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Pinning and depinning of a windswept droplet on a surface is familiar yet deceptively complex for
it depends on the interaction of the contact line with the microscopic features of the solid substrate.
This physical picture is further compounded when wind of the Reynolds number greater than 100
blows over pinned drops, leading to the boundary layer separation and wake generation. In this
paper, we incorporate the well-developed ideas of classical boundary layer to study partially wetting
droplets in a wake created by a leader object. Depending on its distance from the leader, the
droplet is observed to exhibit drafting, upstream motion, and splitting, due to the wake-induced
hydrodynamic coupling that is analogous to drafting of moving bodies. We successfully rationalize
the onset of the upstream motion regime using a reduced model that computes the droplet shape
governed by the pressure field inside the wake.
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FIG. 1: (a) A water droplet is placed behind a steel hemispherical protuberance on a textured aluminum surface
inside a miniature wind tunnel. The images from top-view and side-view cameras are used to analyze the evolving

droplet shapes and to determine the onset of motion. (b) A typical side-view image of a droplet (V = 50 µL) placed
at a distance, d, downstream of the solid: With no external forcing, the droplet of width, w, forms θi = 49.1o with

the textured surface. (c) When the wind is turned on, the droplet visibly deforms asymmetrically in the direction of
the wind. (d) The droplet at the onset of depinning at the critical wind velocity, Uc: The drop forms the maximum

contact angle, θa = 63.5o, on the advancing side and the minimum angle, θr = 8.2o, on the trailing edge.

Bodies moving through a fluid in a high Reynolds number regime experience hydrodynamic coupling when their
wakes interact with each other [1]. As a seminal example, hydrodynamic drafting reduces the drag of an object
(follower) when it is placed in the wake of another object (leader) [2]. More complex wake-induced behaviors [3–6]
emerge when objects flap or deform with the flow. For instance, in the case of a deformable leader-follower pair,
surprisingly, the leader object experiences reduced drag instead of the follower, referred to as inverted drafting [6].
A passive flapping follower behind a solid leader can even extract energy from the Kármán vortex street to move
upstream towards the leader without expending energy of its own [3, 4].

While most studies of this nature look for inspiration in biological systems, hydrodynamic coupling effects may
also be present in a completely different yet familiar situation: droplets pinned or running on the surface of a fast
moving vehicle. A partially wetting drop is able to remain in place against external forcing due to contact angle
hysteresis that stems from the contact line pinning [7, 8]. Pinning and dislodging of droplets on surfaces are relevant
for aircraft icing [9, 10], atomized lubrication in micromachining [11], and heat exchangers [12]. Due to its familiarity
and practical implications, pinning of a single droplet on a solid substrate has been studied extensively in the low
Reynolds number regime [7, 8, 13–17] and, to a lesser extent, in the inertia-driven regime [18–20].

In this present work, we use wind-tunnel experiments to study the wake-induced behavior of a partially wetting
droplet (follower) in the wake of a fixed solid protuberance (leader). This is a first step towards understanding the
coordinated behavior of multiple droplets in wind without the complexity of a deformable leader. Analogous to the
conventional hydrodynamic drafting [2], when the wind blows over a drop pinned behind a leader solid, the droplet
experiences reduced drag and takes off at higher imposed wind. However, as the droplet’s distance from the solid is
varied, more complex and surprising droplet behaviors emerge. By coupling the knowledge of wake behind a rigid
bluff body [21–28] and a deformable body (i.e. bubble) [29–33] with droplet pinning [7, 8], we develop a reduced model
that focuses on the onset of droplet motion and qualitatively captures the experimental results. The combination of
the boundary layer and droplet dynamics represents novel analytical tools to explore fundamental problems at the
intersection of the two fields.

We experimentally measure the critical air velocity, Uc, at which a water droplet depins from the substrate in the
wake of a leading object inside the test section (2.5 cm tall & 5.1 cm wide) of a miniature wind tunnel [20]. The
leading object is a steel hemisphere with a base width, ws = 11.4 mm, attached to a textured aluminum substrate
with characteristic roughness of 3.26 µm. The wind tunnel generates uniform wind up to 25 m/s and forms a laminar
boundary layer on the textured substrate, which is measured to be much thinner than ws/2 by the time it reaches
the hemisphere in the current setup [20]. When the growing boundary layer interacts with the solid hemisphere, it
separates and generates wakes downstream of the hemisphere, as described in detail in [21]. In addition, the ratio of
ws to the test section width is less than 25%, ensuring that the side walls do not influence the wake [34].

Distilled water drops of varying volumes, V , are placed downstream along the centerline of the solid protrusion, and
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FIG. 2: (a) Uc/Uc0 as a function of d/ws for V ranging from 50 µL to 150 µL: Uc and Uc0 correspond to the critical
wind velocity at which a droplet depins downstream behind and without the solid, respectively. (b) The drop’s

initial width, w, as a function of V : Solid squares refer to experimental values of w extracted from the top-down
images (inset), while the solid line is the analytic solution based on the spherical cap geometry,

w = 2V 1/3

tan (θi/2)

[
6 sin2 (θi/2)
π(2+cos θi)

]1/3
, with θi = 49.1o. The shaded region indicates the transitional droplets (V=130− 140

µL) whose w ≈ lr, where lr is the reattachment length. (c) The parabolic function (solid line) empirically describes
the pressure inside the reattachment zone of length, lr.

their motion is captured by the top-view and side-view cameras (Fig. 1(a)). Initially, an axisymmetric drop forms a
static contact angle of θi = 49.1o with the substrate, as shown in Fig. 1(b). The initial distance between the trailing
edge of the solid and the leading edge of the droplet is given by d. When the wind velocity, U , turns on and gradually
increases, the droplet deforms asymmetrically (see Fig. 1(c)), and the downwind side of the drop forms the maximum
contact angle, θa = 63.5o, and advances downstream, while the trailing edge remains pinned. At U = Uc, the contact
angle on the trailing side reaches the minimum value, θr = 8.2o, prior to detaching from the surface. Hence, the
formation of θa and θr characterizes the onset of droplet depinning (Fig. 1(d)).

Distinct from windswept droplets with no leader protrusion, the droplet behavior in the present study depends
on the drop’s distance from the solid, d, as well as its volume, V . For instance, beyond a critical distance from the
solid, dc, the droplet no longer feels the effects of the wake, or Uc/Uc0 ≈ 1 for d ≥ dc, where Uc0 refers to the critical
depinning velocity with no solid. From our experimental data shown in Fig. 2(a), dc ≈ 1.4ws for all drops considered
in the current Reynolds number range, i.e. Re ≡ Uws/νa = 2500 − 10000, where νa is the kinematic viscosity of
air. Here, dc is set to be the distance at which Uc deviates from the corresponding value of Uc0 by 3%. Though
wake characteristics generally depend on the Reynolds number, the Re-independent behavior of dc suggests the wakes
generated behind the hemisphere do not change significantly in the Reynolds number range of our experiments, which
matches the experimental findings of [21].

As the droplet is placed closer to the solid, drafting effects require stronger wind to dislodge it from the surface, or
Uc/Uc0 > 1 for d < dc (Fig. 2(a)). Surprisingly, at d/ws . 0.4, small droplets (i.e. 50−130 µL) reverse their direction
of motion and move towards the solid against incoming wind (Fig. 3(b)iii-iv). While similar upstream motion has been
observed in dead fish that exhibits wake-induced synchronized flapping [4], the drop’s motion is primarily governed
by the low pressure zone behind the solid. The laminar boundary layer from the wind separates on the protrusion;
the pressure in the separated flow, pext, is less than the outer pressure, p∞, forming a suction region downstream of
the solid. The low pressure causes the streamlines to curve inwards and reattach to the substrate at the reattachment
point [21]. Hence, the droplet inside the reattachment zone is “shielded” from the external wind and moves towards
the low pressure region. In the current Reynolds number range, it is reasonable to assume that the length of this
zone, lr, must correspond to ws, the diameter of the hemisphere [21, 25].

Then, what must happen if the droplet is placed at the reattachment point? Specifically, large drops (i.e. 110−220
µL) that “intersect” the reattaching flow (i.e. d/ws . 0.2) are observed to split into two drops that move into opposite
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FIG. 3: (a) A V -d/ws phase diagram summarizes distinct droplet behaviors: ‘downstream’ (filled triangle),
‘upstream’ (open triangle), and ‘splitting’ (square); the shaded region corresponds to the ‘upstream’ regime. (b)i-iv

A droplet of 50 µL depins upstream when it is located inside the reattachment zone behind the solid protrusion.
(c)i-iv A droplet of 150 µL splits when its downstream portion intersects the reattaching flow, while the upstream

portion lies inside the separated zone.

directions. This can be explained by considering that pressure at the reattachment point is at a local maximum as
a stagnant point in the flow, which creates a negative curvature on the droplet surface based on the Young-Laplace
equation. From this reattachment point, the droplet surface deforms in both directions (upstream and downstream)
to adapt to the spatially decreasing external pressure inside the wake. As the pressure scales as ρaU

2 (where ρa is
the air density), droplet deformations become more pronounced with the increasing velocity, which eventually leads
to droplet splitting. The time-evolution in the droplet shape is clearly demonstrated in Fig. 3(c)iii-iv. Interestingly,
splitting behavior is never observed for drops smaller than 100 µL for which surface tension effects may dominate.

If only drops that completely lie inside the reattachment zone move upstream, then drops that are too large to
fit inside the zone (i.e. w > lr ≈ ws) will always split and never move upstream even at small d. In fact, drops
larger than 130 µL never move towards the protuberance without splitting, as shown in a V -d/ws phase diagram in
Fig. 3(a). Based on the geometry of a spherical cap with the contact angle, θi = 49.1o, the width of the smallest drop
(i.e. V = 130− 140 µL) that exhibits no upstream motion can be computed as

w =
2V 1/3

tan (θi/2)

[
6 sin2 (θi/2)

π(2 + cos θi)

]1/3
≈ 11.1− 11.3 mm, (1)

which matches the solid protrusion width, ws = 11.4 mm; this threshold droplet width is also experimentally measured
and validated in Fig. 2(b). However, the exact nature of coupling between the droplet and the reattaching flow remains
the topic of further study.

In order to rationalize the boundaries of the ‘upstream’ regime in Fig. 3(a), we hereby present a reduced 2D model
that identifies the largest droplet that moves upstream at a given distance from the solid. Based on experimental
observations, we assume that a droplet that moves upstream must be placed inside the reattachment zone of length,
lr. As shown in the schematic (Fig. 4(a)), we focus on a droplet of unknown height, h(x), at the critical onset of
motion towards the protuberance. Previously, Durbin computed the shape of a windswept, 2D slender drop at the
critical depinning onset with no solid protrusion, by coupling the droplet dynamics and external pressure based on
potential flow theory [16]. Distinct from the previous analysis, we presently assume that the presence of the droplet
has negligible effects on both the external pressure inside the wake and the reattachment point. This is a reasonable
starting point, given the complexity of the unsteady flow inside the wake that can no longer be modeled as potential
flow.

In the present analysis, the drop’s position relative to the solid inside the reattachment zone is a key input parameter.
In order to ensure that the resultant droplet corresponds to the largest droplet that is completely immersed inside
the reattachment zone, we fix the drop’s trailing edge to match the reattachment point, while its leading edge is at a
distance, df ≥ 0, from the solid (see Fig. 4(a)). Furthermore, the onset of upstream motion is defined in two ways:
case I) The advancing side of the drop forms the maximum contact angle, θa, while the receding edge forms θr; case
II) The drop elongates and reaches the solid (i.e. df = 0) before the receding angle has reached its minimum value.
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FIG. 4: (a) A 2D schematic of a droplet at the critical onset of depinning ‘upstream’ when its trailing edge lies at
the reattaching point. (b) A schematic of forces acting on a differential element of length, dx, inside the drop. (c)
The area of the largest droplet that moves upstream at a given initial distance d/ws is calculated based on a 2D

model in qualitatively agreement with the experiments. Here, the droplet is assumed to move upstream when it is
completely immersed inside the reattachment zone for both case I and II. Two droplet shapes (initial - dash line;

final - solid line) for case I (d/ws = 0.45) and II (d/ws = 0.18) are included. Here the values of the maximum
solid-drop distance, dm ≡ d(area→ 0), and dt, the distance that marks the transition between cases I and II,

correspond to dm/ws ≈ 0.55 and dt/ws ≈ 0.35.

Based on the Young-Laplace equation, the pressure inside the drop, pi, is given by

pi = pext(x)− σ h′′(x)

(1 + h′(x)2)3/2
+ ρwg(h(x)− y), (2)

where ρw denotes the density of water, and pext is the air pressure that interfaces the drop, while σ and g correspond
to the surface tension between water and air and the gravitational acceleration, respectively. Analogous to [16], the
differential momentum balance requires pi to be constant and independent of x, which leads to ∂pi/∂x = 0, or

0 = −σh′′′(x) + ρwgh
′(x) + p′ext(x), (3)

in the limit of small slope approximations. Presently, we use θa = 20o and θi = 17o, which are less than the
experimental values, while θr is kept at 8.2o.

The key characteristics of the wake behind the solid (i.e. lr and U) are incorporated into the model through the
empirical expression for pext, which causes the upstream motion of the drop. As we proceed from downstream of
the solid hemisphere, pext initially decreases until it reaches the center of vortices in the recirculation zone and then
increases again towards the reattachment point [35, 36]. Based on the typical pressure values found behind an obstacle
[35–38], we model pext as a parabolic function of x, of which coefficients are found by allowing pext(x = lr − df) = p∞
and p̂∗ext ≡ 2(pext(x = −df)− p∞)/ρaU

2 = −0.3. Then, the resultant external pressure gradient, p′ext(x), is given by

p′ext(x) =
ρaU

2

2ws

[
â

ws

(
x+ df −

lr
2

)
− p̂∗ext

ws

lr

]
, (4)

where the dimensionless empirical parameter, â, will be presently set to 1, and lr = ws.
Then, the final governing equation becomes

σh′′′ − ρwgh′ +
ρaU

2

2ws

[
1

5
− x

ws
− df
ws

]
= 0. (5)
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FIG. 5: (a)i Two drops of V = 50 µL separated by d < 1.4w: Drops deform asymmetrically with imposing wind (ii),
and the leader drop is observed to depin before the follower drop and merge with it (iii). (b)i-iii Droplets of 50 µL at

d > 1.4w are observed to deform and depin approximately at the same time.

To compute h(x) that corresponds to case I, Eq. (5) is solved subject to the following boundary conditions:

h(0) = 0, h′(0) = tan θa, h′(l) = − tan θr, h(l) = 0,

where the length of the drop is given by l = lr − df . Here, the additional boundary condition is used to compute U
that uniquely satisfies the given parameters. For case II, we set l = lr and replace the third boundary condition with

− tan θi ≤ h′(l) ≤ − tan θr,

as the droplet in case II is assumed to reach the solid before the receding angle has evolved to the minimum value.
Finally, for each droplet considered, we can calculate its initial distance from the solid, d, by solving for the drop’s
initial width, w, based on a circular cap shape with the same area:

d = lr − w = lr − 2 sin θi

√ ∫ l
0
hdx

θi − cos θi sin θi
. (6)

The resultant area-d/ws plot in Fig. 4(c) shows the largest droplet area that will be entrained upstream at a given
initial distance from the solid, in good qualitative agreement with the upstream regime of the V -d/ws phase diagram
(Fig. 3(a)). Comparing with the experimental data, the result for case I captures the relatively steep boundary
between ‘upstream’ and ‘downstream’ regimes for smaller droplets, while case II qualitatively represents the upper
size bound for droplets that fit inside the reattachment zone. Representative droplet profiles for case I (d/ws = 0.45)
and II (d/ws = 0.18) are also included in the insets of Fig. 4(b). In addition, the values of the maximum solid-drop
distance, dm ≡ d(area→ 0), and dt, the transitional distance that connects cases I and II, correspond to dm/ws ≈ 0.55
and dt/ws ≈ 0.35 in Fig. 4(c), which reasonably matches the experimental data in Fig. 3(a).

Different values of lr and p′ext are also incorporated to test the robustness of the present model against empirical
values. Specifically, increasing (or decreasing) the value of lr is observed to increase (or decrease) the size of the
upstream regime in Fig. 4(c), as larger lr signifies that, at given d, a larger droplet can fit within the reattachment
length and move upstream, while the overall shape of the regime remains unchanged (see Fig. 6(a)). Interestingly,
increasing the value of â decreases the value of dt (see Fig. 6(b)), as the stronger pressure gradient, or larger â, ensures
that a droplet of given size can now reach the solid before evolving to θr (i.e. case II) when placed further away from
the solid. However, the overall features of the 2D model remain unchanged by different empirical values used in p′ext;
more details of the sensitivity analysis are now included in Appendix. A.

This depinning problem involves a complex nonlinear 3D droplet subject to an unsteady turbulent wake behind
the solid, and the current 2D droplet model, despite some success, contains a number of significant simplifications
that need to be acknowledged here. One such simplification is the small-slope assumption that must break down
especially near the advancing edge of the drop. In addition, the pressure inside the wake of the solid and the size of
the reattachment zone are assumed to be decoupled from the presence of the droplet and determined completely by
U and the geometry of the solid hemisphere alone; hence, we do not presently consider the case in which the droplet
is only partially immersed inside the attachment zone and must interact directly with the reattaching flow (which
most likely leads to droplet “splitting”). Due to these assumptions, we stress here that the goal of the present 2D
model is to capture the qualitative trend of the experiments by focusing on the key physical ingredients that lead to
the droplet entrainment towards the solid, instead of attempting to quantitatively fit the data.
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The key physical mechanism of the upstream motion of the droplet against wind is the droplet immersion inside
the reattachment zone behind the solid, wherein the pressure is locally lower than the ambient pressure and the drop
remains “shielded” from the wind. In particular, small droplets inside the reattachment region reach the critical
depinning configuration (i.e. formation of θa and θr on the respective edges of the drop), which corresponds to the
boundary between the upstream and downstream regimes for small drops in the V -d/ws phase diagram (Fig. 3(a)).
On the other hand, large drops reach the solid, before forming θr, and yield the boundary between the upstream
and splitting regimes in Fig. 3(a). The similarity in the overall shape of the upstream regime between the 2D model
(Fig. 4(c)) and experiments (Fig. 3(a)) and the robustness of the model against pressure parametrization illustrate
the success of the simple model in capturing the key physical mechanism of the droplet depinning towards the solid.

In summary, when high Re wind blows towards a partially-wetting drop behind a solid hemisphere with diameter,
ws, the droplet exhibits wake-induced behaviors depending on its distance from the solid, d. When the droplet is
placed sufficiently far downstream from the solid (i.e. d > dc ≈ 1.4ws), it depins from the solid substrate and moves
downstream at the same critical wind velocity as its no-protrusion counterpart, Uc0. When the distance decreases
below dc, the effects of drafting first cause the critical depinning velocity, Uc, to increase above Uc0. As d decreases
further, “large” droplets are shown to split, as part of the droplet sits inside the recirculation zone behind the solid
with suction pressure, while “small” drops move upstream towards the solid leader. The small versus large drops here
are determined by their size relative to the recirculation length, lr. By combining the knowledge of wake behind a
rigid body and pinned drop, a simple, 2D droplet model is used to justify the boundaries of the upstream regime in
qualitative agreement with the experiments.

The current study with a fixed solid and a droplet can be easily extended to the case of multiple drops pinned on
a substrate, which is more directly relevant for aircraft icing and heat exchangers. While having a deformable and
moving leader makes the multiple droplet case more complex, preliminary experiments indicate that the depinning
behavior of two small drops (i.e. V = 50 µL) qualitatively matches the results of the current study. For instance,
when the distance between the two drops, d, is less than dc ≈ 1.4w, the leader drop depins before the follower, leading
to the merging of the two drops that move downstream as one unit, as clearly shown in Fig. 5(a)iii. However, for
d > dc (Fig. 5(b)iii), the two equal droplets approximately deform and depin at the same time. If a larger droplet
(i.e. V = 150 µL) is placed upstream of a small drop, the leader drop is observed to reach the follower even for d > dc,
in some cases. Having droplets of different sizes brings more complexity into the set-up.

This study demonstrates that the incorporation of simple boundary layer concepts can inform the surprising and
complex behaviors of a partially wetting drop on a textured surface. While the effect of the wakes generated by moving
bodies has been long studied in the high Re locomotion, it has not yet been considered in the context of droplet
pinning and depinning, which often occurs in the high Re regime in aircraft icing and other industrial applications.
Furthermore, as much as the existing knowledge of the boundary layer can be used to understand the droplet behavior,
simple experiments with droplets can also inform the key characteristics of the boundary layer without the need for
sophisticated flow visualization techniques or measurement tools. The combination of the boundary layer and droplet
dynamics represents a novel way of approaching various problems (e.g. atomized lubrication) that lie at the intersection
of the two fields.

The authors would like to thank E. White and B. Wilson for helpful discussions; they also acknowledge J. de Bryun
for a critical reading of the manuscript. This research was supported in part by NSF (Grant No. CBET-1605947).

Appendix A: sensitivity analysis

The main idea behind the 2D model is that the droplet immersed inside the reattachment zone moves upstream
against wind due to the negative pressure behind the solid protuberance. Therefore, qualitative characteristics of
the upstream regime boundaries must be independent of the specific values of lr and pressure profile inside the
reattachment zone. For instance, the area-d/ws plot is reproduced in Fig. 6(a) with lr/ws set between 0.8 and 1.2,
while â = 1 and p̂∗ext = −0.3. Not surprisingly, increasing and decreasing lr accordingly scales up and down the overall
size of the upstream regime - i.e. larger lr corresponds to a larger droplet that can fit inside the reattachment zone and
be entrained upstream at given d/ws; however, the overall trend remains unchanged. While lr = ws, which effectively
fixes the value of dm/ws at 0.55, increasing the pressure gradient inside the reattachment zone (i.e. increasing â from
0.1 to 10) directly decreases dt and increases the corresponding droplet size, as shown in Fig. 6(b). This indicates that
a given droplet elongates further and reaches the solid (i.e. case II) when placed at larger d, as the negative pressure
gradient to pull the droplet towards the solid becomes stronger. On the other hand, the inset of Fig. 6(b) shows that
decreasing the suction pressure behind the solid, p̂∗ext, from −0.3 to −2 only slightly reduces the upper boundary of



8

  

FIG. 6: The area of the largest droplet that moves upstream at a given initial distance d/ws is calculated based on
the 2D model; the reference case from Fig. 4(c) is reproduced here in solid lines, with lr/ws = 1, â = 1, and

p̂∗ext = −0.3. (a) Changing lr/ws to 1.2 and 0.8 scales up/down the overall size of the upstream regime, while the
qualitative trend remains unchanged. (b) Varying the pressure gradient inside the reattachment zone by increasing â

directly increases dt and the slope of case II, while the value dm is unaffected; the inset of (b) shows that further
decreasing p̂∗ext slightly reduces the droplet sizes that fit case II.

the upstream regime.
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[8] David Quéré, “Wetting and roughness,” Ann. Rev. Mater. Res. 38, 71–99 (2008).
[9] R.J. Kind, M.G. Potapczuk, A. Feo, C. Golia, and A.D. Shah, “Experimental and computational simulation of in-flight

icing phenomena,” Prog. Aero. Sci. 34, 257–345 (1998).
[10] Tuncer Cebeci and Fassi Kafyeke, “Aircraft icing,” Annu. Rev. Fluid Mech. 35, 11–21 (2003).
[11] Isha Ghai, John Wentz, Richard E. DeVor, Shiv G. Kapoor, and Johnson Samuel, “Droplet behavior on a rotating surface

for atomization-based cutting fluid application in micromachining,” J. Manuf. Sci. Eng. 132, 011017–011017 (2010).
[12] Satish G. Kandlikar and Mark E. Steinke, “Contact angles and interface behavior during rapid evaporation of liquid on a

heated surface,” Intl. J. Heat Mass Trans. 45, 3771–3780 (2002).
[13] E. B. Dussan V. and Robert Tao-Ping Chow, “On the ability of drops or bubbles to stick to non-horizontal surfaces of

solids,” J. Fluid Mech. 137, 1–29 (1983).
[14] E. B. Dussan V., “On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. part 2. small drops or

bubbles having contact angles of arbitrary size,” J. Fluid Mech. 151, 1–20 (1985).
[15] P. Dimitrakopoulos, “Deformation of a droplet adhering to a solid surface in shear flow: onset of interfacial sliding,” J.

Fluid Mech. 580, 451–466 (2007).
[16] Paul A. Durbin, “On the wind force needed to dislodge a drop adhered to a surface,” J. Fluid Mech. 196, 205–222 (1988).
[17] P. Dimitrakopoulos and J. J. L. Higdon, “Displacement of fluid droplets from solid surfaces in low-reynolds-number shear

flows,” J. Fluid Mech. 336, 351–378 (1997).
[18] Jose Bico, Francois Besselievre, and Marc Fermigier, “Windswept droplets,” in 58th Annual Meeting of the Division of

Fluid Dynamics (2005).
[19] Kevin Njifenju, Jose Bico, Emmanuelle Andres, and Marc Fermigier, “Windswept droplets,” in 62nd Annual Meeting of

the APS Division of Fluid Dynamics, Vol. 54 (2009).



9

[20] J.A. Schmucker, Ph.D. thesis, Texas A&M University (2012).
[21] M. Acarlar and C. Smith, “A study of hairpin vortices in a laminary boundary layer. part 1. hairpin vortices generated by

a hemisphere protuberance,” J. Fluid Mech. 175, 1–41 (1987).
[22] M. Susan Bloor, “The transition to turbulence in the wake of a circular cylinder,” J. Fluid Mech. 19, 290–304 (1964).
[23] J. H. Gerrard, “The mechanics of the formation region of vortices behind bluff bodies,” J. Fluid Mech. 25, 401–413 (1966).
[24] R. Sluder, L. Gris, and J. Katz, “Aerodynamics of a generic optical turret,” J. Aircraft 45, 1814–1815 (2008).
[25] E. Savory and N. Toy, “Special issue 6th colloquium on industrial aerodynamics building aerodynamics hemisphere and

hemisphere-cylinders in turbulent boundary layers,” J. Wind Eng. Ind. Aerod. 23, 345 – 364 (1986).
[26] J. S. Wu and G. M. Faeth, “Sphere wakes at moderate reynolds numbers in a turbulent environment,” AIAA J. 32, 535–541

(1994).
[27] T. Maxworthy, “Experiments on the flow around a sphere at high reynolds numbers,” J. Appl. Mech. 36, 598–607 (1969).
[28] F. M. Najjar and S. P. Vanka, “Numerical study of a separated-reattaching flow,” Theor. Comp. Fluid Dyn. 5, 291–308

(1993).
[29] Fan Liang-Shih and Katsumi Tsuchiya, Bubble wake dynamics in liquids and liquid-solid suspensions (Butterworth-

Heinemann, 2013).
[30] James E. McDonald, “The shape and aerodynamics of large raindrops,” J. Meteorol. 11, 478–494 (1954).
[31] R. H. Magarvey and Roy L. Bishop, “Wakes in liquidliquid systems,” Phys. Fluids 4, 800–805 (1961).
[32] S. Nogueira, R. G. Sousa, A. M. F. R. Pinto, M. L. Riethmuller, and J. B. L. M. Campos, “Simultaneous piv and pulsed

shadow technique in slug flow: a solution for optical problems,” Exp. Fluids 35, 598–609 (2003).
[33] S. Nogueira, M.L. Riethmuller, J.B.L.M. Campos, and A.M.F.R. Pinto, “Flow patterns in the wake of a taylor bubble

rising through vertical columns of stagnant and flowing newtonian liquids: An experimental study,” Chem. Eng. Sci. 61,
7199 – 7212 (2006).

[34] J. Faramarzi and E. Logan, “Reattachment length behind a single roughness element in turbulent pipe flow,” J. Fluid
Mech. 113, 712–714 (1991).

[35] H. Le, P. Moin, and J. Kim, “Direct numerical simulation of turbulent flow over a backward-facing step,” J. Fluid Mech.
330, 349–374 (1997).

[36] T. A. Johnson and V. C. Patel, “Flow past a sphere up to a reynolds number of 300,” J. Fluid Mech. 378, 19–70 (1999).
[37] H. J. Kim and P. A. Durbin, “Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation,”

Phys. Fluids 31, 3260–3265 (1988).
[38] S. Lee, “A numerical study of the unsteady wake behind a sphere in a uniform flow at moderate reynolds numbers,”

Comput. Fluids 29, 639 – 667 (2000).


