s)

4πµ
+

∫
|r(s′,s)|>δ

f(s′) · J(r)ds′, (8)

where f⊥(s) = f(s) · (I− t(s)⊗ t(s)) is the component
of f in the plane perpendicular to the tangent t(s), µ
is the dynamic viscosity of the fluid, r(s′, s) is the po-
sition vector from s′ to s, δ = r0

√
e/2 is the natu-

ral cutoff length (r0 is the radius of the circular cross-
section of the rod and e is the Napier’s constant), and

J(r) = 1
8πµ

(
I
r + rrT

r3

)
is the Oseen tensor.

In Fig. 1(b), we provide a schematic of the setup of
our numerical simulations. We use a discrete version of
Eq. (8) to relate the velocity uq at node q with the force
fp on node p,

uq =
fq⊥

4πµ∆
+

N∑
p=1,p6=q

us(r) (9)

where ∆ = 2δ is the length of each edge in the discrete
rod, N is the number of nodes, r = xq − xp is posi-
tion vector from node p to node q, with r̂ = r/r as the
corresponding unit vector, and, the velocity from each
Stokeslet is expressed as [32]

us(r) =
1

8πµr

[
I + r̂r̂T

]
fp. (10)

The relationship between forces and velocities provided
by Eq. (9) can be written as a linear system with 1 ≤
p, q ≤ N (spanning across the nodes) and 1 ≤ i, j ≤ 3
(spanning across three Cartesian dimensions),

U = AF where

{
U3(q−1)+i = uqi ,

F3(p−1)+j = fpj ,
. (11)

The matrix A in Eq. (11) has size 3N ×3N and depends
only on the geometric configuration of the rod and is,
hereafter, referred to as the geometry matrix,

A3(q−1)+i,3(p−1)+j =
1

8πµ

{
2
(
δij − tqi tqj

)
/∆, if q = p,

1
r (δij + r̂ir̂j) , if q 6= p,

(12)
where δij = 1 for i = j and δij = 0 for i 6= j. We
now have all the ingredients in this fluid-structure inter-
action problem of a thin rod moving in a viscous fluid to
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relate the forces applied by the fluid and the velocities
along the rod in a discrete setting. At each time step
in DER, knowing the velocity of each node on the rod
and the nodal coordinates, we can compute the veloci-
ties, U, and the geometry matrix, A. We then use the
discrete force-velocity relation in Eq. (11) to evaluate the
forces, F (details in Supplemental Material [51]), which,
in the next time step, are applied as external forces on
the elastic rod to evolve the system in time.

C. Method of images

We now turn to the main contribution of the current
study, and include the effect of a no-slip wall on the DER-
LSBT framework described above. Our goal is to for-
mulate a procedure based on the method of images [31]
that will enable us to investigate geometrically nonlin-
ear deformations of a fluid-loaded elastic rod close to a
boundary. Interestingly, Lighthill himself mentioned that
“[this theorem] needs to be modified by including with
each stokeslet the effects of its image system [in the pres-
ence of] plane solid boundary” [16]. This is in congruence
with our numerical formulation used in this study.

In the schematic diagram of Fig. 1(b), the wall is lo-
cated at z = 0 (without loss of generality). For each
Stokeslet on the centerline of the rod [red/right rod in
Fig. 1(b)], an image system is considered on an imagi-
nary mirrored rod [green/left rod in Fig. 1(b)], with the
wall as the mirror plane. The image system for a node at
xp = 〈x, y, w〉 is located at Xp = 〈x, y,−w〉 and includes:
(i) a Stokeslet, (ii) a potential dipole, and (iii) a doublet.
Due to the slender body approximation, our formulation
is valid provided that each node is located at a distance
w � δ (or equivalently w � r0) away from the boundary.

We proceed by expanding the force-velocity relation in
Eq. (9) to include the image system, and calculate the
velocity at xq in terms of the viscous forces applied at
xp, with 1 ≤ p ≤ N [see Fig. 1(b)]. The radius vector of
xq with respect to the image system is R = xq−Xp, and
the corresponding unit vector is R̂ = R/R. The resulting
relationship between velocities and forces acting on node
q reads [31]

uq =
fq⊥

4πµ∆
+

N∑
p=1,p6=q

[us(r)− us(R)− upd(R) + usd(R)] , (13)

where the velocity from the Stokeslet us(r) was provided
in Eq. (10); the velocity from the image Stokeslet is [31]

us(R) =
1

8πµR

[
I + R̂R̂T

]
fp; (14)

the velocity from potential dipole is [31]

upd(R) =
w2

4πµR3

[
I− 3R̂R̂T

]
qp; (15)

with qp =< −fp1 ,−fp2 , fp3 >, and finally the velocity from
Stokes doublet is [31]

usd(R) =

2w

8πµR2

[
ŝeT3 + (e3 · R̂)I− e3R̂

T − 3(e3 · R̂)R̂R̂T
]
qp.

(16)

As an illustration of the implementation of the compu-
tational framework introduced above, we start by provid-
ing a two-dimensional (2D) example, prior to presenting
fully three-dimensional results. In 2D, for any point, xq,
that is not a node of the rod, the velocity from Eq. (13)
reduces to

uq =

N∑
p=1

[us(r)− us(R)− upd(R) + usd(R)] . (17)

This result derives from the fact that Lighthill’s approx-
imation [16] implies that the first term in the expression
for velocity uq in Eq. (13) is relevant only up to a dis-
tance δ < r0 from the node. If the point is on the wall,
i.e. xq3 = 0, Eq. (17) yields uq = 0. To illustrate this,
we consider a single Stokeslet (i.e. N = 1) of strength
fp = 〈0, 1, 1〉 (chosen arbitrarily) located at a distance of
unit length from the wall (xq = 〈0, 0, 1〉) and its image
system. For simplicity, the viscosity is here assumed to
be unity (µ = 1). In Figs. 2(a-d), we draw the four con-
tributions to the velocity field uq, corresponding to the
four individual terms in Eq. (17): us(r),us(R),upd(R),
and usd(R). The arrows of the vector field in this figure
represent the direction of the velocity, which, for clar-
ity, have all been normalized to have the same length. In
Fig. 2(e), we have superposed the four contributions from
Figs. 2(a-d), now with actual value of their magnitude,
where the adjacent colorbar represents the norm of the

total velocity, u = |uq| =
√
u2y + u2z. We observe that uq

reduces to 0 on the wall. To further attest the vanish-
ing velocity at the wall, in Fig. 2(f), we plot the norm
of velocity, u, as a function of z, at four different values
of the vertical position y = {−1.5,−0.5, 0.5, 1.5}, all of
which are indeed found to decay to u = 0 on the wall
(z = 0). This simple example involving a single Stokeslet
illustrates how the image system enforces zero velocity
on the boundary.

We now proceed to the case of multiple Stokeslets dis-
tributed along the arc-length of a three dimensional rod.
In the presence of the boundary, the formulation for the
geometry matrix A in Eq. (11) is

A3(q−1)+i,3(p−1)+j =

1

8πµ

{
2
(
δij − tqi tqj

)
/∆, if q = p,

1
r (δij + r̂ir̂j) +Aimg3(q−1)+i,3(p−1)+j , if q 6= p,

(18)

where Aimg is the contribution from the image system
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FIG. 2. Flow field generated by the relevant fundamental solutions in a two-dimensional space, (x, y). Direction of the fluid
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√
u2
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z, as a function of z at four different values of y indicated by the dashed
lines in (e). This plot confirms that the velocity at z = 0 is always zero as required for a no-slip boundary.

and, upon algebraic manipulation, can be written as [40]

Aimg3(q−1)+i,3(p−1)+j =
1

8πµ

(
− 1

R

(
δij + R̂iR̂j

)
+ 2w

3∑
k=1

δ′jk
∂

∂Rk

1

R

(w
R
R̂i − δi3 + R̂iR̂3

))
, (19)

with

δ′jk =


1, if j = k = 1, 2,

−1, if j = k = 3,

0, if j 6= k.

(20)

The matrix, Aimg, can be interpreted as an extension of
the Blake tensor [31] representing the velocity fields in
Stokes flow due to a point force near a stationary plane
boundary.

This completes the formulation of the fluid loading of
the slender rod, in the presence of a wall, that can now be
readily implemented in conjunction with DER. In sum-
mary, at the end of every time step in DER, we evalu-
ate the vector U in the discrete force-velocity relation of
Eq. (11) from the velocity at each node and the geometry
matrix A [Eq. (18)] calculated from the configuration of
the rod. The force vector, F, can then be computed by
solving the linear system U = AF in Eq. (11). While
solving this linear system, and to avoid numerical is-
sues associated with the inversion, we assume that the
force varies smoothly along s [51]. Without this assump-
tion (or other appropriate preconditioning), the solution
to Eq. (11) may be physically implausible. Finally, the
external force on each node can be obtained from F in
Eq. (11), and is then applied in the subsequent time step
of DER.

D. Definition of the problem

The general framework introduced above for the cou-
pling between DER-LSBT, including the method of im-
ages, is now applied to the specific problem of a helical
elastic filament, rotated in a viscous bath, near a no-slip
rigid wall. Next, we provide specifics on the geometry
and physical parameters of this problem. The slender fil-
ament (reduced analogue model of a flagellum) is taken
to be a right-handed helical rod, made out of a linear
elastic material (Young’s modulus E and Poisson’s ratio
ν), with pitch, λ, and helix radius, rh, in its stress-free
configuration. The helical filament is clamped at one ex-
tremity, where it is rotated anti-clockwise (from above)
with a prescribed angular velocity, ω, and free at the
other. The axis of the helix in the stress-free configura-
tion, is at a distance D from a no-slip rigid wall located
at z = 0. Hereafter, we normalize the boundary distance
by the axial length of the helical rod, l, such that the
normalized distance is D̄ = D/l. The rotation is im-
posed by prescribing the nodal coordinates of the first
two nodes such that x0 = 〈x0r, rh sin(ωt), rh cos(ωt) +D〉
and x1 = 〈x1r, rh sin(ωt), rh cos(ωt) + D〉, where x0r and
x1r are the x-coordinates of these nodes at t = 0. The
orientation of the material frame, θ0, is also constrained
such that the twist in e0 is zero. The remaining degrees
of freedom of the discrete rod are considered free. Fur-
ther details on this boundary condition can be found in
Ref. [20]. In this model system, the net force generated
by the rotation of the rod is canceled at the clamp by an
equal and opposite reaction force. In natural bacteria,
however, the flagellum generates a propulsive force that
is used to move the cell body forward, and together the
system is force-free.

The geometric and material parameters of the rod were
chosen to match the laboratory experiments described in
§III, and the results are generalized using a nondimen-
sionalization procedure introduced later in this section.
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FIG. 3. (a) Rendering of the time-evolution of the configuration of a rotating helical rod with normalized angular velocity,
ω̄ = 341, obtained from the simulations: (a1) t̄ = 0, (a2) t̄ = 0.20, (a3) t̄ = 0.39, and (a4) t̄ = 0.75. (b) Flow field on the y − z
plane at x = l/2, with the adjacent color bar indicating the normalized norm of velocity, ū. The solid line is the projection
of the centerline of the deformed rod on the (y, z) plane, and the solid triangle represents the location of the clamped end.
The horizontal and vertical scale bars correspond to x̄ = x/l = 0.1 and ȳ = y/l = 0.1 (where l is the total axial length of
the filament). The geometric and material parameters of the rod are described in the text. The distance from boundary is
D̄ = 0.342.

Unless otherwise stated, the physical parameter values
of the rod are: rod density, ρr = 1.273 g/cm3; Young’s
modulus E = 1255 ± 49 kPa; Poisson’s ratio ν ≈ 0.5
(incompressible); radius of circular cross-section, r0 =
1.58±0.02 mm (and, therefore, second moment of inertia,
I = πr40/4); axial length, l = 14.64± 0.1 cm; normalized
pitch, λ/l = 0.236; and normalized radius, rh/l = 0.0542.
The viscosity of the fluid was µ = 2.7± 0.12 Pa·s, and its
density was ρm = 1.24 g/cm3. A small density mismatch
(ρr > ρm) and the resulting buoyant force were included
to emulate the fact that this effect is present in the exper-
iments detailed in §III. The angular velocity of rotation
at the clamp was varied in the range 0 ≤ ω [rad/s] < 2,
such that, throughout the study, the Reynolds number
was Re = ρωrhr0/µ < 2 · 10−2, i.e. always in the Stokes
limit. In this representative setup, the number of nodes
along the discrete rod is 109 corresponding to an edge
length of ∆ introduced in Eq. (9). The time step size in
the simulation was ≤ 5 ·10−4 s after a convergence study.

Due to the slender geometry of the system, bending
is the prominent mode of deformation of the rod. The
characteristic flexural force is EI/l2 and the viscous drag
scales as µωl2 (alternatively, µul). A balance between
the elastic bending force and the external viscous loading
yields the characteristic time scale µl4/(EI), which is

used to non-dimensionalize the angular velocity as

ω̄ = ωµl4/(EI), (21)

velocities as

ū = uµl3/(EI), (22)

and time as

t̄ = tEI/(µl4). (23)

Eq. (21) can also be written as ω̄ = (l/lω)4 where
lω = [EI/(µω)]1/4 is the penetration length [52, 53]. This
dimensionless representation employed hereon allows for
generality across length-scales in the interpretation of our
findings. The dimensionless representation of angular ve-
locity, ω̄, and velocity, ū, has been previously verified in
Refs. [20, 21].

In all of the numerical simulations reported in this
study, the first two nodes of the rod near the clamp-
ing point have prescribed motion to mimic an angular
velocity and the rotation of the first edge is constrained,
for consistency with a clamped end. All other nodes and
edges are free, and evolve based on the balance between
elastic and fluid forces. This setup is similar to that used
in our prior work [20, 21], except for the presence of a
no-slip rigid boundary, which is the novel aspect of the
current study.
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In Figs. 3(a1-a4), we present a representative exam-
ple of our numerical results by showing snapshots of the
dynamical evolution of the configuration of a helical rod
(parameters defined above), rotated at ω̄ = 341, at a
normalized distance D̄ = 0.342 from the boundary. For
this specific set of parameters, and as a result of the fluid
loading, the originally helical rod [Figs. 3(a1)], is dis-
torted [Figs. 3(a2)], and eventually buckles [Figs. 3(a3-
a4)]. The material strain is the largest near the clamped
end and decays to zero at the free end of the rod [51].
We had previously studied the conditions for onset of
this buckling instability [20], without the presence of a
wall, due to excessive viscous loading. For the remainder
of this study, we will investigate how this fluid-structure
interaction problem is modified by adding a no-slip rigid
wall to the system.

In Figs. 3(b1-b4), we present the corresponding flow
fields (on the y-z plane at x = l/2; the solid line is
the projection of the deformed rod on (y, z) plane) as-
sociated with the deformation shown in Figs. 3(a1-a4).
The color represents the norm of the normalized veloc-
ity, ū = [ū2x + ū2y + ū2z]

1/2, at each point (x = l/2, y, z).
Initially (Fig. 3b1, t̄ = 0), the helix is axisymmetric with
a circular projection on the (y, z) plane. As the originally
helical rod deforms, the circle is distorted and undergoes
a dramatic change in shape as a consequence of buck-
ling (Figs. 3b3-b4). When a portion of the rod crosses
or moves close to the x = l/2 plane, the flow velocity in
the adjacent region increases, and results in the bright
spots corresponding to higher velocity in the flow fields
of Figs. 3(b2-b3). The presence of the wall at z = 0 leads
to a non-axisymmetric flow field, and the velocity at the
wall decays to zero, similarly to the two-dimensional ex-
ample presented in Figs. 2(e-f). The time required to
reach the buckled state is quantified in the Supplemental
Material [51].

These numerical simulations will now be validated by
comparing the computed shapes of the helical filament
against the deformation measured in precision laboratory
experiments, which are described next.

III. EXPERIMENTAL SETUP

In Fig. 4, we present a photograph of the desktop-sized
experimental apparatus that we have used to validate the
numerical simulations developed in §II. We have previ-
ously used a similar setup [20], albeit without the abil-
ity to systematically vary the distance, D, between the
clamping point of the helical filament and one of the side
boundaries (the effects of which were originally not con-
sidered given the overall large size of the enclosing tank).

The helical rods were fabricated by casting using
vinylpolysiloxane (a two-part elastomer: E = 1255 ±
49 kPa and ν ≈ 0.5) to obtain well-defined and cus-
tomizable geometric parameters: cross-sectional radius,
r0 = 0.158 ± 0.002 cm, axial length, l = 14.64 ± 0.1 cm,
pitch, λ = 3 ± 0.1, and helix radius, R = 0.794 ± 0.05

5 cm

3

l
λ

ω

R

1

4

D

2

5
wall

6

FIG. 4. Photograph of the experimental apparatus. A rod
(1) is immersed in a glycerin tank (2), and rotated using a
stepper motor (3). A second stepper motor (4) controls the
distance, D, between the helix axis and one of the walls. The
glycerin tank is placed inside a temperature-controlled water
tank (5). The right-hand side (6) of the glycerin tank marked
with solid red lines is the boundary considered in this study.

cm. Details for the protocol employed to fabricate this
rods can be found in Refs. [54]. During casting, iron
fillings were added added to the polymer, in order to
increase the density and match it with the density of
glycerin ρm = 1.24 g/cm3 (details on the glycerin bath
are provided below). Despite our best efforts in this
density matching, our rods had a slightly higher value
((ρ−ρm)/ρm . 0.019) which is, however, included in the
numerical simulations.

During an experimental test, an individual rod was
immersed in a bath of glycerin (35 × 24 × 24 cm3 along
x,y, and z axes, respectively), clamped at one end, and
rotated using a stepper motor (NEMA 27). This stepper
motor was in turn attached to a linear translator stage
(Thomson Industries) driven by a second stepper motor,
which allowed for precision control of the distance, D, be-
tween the clamping point (and hence the axis of the unde-
formed helix) and one of the side walls of the tank. The
viscosity of glycerin, µ, used in our experiments varies
by an order of magnitude (0.5 < µ[Pa · s] < 4.5) as the
temperature is changed between 5 < θ[◦C · s] < 30. As
such, the glycerin bath was enclosed by an external water
tank, which was itself connected to a temperature control
unit (Brinkmann Lauda RC6) to set the temperature,
T , within ∆T = 1.0◦C. All experiments were performed
at T = 11.0 ± 1.0◦C (µ = 2.7 ± 0.12 Pa·s). The tem-
perature (and, therefore, viscosity) of the glycerin was
logged every 15 minutes, and used to nondimensionalize
the angular velocity according to Eq. (21) to reduce the
temperature effects, as stated in §II D.
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IV. WALL-EFFECT ON THE PROPULSION
AND INSTABILITY OF THE HELICAL ROD

Towards validating the numerical simulations pre-
sented in §II, we now perform a direct quantitative com-
parison with experimental results using the apparatus
described in §III. Emphasis is given to the deformation
of the helical rod due to the combined effect of fluid load-
ing and the nearby wall. For the purpose of this compar-
ison between computed and experimental configurations
of the rod, we define its normalized height, h̄ = h/h0,
where h is the suspended height (vertical distance be-
tween clamp and the bottom-most part of the rod) and
h0 is the axial length of the helix at ω̄ = 0. This length,
h0, may include buoyancy effects that will make h0 6= l.

In Fig. 5(a), we plot h̄ as a function of ω̄, for two
different values of normalized boundary distance D̄ =
{0.143, 0.273}, obtained from experiments (open sym-
bols) and simulations (solid lines). For the simulations,
we also present the data in the absence of a boundary, i.e.
D̄ = ∞. Given the finite size of the box, a boundary is
always present in experiments and D̄ is finite. Previously,
for the case without a boundary we found that there is a
critical value for the rotational velocity, ω̄b (normalized
buckling velocity), above which the suspended height de-
creases dramatically [20]. Moreover, the critical torque
for buckling of a flagellum (without a wall) was numer-
ically quantified in Ref. [10] using RFT. When a wall is
present, we observe similar dynamics and the occurrence
of buckling, albeit at different values of ω̄b, which we
quantify next.

In both experiments and simulations, as the distance
from the clamp to the boundary is decreased from D̄ =
0.273 to D̄ = 0.143, the normalized buckling velocity de-
creases by 7.1% and 5.8%, respectively. Compared with
the no-wall case in simulations, ω̄b is reduced by 1.9% at
D̄ = 0.273 and 7.5% at D̄ = 0.143. These findings in-
dicate an enhanced propensity for buckling in the vicin-
ity of a boundary. In the case of both D̄ = 0.143 and
D̄ = 0.273, the rod touches the wall upon buckling. We
leave a contact model in simulations for future studies.
In the experiments, we observe that the rod becomes self-
tangled at D̄ = 0.143 due to contact with the wall and
the suspended height oscillates within 0.3 ≤ h̄ ≤ 0.6.

Even though both experiments and simulations show
the same trend of decreasing ωb when the distance to
the boundary is reduced, our experiments are affected
by experimental artifacts that we discuss next. We at-
tribute the mismatch in the measured ω̄b values between
experiments and simulations to be due to experimental
uncertainties associated with manufacturing and in the
measurements of the physical properties of the helical
rods. Due to these experimental imperfections, we ob-
serve that the normalized height remains slightly below
h̄ < 1.0 in the unbuckled regime (ω̄ < ω̄b), whereas, in
simulations, the helix extends along its axial direction to
reach h̄ ≈ 1.05 prior to buckling. Moreover, in the ex-
periments, we find that the rod undergoes small sideways
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FIG. 5. (a) Steady state values of the normalized sus-
pended height, h̄, as a function of normalized angular ve-
locity ω̄, at three different values of the boundary distance,
D̄ = {0.143, 0.273,∞}, from experiments and simulations (see
legend). The normalized buckling velocity, ω̄b, from the sim-
ulations is represented by the vertical dashed lines. (b) Nor-
malized propulsive force, F̄p, as a function of ω̄ obtained from
the numerical simulations. The shaded region corresponds to
the standard deviation of the force signal.

undulations, in contrast with an almost uniform exten-
sion in simulations. This interpretation is consistent with
the well known fact that buckling of slender structures
is highly sensitive to system imperfections. The approx-
imations invoked in LSBT [16] and the slender rod as-
sumption may also contribute to this mismatch. Further
comparison between our experiments and simulations is
presented later in this section.

The propulsive force (equal to the reaction force at the
clamp) and torque (applied by the motor on the rod) of
this macroscopic setup is too small to be measured ex-
perimentally [20]. Therefore, we leverage our simulations
to quantify the effect of the rigid boundary on propul-
sion. As the rod is rotated in the viscous bath, this
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propulsive force is generated along the negative x-axis,

Fp = −
∫ L
0
f(s) · ex)ds, where L = l/ cos (2πR/λ) is the

contour length of the rod and ex is the unit vector along
x axis. Without a wall, we had previously found that Fp
increases with angular velocity up to a maximum, FM ,
at the onset of buckling (ω̄ = ω̄b), after which it drops
sharply [20]. We now want to investigate how Fp is mod-
ified as a function of the distance between the helical
filament and the wall. In Fig. 5(b), we plot the normal-
ized propulsive force F̄p = Fpl

2/(EI), as a function of
ω̄, for three values of D̄. Similarly to the no-wall case
(D̄ =∞), when a rigid boundary is present, F̄p increases
up to a normalized maximum propulsive force, F̄M [rep-
resented by the star symbols in Fig. 5(b)], just before ω̄b.
As D̄ is decreased, the onset of buckling occurs earlier
(ω̄b is decreased), even if the corresponding value of F̄M
increases. For example, when D̄ = 0.143 (or D̄ = 0.273),
the maximum propulsive force, F̄M , is increased by 49%
(or 27%) compared to the no-wall case. Note that even
though the propulsive force is along the negative x-axis,
the helical rod slightly extends in simulations prior to
buckling. This counter intuitive observation is explained
in Supplementary Material [51].

Next, we perform a systematic investigation of the ef-
fect of the distance to the wall on propulsion and the
onset of buckling, which will also act as a validation of
the numerical simulations through comparisons with ex-
periments. For this purpose, we define the following two
non-dimensional quantities to measure the relative shift
due to wall-effects on the critical buckling velocity

∆ω̄b = (ωb − ωrb )/ωrb , (24)

and the maximum propulsive force,

∆F̄M = (FM − F rM )/F rM , (25)

where ωrb and F rM are reference values. It is important
to note that, in the experiments, these reference values
cannot be accurately determined for the no-boundary
(D̄ = ∞) case, given that the glycerin tank has a fi-
nite size and, even if distant, walls are always present.
Therefore, for a first comparison with experiments, we
chose to use the case with D̄ = 0.273 (i.e. D = 4 cm)
as reference. This choice was based on the size of our
24×24× 35 cm3 glycerin tank. At D = 4 cm away from
the side wall under consideration, the other three side
walls are {20, 12, 12} cm away from the rod, while the
top surface and bottom wall are approximately 17.5 cm
distant from the centroid of the rod. As such, we assume
that the effect of these other walls is small. Upon val-
idation of these results, we will then move to studying
the numerical simulations alone, taking D = ∞ as the
reference.

In Fig. 6, we plot ∆ω̄b as a function of the normal-
ized distance from the boundary, D̄, with the reference
assumed at D̄ = 0.273 for both experiments (filled sym-
bols) and simulations (open symbols), and find excellent
agreement between the two. When the boundary dis-
tance is D < R, the helical rod touches the wall (marked
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FIG. 6. Shift in buckling velocity, ∆ω̄b, as a function of nor-
malized boundary distance, D̄, from experiments (closed sym-
bols) and simulations (open symbols), with respect to the ref-
erence value of D̄ = 0.273. For D < rh, the rod contacts the
wall and this region is therefore not considered.

by a vertical dashed line in Fig. 6), which is not taken
into account in the simulations. Moreover, we require
that the distance between every node on the rod and the
wall is large enough, such that the cross-sectional radius
is smaller than any another geometric length-scale in the
system, r0 � w; an underlying assumption of our numer-
ical framework. Taking these constraints into consider-
ation, both our experiments and simulations are, there-
fore, performed for D̄ > 0.1. We find that, as the rotating
helical filament is brought closer to the wall, the criti-
cal buckling velocity decreases with respect to the refer-
ence value, such that ∆ω̄b is increasingly negative when
D̄ decreases. The errorbars correspond to the standard
deviation of ∆ω̄b. The good agreement between exper-
iments and simulations further validates our numerical
tool, which we now probe to systematically investigate
propulsion in the presence of a wall.

In Fig. 7(a), we plot these same quantities (∆ω̄b versus
D̄), now only for the simulations, and taking D̄ = ∞ as
the reference value. We find a scenario that is qualita-
tively similar to the experimental case discussed above
(with D̄ = 0.273 as reference). When the rod is away
from the wall and D̄ is large, the relative shift due to
wall-effects, ∆ω̄b, is close to zero. Below D̄ . 1, this shift
in buckling velocity is reduced sharply. Turning now to
the maximum propulsive force, in Fig. 7(b) we plot simu-
lation data for the relative shift in propulsion force ∆F̄M
(also with D = ∞ as reference) and find that the maxi-
mum propulsive force increases significantly as the helical
filament is rotated closer to the wall. For example, when
D̄ ≈ 0.2, F̄M is 50% larger than the reference (no-wall
case), which highlights the strong hydrodynamic effects
that a wall can induce in the propulsion. We also find
that the shift in maximum propulsion force versus the
distance to the wall is relatively well described by empir-
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as a function of D̄. The reference value is assumed to be at
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scale. Solid line represents the fit of Eq. (26) to the data.

ical power law

∆F̄M =
CF
D̄
, (26)

where CF = (6.6 ± 0.3) · 10−2 is a numerical constant
evaluated from fitting the data [solid line in Fig. 7(b)].
Recall that in our current study, the axis of the helical
rod is oriented parallel to the boundary. For a rigid he-
lical rod, Ref. [14] showed that even though an organism
swimming parallel to plane boundaries achieves a propul-
sive advantage, the swimming speed decreases for an ori-
entation normal to and toward a plane boundary. Our
framework is applicable to a planar boundary of arbitrary
orientation; however, the effect of boundary orientation
and the presence of a cell body on propulsion is beyond
the scope of this study and we leave a more systematic
investigation of this point for future work.

V. DEPENDENCE OF WALL-EFFECTS ON
THE GEOMETRY OF THE HELICAL FILAMENT

Thus far, our findings on the enhancement of propul-
sion and reduction of the onset of buckling due to the

presence of a rigid wall have focused on a single geome-
try as a representative case. Next, we perform a broader
exploration of the parameter space for the geometry of
the filament, with an emphasis on the ranges that are
relevant to natural helical flagella. Given that the buck-
ling velocity scales as ωb ∼ EI/(µl4) and assuming that
the effect of the slenderness ratio, r0/l, on the flow field
is negligible [20], ∆ω̄b and ∆F̄M are solely governed by
the following dimensionless groups: D̄, R/l, and λ/l.
All these three parameters are geometric and specify the
shape of the rod.

We now employ our numerical simulations to explore
the effect of (λ/l,R/l) on the shifts in buckling velocity
and maximum propulsive force. In this section, we de-
cide to keep the boundary distance fixed at D̄ = 0.2 (i.e.
D = 3 cm), for which we showed in the previous sec-
tion that there are significant wall-effects. The rationale
for this choice is that the lower bound is D = R (when
the helix touches the wall) and we also want to maintain
w � r0 between every node on the rod and the wall,
to ensure validity of our framework, while seeing a large
enough effect. The choice of D̄ = 0.2 fulfills all these
criteria throughout the range of rod geometry in the pa-
rameter sweep. Moreover, E, r0, l, and µ are kept fixed
at the parameter values of the representative setup. For
generality, hereon we assume that the density of the fluid
equals that of the rod to ignore any buoyant effects. The
uncertainties reported in the plots of Fig. 8 correspond
to error estimated in the solution of the inverse problem
of Eq. (11). A detailed account of the protocol followed
to calculate ωb and to determine the uncertainties asso-
ciated with the shifts, ∆ω̄b and ∆F̄M , are discussed in
the Supplemental Material [51].

In Fig. 8(a1), we plot the relative shift in buckling ve-
locity, ∆ω̄b, as a function of the normalized pitch, λ/l,
with the normalized radius fixed at rh/l = 0.0542 (rep-
resentative case). We find that the shift in buckling ve-
locity decreases as the pitch increases. Interestingly, at
low enough values of normalized pitch (λ/l < 0.12), ∆ω̄b
is positive, i.e. buckling velocity, ωb, is higher in the
presence of a boundary at D̄ = 0.2 compared with the
no-wall case. We now turn to the effect of helix radius
on the shift in buckling velocity, ∆ω̄b. In Fig. 8(a2), we
plot ∆ω̄b versus the normalized radius, rh/l, at the fixed
value of the pitch λ/l = 0.236 (representative case). As
the radius increases, ∆ω̄b slightly decreases; however, the
effect is moderate with ∆ω̄b ∼ 10%. Overall, in the pres-
ence of a wall, buckling tends to occur (except at very low
values of pitch) at a lower value of ω̄b so that ∆ω̄b < 0.
Physically, this can be attributed to the added drag ef-
fect from the wall. A no-slip boundary, in effect, slows
down the flow field by enforcing zero velocity, and this in
turn allows for the rod to reach the critical force for buck-
ling at a lower angular velocity. This effect depends on
both the geometry of the rod as well as its distance from
boundary as evidenced by our results in Figs. 8(a1-a2)
and Fig. 7.

Regarding the effect of a boundary on the propul-
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FIG. 8. (a) Shift in buckling velocity, ∆ω̄b [Eq. (24)], at D̄ = 0.2, as a function of (a1) the normalized pitch, λ/l, at R/l = 0.0542,
and (a2) the normalized radius, rh/l, at λ/l = 0.236. (b) Shift in maximum propulsive force, ∆F̄M [Eq. (25)], at D̄ = 0.2 as
a function of (b1) the normalized pitch, λ/l, at and R/l = 0.0542, and (b2) the normalized radius, rh/l, at λ/l = 0.236. The
error bars correspond to the uncertainty stemming from the solution to Eq. (11) [51].

sive force, in Fig. 8(b1), we plot ∆F̄M versus λ/l at a
fixed normalized radius of rh/l = 0.0542 for the same
data set used in Fig. 8(a1). As the pitch is increased
from λ/l = 0.1 to λ/l = 0.4, the shift in maximum
propulsion decreases monotonically from ∆F̄M ∼ 50% to
∆F̄M ∼ 25%. In Fig. 8(b2), we present ∆F̄M as a func-
tion of the normalized radius, rh/l, while fixing the pitch
at λ/l = 0.236. This same data set was used in Fig. 8(a2).
The shift in maximum propulsion increases with increas-
ing radius, and reaches ∆F̄M ∼ 40% at rh/l ∼ 0.08.
Within the parameter space explored, our model flagel-
lum, by swimming close to a wall, can attain a propulsive
force that is 25 − 50% higher, when compared to doing
so in the fluid bulk. To physically interpret this obser-
vation, we note from Fig. 5(b) that, at a fixed value of
ω, the propulsive force increases as the rod is set to ro-
tate closer to the wall. However, the wall-effect tends to
decrease the critical buckling velocity (see Fig. 8a1-a2),
and thereby cuts-off the propulsive force, F̄p, at a lower
angular velocity. These two opposing effects determine
the increase in maximum propulsive force, ∆F̄M , which is
found to be always positive in the regime explored here.
Furthermore, the wall effect on both ∆ω̄b and ∆F̄M is
more pronounced at higher values of helix radius. Note
that the nodes on a rod with radius, rh, can reach a dis-
tance w = D − rh from the boundary when a perfectly
helical rod is rotating about its axis. For a fixed value of
boundary distance a rod with a higher helix radius there-

fore traverses closer to a boundary (with a lower w), and
experiences stronger wall-effect.

Altogether, these results emphasize the prominent role
of the geometry of the helical filament in its interac-
tion between the wall and the rod. Since the geometry
of natural flagella varies significantly between bacterial
species [1], our results open up questions on how mi-
croorganisms may potentially take advantage from such
wall-effect.

VI. CONCLUSION

We have introduced a computational framework to
simulate the geometrically nonlinear deformation of an
elastic rod moving in a viscous fluid near a no-slip pla-
nar boundary. For this purpose, our numerical approach
combined DER, LSBT, and the method of images. Em-
powered by this simulation tool, we studied the dynamics
of a helical rod undergoing rotation, next to a boundary
that is parallel to the axis of the filament. We have quan-
tified the dependence of the onset of the propulsive force
and the onset of buckling on the distance to the wall. The
simulations were validated using macroscopic model ex-
periments by comparing the relative shift in critical buck-
ling velocity as a function of the boundary distance. To
realize the importance of the rod geometry, the simula-
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tion tool was then employed to sweep through parameter
space along two geometric parameters (helix pitch and
radius) and quantify the wall-effect. Our results showed
that the critical buckling velocity is typically lowered in
the presence of a wall, while the maximum propulsive
force is enhanced. The scale-invariance of this problem
suggests the same effect should be present at the micro-
scopic scales relevant to flagellated bacteria.

The significant effect of flagellum geometry, flexibility,
and the presence of a wall on the propulsion and instabil-
ity poses a non-trivial design space for nature. This may
have implications in path planning and selection of swim-
ming direction in flagellated microorganisms. Our find-
ings may also provide guidelines for the design of labora-
tory experiments on bacterial propulsion, e.g. the appro-
priate size of the fluid reservoir to minimize disturbance
from boundaries. Since we used a long range hydro-
dynamic force model, our framework may also, eventu-

ally, be extended to study multi-flagellated systems (self-
contact may become important and will need to be incor-
porated in that case). The effect of wall on bundling and
tumbling behavior [27] may then be explored. The flexi-
bility of the DER framework can be used to include differ-
ent models for hydrodynamic forces. Provided the sim-
ilarity in structural mechanics and hydrodynamic forces
in cilia [55], our framework should also be readily applied
to investigate ciliary locomotion. We hope that our re-
sults will inspire and instigate future work on all these
fronts, especially to motivate new biophysics experiments
with microorganisms.
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