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We experimentally investigate the self-sustained, star-shaped oscillations of Leidenfrost

drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We

observe modes with n = 2−13 lobes around the drop periphery. We find that the wavelength

of the oscillations depends only on the capillary length of the liquid, and is independent

of the drop radius and substrate temperature. However, the number of observed modes

depends sensitively on the liquid viscosity. The dominant frequency of pressure variations

in the vapor layer is approximately twice the drop oscillation frequency, consistent with a

parametric forcing mechanism. Our results show that the star-shaped oscillations are driven

by capillary waves of a characteristic wavelength beneath the drop, and that the waves are

generated by a large shear stress at the liquid-vapor interface.

The Leidenfrost effect can be easily observed by placing a millimeter-scale water drop onto a

sufficiently hot pan. The drop will levitate on a thermally-insulating vapor layer and survive for

minutes [1–4]. The complex interactions between the liquid, vapor, and solid interfaces have led

to a broad range of applications such as turbulent drag-reduction [5], self-propulsion of drops on

ratcheted surfaces [6, 7], green nanofabrication [8], fuel combustion [9], and thermal control of

nuclear reactors [10]. Given the importance of the Leidenfrost effect for both friction reduction

and thermal insulation, we know surprisingly little about the detailed coupling between the liquid

and the thin vapor layer.

This coupling can be probed by investigating the dynamics of drop oscillations. Leidenfrost

drops experience both small and large amplitude oscillations with very little damping. For small

drops, the geometry of the vapor layer and resulting drop dynamics have been recently characterized

[11, 12]. Large Leidenfrost drops are well-known to form self-sustained, star-shaped oscillations

(Fig. 1a). Since the 1950’s, a number of studies have investigated these star oscillations, often with

different conclusions as to their physical origin due to the complicated interplay between thermal

and hydrodynamic effects in both the liquid and gas phases [13–19]. The underlying mechanism

for the onset of star oscillations remains unknown.

Here we report measurements of star-shaped oscillations of six different liquids on a hot, curved
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surface. We observe stars with n = 2− 13 lobes around the drop periphery. Although the number

of observed modes depends on the liquid viscosity and substrate temperature, we find that the

wavelength and frequency of the modes only depend on the capillary length, lc =
√
γ/ρlg, where

γ and ρl are the surface tension and density of the liquid, and g is gravitational acceleration. The

pressure near the center of the vapor layer oscillates at approximately twice the frequency of the

drop oscillation, consistent with a parametric coupling mechanism. We show that this pressure

variation stems from capillary waves of a characteristic wavelength, λc ≈ 4lc, generated by a large

shear stress at the liquid-vapor interface beneath the drop.

In the experiment, most substrates were constructed from blocks of engineering 6061 aluminum

alloy with dimensions 7.6 cm × 7.6 cm × 2.5 cm. The substrate temperature was controlled by

resistive heaters embedded in the material. Six different liquids were used as Leidenfrost drops:

deionized water, liquid N2, acetone, methanol, ethanol and isopropanol. The physical properties

of each liquid at the boiling point Tb are listed in Table I. For water, the substrate temperature Ts

varied from 493 K to 773 K, while for ethanol, methanol, acetone, and isopropanol, Ts was set to

523 K. The substrate for liquid N2 was not heated due to its extremely low Tb. Movies of water

drop oscillations corresponding to modes n = 2, 4, 8, and 11 can be found in the Supplemental

Material (S1-S4) [20].

The upper surfaces of the substrates were machined into a spherical bowl-shape in order to

suppress the buoyancy-driven Rayleigh-Taylor instability in the vapor layer and keep the drops

stationary [4, 21, 22]. A cross-sectional view of the curved substrates is shown in Fig. 1b. The

curvature of each surface was designed to satisfy lc/Rs = 0.03, where Rs is the radius of curvature

of the surface. For some experiments, a plano-concave, fused silica lens (focal length = 250 mm)

was used as the heated substrate in order to allow for optical imaging of the vapor layer beneath

the oscillating drop.

We used a high-speed digital camera (Phantom V7.11, Vision Research) with a resolution of

132 pixels/cm to image the drops at 1000 frames/s. Recorded videos were then analyzed to obtain

the frequency and wavelength of the star-shaped oscillations. An image of a water drop (mode

n = 8) is shown in Fig. 1a (movie S3) [20]. A schematic of a typical star-shaped oscillation mode

is shown in Fig. 1c, indicating the radius, R, and wavelength of the standing wave, λd. In order

to detect pressure variations beneath the drop, a pressure sensor (GEMS Sensors, response time:

5 ms, sensitivity: 2 mV/Pa) was connected to a small hole of diameter 1 mm at the center of

the curved aluminum (Fig. 1a). The pressure was sampled at 500-1000 Hz in order to accurately

capture waveforms near the response time of the sensor.
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FIG. 1. (a) Top-down image of a star-shaped Leidenfrost water drop (lc = 2.5 mm, R = 1.4 cm, Ts = 623 K).

The small, dark circle in the center of the substrate is used for pressure measurements. (b) Cross-sectional

view of the experimental setup. (c) Top-down schematic of a star-shaped drop indicating the radius R and

wavelength λd = 2πR/n.

For each observed star-shaped oscillation mode, we measured the azimuthal wavelength, λd,

drop oscillation frequency, fd, and the characteristic frequency of pressure oscillations, fp. Figure

2a shows the excess pressure (above atmosphere) before the initiation of a star-shaped oscillation

for a water drop. For a very large drop, i.e., R � lc, the drop can be approximated by a cylinder

whose thickness, h ≈ 2lc, is determined by a balance of surface tension and gravitational forces [2].

Thus the mean pressure required to levitate a large water Leidenfrost drop at the boiling point

should be ρlgh ≈ 47 Pa. One can see that the pressure measured in the center is slightly larger

than 47 Pa. This is expected since a radial pressure gradient is required to drive the viscous vapor

from the center of the drop to the edge.

Figure 2b shows the Fourier power spectrum of the pressure prior to the initiation of a star

oscillation. There is a visible peak at fp ≈ 30 Hz, as well as small peaks at higher frequencies.

Figure 2c shows data for the same drop later in time during a well-developed n = 4 mode oscillation

(movie S2) [20]. Large variations in the pressure are visible, although the mean pressure remains

unchanged. Figure 2d shows the power spectrum during the star-shaped oscillation, indicating

a sharp peak at fp ≈ 28 Hz, in addition to noise and harmonics at higher frequencies. The

star-shaped oscillation frequency for this drop was fd ≈ 14 Hz ≈ fp/2.

To gain further insight into the origin of the star-shaped oscillations, we used five other liquids in

addition to water, as listed in Table I. A summary of our results are shown in Fig. 3. The error bars



4

TABLE I. Physical properties of different liquids at the boiling point Tb (K). Units are as follows: γ (mN/m),

ρl (kg/m3), ηl (mPa · s), lc (mm). Data was taken from Ref. [23].

liquid Tb γ ρl ηl lc Mode Rel

water 373 59.0 958 0.282 2.5 2-13 1340

liquid N2 77 8.90 807 0.162 1.1 3-5,7 539

acetone 329 18.2 727 0.242 1.6 5-10 601

methanol 338 18.9 748 0.295 1.6 6-10 511

ethanol 352 18.6 750 0.420 1.6 7-11 355

isopropanol 356 15.7 723 0.460 1.5 9,10 283

6 s

1 cm

15 s

FIG. 2. (a) Pressure variations in the vapor layer beneath a Leidenfrost water drop (Ts = 623 K) just before

the initiation of the star-shaped oscillation. (b) Power spectrum of the pressure fluctuations over the time

interval of 0− 9 s. (c) Pressure variations during a fully-developed n = 4 mode. (d) Power spectrum of the

pressure fluctuations over the time interval of 9 − 18 s showing a sharp peak at fp ≈ 28 Hz. Both power

spectra have the same linear vertical scale. The insets in (b) and (d) show snapshots of the drop shape, and

the scale bar 1 cm applies to both images.
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FIG. 3. Normalized radius (a), wavelength (b), and frequency (c) versus oscillation mode number n. Fre-

quencies are plotted for both the star-shaped drop (fd, closed symbols) and vapor layer pressure oscillations

(fp, open symbols). The error bars are described in the main text. The dashed line in (a) is the best linear

fit to the data, whereas the dashed lines in (b) and (c) represent the mean values of the data.

of R, λd, and fd come from the standard deviation of multiple measurements from different drops,

whereas the error bar of fp is taken from the full width of the highest peak in the power spectrum

at half the maximum value, as shown in Fig. 2d. For all the drops, fd ≈ fp/2, in agreement with a

parametric forcing mechanism [24, 25]. The data collapses very well when scaled only by lc, and the

frequency scale (g/lc)
1/2. This collapse works for all the liquids used in the experiments, as well as

water drops at different substrate temperatures, suggesting a purely hydrodynamic (non-thermal)

mechanism for generating star-shaped oscillations. This is in agreement with recent experiments

studying star-shaped oscillations of drops levitated by an air flow from below [26].

Since λd is approximately constant, modes with large n could only be observed in large drops.

Occasionally we observed the same mode number at smaller values of R, but this only happened
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for n = 2 − 4 and was difficult to replicate. In addition, we found that the number of ob-

served modes was sensitive to the viscosity of the liquid. Assuming a characteristic length, lc,

and time scale,
√
l3cρl/γ, we express the Reynolds number associated with the flow of each liquid,

Rel ≡ (lcγρl)
1/2/ηl, as shown in Table I. We find that the minimum observed mode number, nmin,

is inversely proportional to Rel, as shown in Fig. 4. This suggests that liquid viscosity damps the

oscillations of smaller drops and thus sets the threshold mode for self-sustained star oscillations.

The largest observable value of n is ultimately determined by the size of the experimental appa-

ratus, except in the case of liquid N2, where the evaporation rate is very high since the susbstrate

temperature is much higher than the boiling point. Even though the substrate is curved, for large

drops the resulting vapor layer is thick enough to develop bubbles due to the Rayleigh-Taylor

instability [21].

One surprising result drawn from the experimental data is that only a single dominant wave-

length (and thus frequency) exists for all modes, and only depends on lc. There are small oscillations

of both λd and fd about their mean values (dashed lines in Figs. 3b and 3c). These oscillations are

strongest for small n, and are consistent among the different liquids and substrate temperatures.

This phenomenon may be caused by nonlinear effects, e.g., the dependence of the oscillation fre-

quency on the amplitude is stronger for smaller modes [27, 28]. Nevertheless, the data suggests a

very robust mechanism for selecting either the frequency or wavelength of the modes.

The relationship between fd and fp can be understood from the quasi-2D dispersion relation

for large, puddle-shaped drops, where fd ∝ R−3/2 [26, 29, 30]. Assuming that the radius of the

puddle varies sinusoidally with time, then modes of the star oscillations follow an equation similar

to the Mathieu equation, and will be excited when fd ≈ fp/2 [24, 29]. In the case of Leidenfrost

drops, there is no obvious frequency or wavelength selection mechanism generated by the flow and

evaporation of vapor beneath the drop. It is possible that a “breathing mode” of the drop would

cause the radius to vary with time, however, recent measurements of the breathing mode in both

low and high-viscosity levitated drops show that the frequency rapidly decreases with R [12, 26, 31],

in contrast to the data shown in Fig. 3c.

The pressure variations beneath the drop are determined by the shape of the liquid-vapor

interface and the flow in the vapor layer. A simple model of the flow beneath the drop is shown in

Fig. 5, where v is the velocity of the gas at the liquid surface, e is the mean thickness of the vapor

layer, and u is the radial velocity of the gas near r = R. Following the model in Biance et al. [2]
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FIG. 4. Scaling behavior for the minimum observed star mode nmin with respect to Rel of different liquids

(Table I). The blue dashed line represents 2600Re−1
l .

by assuming incompressibility and lubrication flow in the gas, e, v, and u can be expressed as

u =
(
ρlgκlc
3ρvηvL

)1/2
∆T 1/2, (1)

v =

[
4lcρlg
3ηv

(
κ∆T
Lρv

)3
]1/4

R−1/2, (2)

e =
(

3κ∆Tηv
4Lρlρvglc

)1/4
R1/2, (3)

where ∆T = Ts − Tb, L is the latent heat of evaporation, and ηv, ρv, and κ are the mean values

of the dynamic viscosity, density, and thermal conductivity in the vapor layer. Although the

approximation assumes a steady-state, linear temperature profile in the vapor layer, this is valid

since the typical thermal diffusion time across the vapor layer is ≈ 1 ms for water vapor near the

boiling point.

The Reynolds number in the vapor layer can be expressed as Rev ≡ veρv/ηv [32, 33]. After

plugging in the expressions for v and e, Rev = ∆Tκ/Lηv, which is independent of the drop radius.

For typical values of the properties in a water vapor layer, Rev ≈ 0.2. Thus both viscous and

inertial forces are relevant. However, a simple estimate of the Bernoulli pressure, ρvu
2/2 ≈ 1 Pa,

suggests that inertia is not responsible for the pressure variations observed in Fig. 2.

On the other hand, the viscous lubrication pressure scales as ηvvR
2/e3, so that variations in

pressure are related to small thickness changes: ∆p = (3ηvvR
2/e4)∆e. For the water drop shown

in Fig. 2d, where ∆p ≈ 10 Pa, we would expect thickness variations of order ∆e ≈ 15 µm. These

variations could be produced by a vertical motion of the center of mass of the drop, although, the

frequency of this oscillation should decrease for larger drops, in contrast to the data in Fig. 3c.

Thus it is likely that the pressure oscillations occur due to local changes in vapor thickness.
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FIG. 5. Cartoon cross-section of a Leidenfrost drop before (red dashed curve) and after (black curve) the

excitation of capillary waves under the drop. Symbols are defined in the text.

We hypothesize that the pressure variations are caused by capillary waves of a characteristic

wavelength (frequency), λc (fc), which travel from the center of the drop to the edge. When they

reach the edge, the waves will cause the radius to vary with time, as shown schematically in Fig.

5. To support this hypothesis, we have measured the spectrum of capillary waves by imaging the

vapor layer under a star-shaped Leidenfrost drop on a curved, fused silica surface. Variations in

the thickness of the vapor layer deflect the collimated light used for illumination. A typical image

under an acetone drop is shown in Fig. 6a, and the corresponding power spectrum is shown in Fig.

6b. The spectrum shows a large peak at fc ≈ 26 Hz which is spread over a range of wave numbers

located near kc ≈ 10 cm−1.

The exact selection mechanism for the dominant wavelength λc beneath the drop is the result

of interactions between the lubricating flow of the evaporating vapor, and the deformable liquid

interface. Capillary waves with small wavelengths are known to be unstable when a liquid interface

is driven by a strong shear stress [34–37]. For water waves, the strength of the shear is often mea-

sured by the friction velocity, u? =
√
τ/ρv, where τ is the shear stress at the interface. Assuming a

parabolic-flow profile in the vapor layer with mean velocity u near the edge of the drop (Fig. 5), the

maximum shear stress at the liquid-vapor interface is τ = 6ηvu/e. Plugging in the expressions for

u and e from Eqs. 1 and 3, and using typical values for the properties of water vapor, we estimate

that u? ≈ 1 − 2 m/s for a Leidenfrost drop. This friction velocity is quite strong, and can easily

lead to the unstable growth of modes with wavelengths of order a few millimeters [35, 36]. The

threshold for the onset of instability, as shown in Fig. 4, should also be related to the forcing and

velocity in the vapor layer [26]. This remains an open question for future studies.

We can estimate for the dominant wave vector using the zeroth-order dispersion relation for

capillary waves under the drop. We assume a constant pressure in the vapor layer, and that the
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FIG. 6. (a) Capillary waves imaged beneath an n = 8 mode acetone drop. The image has been enhanced

for visibility. (b) Corresponding power spectrum associated with the acetone Leidenfrost drop. There is a

sharp peak at fc ≈ 26 Hz which covers a broad range of wave vectors.

top surface of the drop is nearly flat:

fc =
1

2π

√(
−gkc +

γk3
c

ρl

)
tanh (kch). (4)

Here kc = 2π/λc, and h ≈ 2lc is the thickness of the drop. This is the well-known dispersion

relation for capillary-gravity waves, except the denser fluid rests above the lighter gas. Since we

are not considering the restoring force associated with the lubrication pressure, our estimate serves

as an upper bound for kc. For a large Leidenfrost water drop, the measured frequency of pressure

variations is fp ≈ 26 Hz. Using Eq. 4, and assuming fp = fc, we arrive at λc ≈ 3.03lc. For the

acetone drop shown in Fig. 6a, this corresponds to kc ≈ 12.9 cm−1, which is slightly larger than

the position of the peak in Fig. 6b.

This result is also in agreement with the minimum value of R required to observe an n = 2

mode (movie S1) [20]. The drop radius we measured is the maximum radius, R, instead of Rneck,

which is the radius at which the drop comes closest to the substrate (Fig. 5). The minimum size

necessary to fit one wavelength beneath the drop is Rneck = λc/2. The relationship between R and

Rneck for large Leidenfrost drops is R ≈ Rneck+0.53lc [11, 22]. This means that the minimum value

of R required to observe a star-shaped oscillation is R ≈ 2.05lc, in agreement with data shown in

Fig. 3a.

In summary, the dynamics of the vapor layer under a star-shaped Leidenfrost drop involve a
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rich spectrum of physical processes including multiphase heat and mass transfer, interfacial wave

generation, lubricating flow, and self-sustained parametric oscillations. Given this complexity,

surprisingly, the star oscillation wavelength and frequency are nearly independent of the drop

radius, mode number, and substrate temperature, and only depend on the capillary length of the

liquid, indicating a purely hydrodynamic (non-thermal) origin for the oscillations. We demonstrate

that capillary waves of a characteristic wavelength beneath the drop lead to pressure oscillations

in the vapor layer, which parametrically induce the star-shaped oscillations. These results may

enhance our understanding of thin, supporting gas films in contact with a liquid interface and a

solid surface, a scenario which occurs during drop impact and gas entrainment.
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Chakravadhanula, V. Duppel, L. Kienle, and M. Elbahri, “Green chemistry and nanofabrication in a

levitated leidenfrost drop,” Nat. Commun. 4 (2013).

[9] T. Kadota, H. Tanaka, D. Segawa, S. Nakaya, and H. Yamasaki, “Microexplosion of an emulsion

droplet during leidenfrost burning,” Proc. Combust. Inst. 31, 2125 (2007).

[10] H. Van Dam, “Physics of nuclear reactor safety,” Rep. Prog. Phys. 55, 2025 (1992).

[11] J. C. Burton, A. L. Sharpe, R. C. A. van der Veen, A Franco, and S. R. Nagel, “Geometry of the vapor

layer under a leidenfrost drop,” Phys. Rev. Lett. 109, 074301 (2012).

[12] T. A. Caswell, “Dynamics of the vapor layer below a leidenfrost drop,” Phys. Rev. E 90, 013014 (2014).

[13] N. J. Holter and W. R. Glasscock, “Vibrations of evaporating liquid drops,” J. Acoust. Soc. Am. 24,

682 (1952).



11

[14] D. E. Strier, A. A. Duarte, H. Ferrari, and G. B. Mindlin, “Nitrogen stars: morphogenesis of a liquid

drop,” Physica A 283, 261 (2000).

[15] N. Tokugawa and R. Takaki, “Mechanism of self-induced vibration of a liquid drop based on the surface

tension fluctuation,” J. Phys. Soc. Jpn. 63, 1758 (1994).

[16] K. Adachi and R. Takaki, “Vibration of a flattened drop. i. observation,” J. Phys. Soc. Jpn. 53, 4184

(1984).

[17] R. Takaki and K. Adachi, “Vibration of a flattened drop. ii. normal mode analysis,” J. Phys. Soc. Jpn.

54, 2462 (1985).

[18] F. Celestini, T. Frisch, A. Cohen, C. Raufaste, L. Duchemin, and Y. Pomeau, “Two dimensional

leidenfrost droplets in a hele-shaw cell,” Phys. Fluids 26, 032103 (2014).

[19] A. Snezhko, E. B. Jacob, and I. S. Aranson, “Pulsating–gliding transition in the dynamics of levitating

liquid nitrogen droplets,” New J. Phys. 10, 043034 (2008).

[20] See Supplemental Material at for movies of water drop oscillations corresponding to modes n = 2, 4,

8, and 11.

[21] P. H. Trinh, H. Kim, N. Hammoud, P. D. Howell, S. J. Chapman, and H. A. Stone, “Curvature

suppresses the rayleigh-taylor instability,” Phys. Fluids 26, 051704 (2014).

[22] J. H. Snoeijer, P. Brunet, and J. Eggers, “Maximum size of drops levitated by an air cushion,” Phys.

Rev. E 79, 036307 (2009).

[23] E. W. Lemmon, M. O. McLinden, D. G. Friend, P. J. Linstrom, and W. G. Mallard, NIST chemistry

WebBook, Nist standard reference database number 69 (2011).

[24] P. Brunet and J. H. Snoeijer, “Star-drops formed by periodic excitation and on an air cushion–a short

review,” Eur. Phys. J. Special Topics 192, 207 (2011).

[25] C. L. Shen, W. J. Xie, and B. Wei, “Parametrically excited sectorial oscillation of liquid drops floating

in ultrasound,” Phys. Rev. E 81, 046305 (2010).

[26] W. Bouwhuis, K. G. Winkels, I. R. Peters, P. Brunet, D. van der Meer, and J. H. Snoeijer, “Oscillating

and star-shaped drops levitated by an airflow,” Phys. Rev. E 88, 023017 (2013).

[27] E. Becker, W. J. Hiller, and T. A. Kowalewski, “Experimental and theoretical investigation of large-

amplitude oscillations of liquid droplets,” J. Fluid Mech. 231, 189 (1991).

[28] W. R. Smith, “Modulation equations for strongly nonlinear oscillations of an incompressible viscous

drop,” J. Fluid Mech. 654, 141 (2010).

[29] N. Yoshiyasu, K. Matsuda, and R. Takaki, “Self-induced vibration of a water drop placed on an

oscillating plate,” J. Phys. Soc. Jpn. 65, 2068 (1996).

[30] X. Ma, J-J Liétor-Santos, and J. C. Burton, “The many faces of a leidenfrost drop,” Phys. Fluids 27,

091109 (2015).

[31] X. Ma, J-J Liétor-Santos, and J. C. Burton, (to be published).

[32] J. R. Lister, A. B. Thompson, A. Perriot, and L. Duchemin, “Shape and stability of axisymmetric

levitated viscous drops,” J. Fluid Mech. 617, 167 (2008).



12

[33] L. Duchemin, J. R. Lister, and U. Lange, “Static shapes of levitated viscous drops,” J. Fluid Mech.

533, 161 (2005).

[34] J. W. Miles, “On the generation of surface waves by shear flows,” J. Fluid Mech. 3, 185 (1957).

[35] X. Zhang, “Capillary-gravity and capillary waves generated in a wind wave tank: observations and

theories,” J. Fluid Mech. 289, 51 (1995).

[36] A. Zeisel, M. Stiassnie, and Y. Agnon, “Viscous effects on wave generation by strong winds,” J. Fluid

Mech. 597, 343 (2008).

[37] A. Paquier, F. Moisy, and M. Rabaud, “Surface deformations and wave generation by wind blowing

over a viscous liquid,” Phys. Fluids 27, 122103 (2015).


	Star-shaped Oscillations of Leidenfrost Drops
	Abstract
	References


