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The computational efficiency of Brownian Dynamics (BD) simulation of the constrained model of a polymeric
chain (bead-rod) with n beads and in presence of hydrodynamic interaction (HI) is reduced to the order
of n2 via a novel algorithm which utilizes the conjugate-gradient (CG) method within a Picard iteration
scheme. Moreover, the utility of the Barnes and Hut (B&H) multipole method in BD simulation of polymeric
solutions in presence of HI, with regard to computational cost, scaling and accuracy, is discussed. Overall,
it is determined that this approach leads to a scaling of O(n1.2). Furthermore, a novel stress algorithm is
developed which accurately captures the transient stress growth in the start-up of flow for the bead-rod model
with HI and excluded volume interaction (EV). Rheological properties of the chains up to n = 350 in the
presence of EV and HI are computed, via the former algorithm. The result depicts qualitative differences
in shear thinning behavior of the polymeric solutions in the intermediate values of the Weissenburg number
(10 < Wi < 300) when compared to ideal chains with HI. Moreover, the reduction of root mean square end
to end distance, re, at high Wi under shear flow is shown to be the consequence of frozen folded state in the
third (neutral) direction for systems with HI and EV. The uniaxial extensional flow of polymeric solutions has
also been investigated and it’s shown that the critical strain rates scales with n1.6 which is also commensurate
with the scaling of the longest relaxation time for systems with HI and EV.

I. INTRODUCTION

Molecular models with constraints are the backbone of
various computational efforts aimed at investigating the
dynamics of individual or assembly of macromolecules,
therefore any improvement in this class of simulation
techniques will not only enable more accurate and ef-
ficient simulation of macromolecules but also will pos-
itively impact closely related problems with holonomic
constraints in classical molecular dynamic,1,2 quantum
chemistry3 and econophysics.4,5 Since consideration of
macromolecules as a chain of uncorrelated segments by
Kuhn, several constrained models of polymeric chain
such as the freely jointed and the freely rotating chains
have been introduced. These models have successfully
predicted equilibrium and near-equilibrium properties of
macromolecules via retarded motion expansion and vari-
ational methods. These findings have in turn facilitated
development of coarse-grained micromechanical models
such as the bead-spring chains as well as continuum level
constitutive equations.6

While theoretical treatment of dynamics of constrained
macromolecular models is mainly performed in general-
ized coordinates, the result is limited to a few rigid seg-
ments (n < 4) or small Peclet numbers(Pe = γ̇ζl2/kT
where γ̇ is the shear rate, ζ is the friction factor and l
is the bead-bead bond length).7–9 Development of robust
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integration techniques10 for stochastic differential equa-
tions along with the steady improvement of computa-
tional resources have enabled dynamic simulation of con-
strained models of longer, or equivalently more flexible,
chains with HI and EV via BD simulation. Meanwhile,
single molecule techniques have provided tools to investi-
gate and perturb semi-flexible chain,11 and recently flex-
ible chain12,13, at the molecular level, which further mo-
tivates development of efficient computational methods.
Specifically, BD algorithms need to go beyond modeling
of approximately 150-200 statistical segments suitable for
semi-flexible chains (e.g. λ-DNA), into algorithms that
are capable of modeling 1000 or more Kuhn steps in order
to examine dynamics of flexible polymers such as single
stranded DNA.

Temporal evolution of segmental position of bead-
spring chains can be performed via the well-known sweep-
ing or semi-implicit algorithms; however, in the bead-rod
model, in order to impose the constraint equations, a
set of Lagrangian multipliers must be found via solution
of a non-linear set of equations. For free draining (FD)
chains, i.e., no HI, this is typically done by the well known
Picard or Newton-Raphson algorithms,14 via formation
of a tri-diagonal coefficient matrix. Since the computa-
tional cost scales with O(n), for n beads, the only obsta-
cle to simulate chains with large n is the longest relax-
ation time of the chain which scales with O(n≈2) and this
translate to O(n3) scaling in computational cost as de-
gree of polymerization increases. Proper implementation
of various parallelization platforms allows simulation of
O(103) beads,15 within reasonable computational time.
However, in the presence of HI the aforementioned coef-
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ficient matrix is dense, and in order to take advantage of
the multipole or CG methods, it has to be rewritten as
an operation between a set of known vectors rather than
matrix-vector products. This immediately rules out use
of any second order method such as the Newton-Raphson
method. This problem can be eliminated by including
an iterative CG method based on the Krylov subspace
within a Picard algorithm. As shown below, this com-
bination significantly improves the performance of BD
simulation of the bead-rod model with HI and reduces
the scaling exponent from 3 to 2.

Also in presence of HI, the inherent O(n3) cost of com-
monly used Cholesky decomposition technique to find
the correct weighting matrix of the random forces (also
known as the correlation tensor) from the diffusion ten-
sor is the major obstacle to reduce the scaling exponent
of computational cost of the BD simulation. To this
end, several techniques such as the Chebyshev polyno-
mial expansion have been introduced, in order to effec-
tively reduce the computational cost to O(n2.25) for long
chains16–18. More importantly, fast multipole methods
(FMM) have recently been developed by Liang et al.19

that allow O(n log n) scaling.

In this study, we have utilized the Barnes and Hut
(B&H) method20 that also gives rise to O(n log n) for
the formation of the mobility matrix. It should also be
noted that the B&H method is preferred to the FMM in
this case since it can be modified to ensure fulfillment of
Newton’s third law of motion,21 which ensures accurate
scaling of diffusion and other dynamic properties. Fur-
thermore, in our method the correlation tensor is con-
structed via the Krylov subspace method to reduce the
computational cost for inclusion of HI.18,22

Overall, in this study we have developed three main al-
gorithms in presence of HI and EV: 1)a combined Picard-
Conjugate Gradient (CG) method with O(n2) scaling
2)an implementation of the B&H multipole method
within the Picard-CG iteration technique to yield a scal-
ing of O(n1.25) and 3)a stress calculation algorithm that
allows accurate computation of polymer contribution to
the stress tensor at steady state but more importantly,
under transient conditions. Specifically, the polymeric
stress is decomposed into contributions from each force
within the framework developed by Morse23. Further,
the aforementioned techniques are utilized in order to
examine the non-equilibrium behavior (diffusion, shear
and extensional flow) of polymeric solutions in presence
of HI and EV.

Petera and Muthukumar24 have explored the steady
state material functions of dilute polymeric solutions
with the bead-rod model with inclusion of HI and EV
for small chains (n < 20 ) under shear flow. Their re-
sults depict that HI has three effects on the shear prop-
erties of polymeric solution. First, the absolute value of
shear thinning slope decreases. Second, the viscosity is
lowered at small shear rates when compared to the FD
chain with EV. Third, the first normal stress coefficient
(ψ1) is smaller than the FD chain at low shear rates and

larger after a critical shear rate of O(100) bead diffusion
time. Utilizing the same bead-rod model, Liu, Ashok,
and Muthukumar25 studied macromolecular dynamics in
elongation flow of a dilute polymeric solution and found
that at the coil-stretch transition ėc ∼ n−α; for n ≤ 60
and α = 1.4. Their prediction is in good quantitative
agreement with experimental measurements, i.e., 1.5, ir-
respective of the solvent quality. Neelov et al.26 found the
scaling exponent α = 1.55 with HI (n < 100 ) and 1.96
for the FD case. Sim, Khomami, and Sureshkumar27 em-
ployed the bead-rod model to investigate scission due to
segmental tension (n < 150) and showed that ėc ∼ n−2

with no HI and ėc ∼ n−1.7 with HI and EV. This differ-
ence is contributed to the fact that HI effectively shields
the inner beads from bulk flow and increases the time re-
quired for coil-stretch transition at ėc.

28 It has also been
shown29 that translational diffusivity of the polymeric
chain in dilute solution scales as ∼ n−0.579.This predic-
tion is in good agreement with other simulation and the
experimental observations, D ∼ nb

−0.55<γ<−0.68, as dis-
cussed in more details in the next section.

II. THEORY OF CONSTRAINED BROWNIAN MOTION

In this sections, first the aforementioned three new al-
gorithms are introduced. Subsequently, in the result and
discussion section, both shear thinning and coil stretch
transition are discussed for chains of length n = 100 and
n = 350 in presence of HI and EV.

A. Problem formulation

The contour length of the polymeric chain (l) is divided
into ns segments with fixed length (lo), each represent-
ing the equilibrium Kuhn length of a free rotating chains
with no intramolecular interactions. Mathematically, the
fixed Kuhn length can be shown as a set of ns constraints:
C({R}) = |Rν,ν+1|−1 = 0 where Rµ,ν ≡ Rµ − Rν and
Ri is the position vector of bead i. The phase-space tra-
jectory evolution of 2ns − 1 degrees of freedom of such
chain can be expressed via a stochastic differential equa-
tion subject to a set of constraints for the Kuhn length:

∆R/dt = P·(V s + κ ·R+ Y · F )+kT
∂

∂R
·(P ·Y · P) (1)

where P is the dynamical projection tensor and Y is the
Rotne-Prager-Yamakawa (RPY) mobility tensor. R is
the vector of 3nb bead positions subjected to the solvent
flow field with the velocity gradient (3×3 block diagonal)
tensor of rank 3ns, ¯̄κ, and uniform velocity V s at the bead
center. Vector F in Eq. 1 is the sum of the random force,
metric force and the conservative force resulting from the
inter-bead potential.

The random force is constructed as F (r) =
√

2kT/dtζ ·
B · W , where ζ is the Cartesian friction tensor, W is
the vector of random numbers with variance of one and
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mean of zero, and B is found via the Krylov subspace
method18 such that Y=B ·B. The metric force is defined
as F (m) = kT

2
∂
∂R ln[det(Ĝ)], where Ĝ = 1

mN · N† and

Ni
µ = ∂ci

∂Rµ is the vector normal to the constraint surface.
Calculation of the metric force is facilitated using the fol-

lowing identity: F (m) = kT
2

∂
∂R ln[det(Ĝ)] = kT

2 Ĝ
−1

:∂
ˆG

∂R
which allows utilization of the bidiagonal nature of N
(See Appendix C). Finally, the inter-bead potential is
limited to the hard sphere potential, hence the con-
servative force is given by F (hs) = ∂

∂RΦ(|Rνµ|) where

Φ(r) = 4ε
[(
σ
r

)12 −
(
σ
r

)6]
for r < 2(1/6)σ = a and

zero otherwise. In this study, the value of a = 0.9
and ε =

√
dt since this combination is shown to cap-

ture the correct force-extension curve15. In the following
discussion, equations are nondimensoinalized as follows:
lo serves as the characteristic length scale, the character-
istic time scale is the bead diffusion time ζlo

2/kBT and
forces are made dimensionless with kBT/lo.

B. Numerical algorithm

In formulating the numerical algorithm, we take ad-
vantage of the fact that it is not necessary to form the
projection matrix in Eq.1 explicitly; instead, a two step
algorithm with an Ito unconstrained move followed by
a Stratonovich corrector step will reproduce the SDE in
Eq.1. The Predictor step evolves the bead position vector
(R(t)) to R̃, with the velocity equal to that of the terms
inside the parenthesis in the first term of the right hand
side of Eq.1, with all the chain configuration dependent
terms calculated at time t. As noted earlier, the CPU
intensive part of the algorithm for evolution of bead po-
sitions is associated with determination of the Lagrange
multipliers from the following set of non-linear coupled
equations (for 0 < µ < n):[

R∗µ+1 + Yµ+1 · F (c)δt−R∗µ − Yµ · F (c)δt
]2

= 1 (2)

Both Y and N terms are calculated at R∗ = (R(t) +

R̃)/2, so that R(t + dt) = R̃ + Y · N · Λ = R̃ + F (c)dt,
where Λ is the vector of the ns Lagrange multipliers, and
in the right hand side expression F (c) is the constraint
force. The new numerical iteration scheme reduces the
computational cost of this step to the order of calculation
of the RPY kernel (see Eq.4) on the force vector, instead
of the typical O(n3) scaling required to solve the dense
ns non-linear system of equation that arises from the en-
forcement of the constraints in the corrector step. While
utilizing the straight forward diffusion matrix formation
and performing the Y · F matrix-vector multiplication
which results in an O(n≈2

s ) algorithm, the flexibility of
the aforementioned numerical algorithm allows for incor-
poration of multipole methods. Specifically, the B&H
tree method can be exploited as described in the next
section in an attempt to attain the n log(n) theoretical
scaling.

The coupled system of equations to determine the Λ
vector for the segment i is found from the following equa-
tion:

2
(

Ũ · S ·Y · S† ·U · Λ
)
i,i

= 1−
(

S ·Y · S† ·U · Λ
)
i,i

(
S ·Y · S† ·U · Λ

)
i,i
−Ũi,iŨi,i

(3)

Both U and Ũ are 3n×ns and S, the Grand Rouse matrix,
is 3ns × 3nb.

The solution algorithm is summarized in algorithm 1
of the supplemental material section I. The next step of
the corrector step, involves utilization of the CG method

for solving the linear system
(

Ũ · S ·Y · S† ·U
)

(see algo-

rithm 2 in the supplemental material section I). In both
steps, the matrix-vector kernel can be performed by a
suitable routine, i.e., direct or B&H method depending
on the system size as discussed in the next section.

C. Application of the B&H method in constrained BD

The 3 × 3 blocks of the RPY HI tensor of the bead-
rod model of a macromolecule, nondimensionalized with
kT/ζ, can be written as:

(4)Ωij =
3a

4|Rij |

[(
1 + 2a2

3|Rij |2

)
ι+
(

1− 2a2

|Rij |2

)
RijRij
|Rij |2

]
|Rij |≥ 2a[(

1− 9|Rij |
32a

)
ι+
(

3
32a|Rij |

)
RijRij

]
|Rij |< 2a

where a is the hydrodynamic radius which is set to 0.9
for all chains with HI in this study. The matrix-vector
kernel is then:

V=Ω · F,

where V is the perturbation velocity due to HI, Ω is the
hydrodynamic tensor and F is the force vector on the
particles that creates the velocity perturbation (source
particles). The aforementioned equations can be rewrit-
ten for the RPY matrix at distances greater than the
bead diameter (α ∈ {x, y, z} and rij ≡ |Rij | ):

Vα,i =
∑
j 6=i

(
c1

1

rij
Fj,α + c2

1

r3
ij

Fj,α

)

+
∑
j 6=i

(
c1
Rij ,α (Rij · Fj)

r3
ij

− c2
3Rij,α (Rij · Fj)

r5
ij

)
,

with c1 ≡ 3a/4 and c2 ≡ a3/2 . Substituting Rij in the
above equation:

Vα,i =
∑
j 6=i

(
c1

1

rij
Fj,α + c2

1

r3
ij

Fj,α

)

+
∑
j 6=i

(
c1

(Ri −Rj)γRij,αFj,γ
r3
ij

− c2
3(Ri −Rj)γRij,αFj,γ

r5
ij

)



4

The last two terms can be expanded to yield:

Vα,i = c1
∑
j 6=i

1

rij
Fj,α + c2

∑
j 6=i

1

r3
ij

Fj,α

−c1ri,γ
∑
j 6=i

d

drα

(
Fj,γ
rij

)
+ c2ri,γ

∑
j 6=i

d

drα

(
Fj,γ
r3
ij

)

+c1
∑
j 6=i

d

drα

(
rj,γFj,γ

rij

)
− c2

∑
j 6=i

d

drα

(
rj,γFj,γ

r3
ij

)
(5)

(6)
Vα,i = c1φ1/r,α,i + c2φ1/r3,α,i − c1ψ1/r,α,i

+ c2ψ1/r3,α,i + c1χ1/r,α,i − c2χ1/r3,α,i

Eq. 6 defines φ(F,R), ψ(F,R) and χ(F,R). Both φ
and ψ can be constructed from the same multipole mo-
ments and sources, therefore significantly reducing the
associated computational overhead as demonstrated be-
low. The χ terms also share the same multipole moments,
i.e., rj,γFj,γ , so they are efficiently merged into a common
tree formation (built up) and force calculation routine.

Consider the above potential at Rij = Ri−Rj = Ri−
Rc,m + (Rc,m −Rj), where Rc,m is center of force of m
particles:

Rij = Ri,c + δRc,m

R = Ri,c ≡ Ri −Rc,m

δR = δRc,j ≡ (Rc,m −Rj)

Note that R is only a function of the jth particle position
and not each individual source particle; hence it can be
factored out of the sum. A Taylor expansion of the kernel,

fα,i(R+ δR) =

N∑
j

[
fα,i(R) +

∂fα,i(ri)

∂ri
|R

· δRc,j +
1

2
δR · ∂

2fα,i(ri)

∂ri∂ri
|R · δRc,j

]
allows each term on the RHS of Eq. 6 to be determined
(see Appendix B).

1. B&H method in BD: summary of implementation

The classical implementation of the B&H method
starts by hierarchical division of the simulation box (tree)
into sub-spaces (tree branches) until every source point
is assigned to one and only one sub-space (leaf). In 2-
dimension for instance, the first division of the two di-
mensional box-square leads to four squares with sides half
the size of the original square (quad-trees), in turn each is
divided into 4 smaller squares. Each branch has a center
of force and the center of force of the leaves are indeed
the position vector of the beads. Under certain condition,

namely, the θ condition is met (see below for details), the
HI between the cluster of beads in a sub-space will not
sum over every individual particle in the sub-space, but
it is estimated indirectly through the multipole compo-
nents of that specific box. The aforementioned condition
is determined by a preset value of θ: for each particle i
and box with center of force rcm and the length of the

box edge, lbox, if θ <
lbox
ri,cm

then the multipole effects are

considered, otherwise one should move one level down
the tree and consider the branches (children) of the orig-
inal box. In the case of HI in BD simulation, considera-
tion of the following four essential conditions in the code
results in significant enhancement of the computational
efficiency. First, in the corrector step bead positions are
not changed, hence, in the subsequent Picard iterations
it is not required to update the tree. Second, considering
the number of CPU operations required to estimate the
RHS of Eq. 6 for any branch with less than 3 beads, HI
is calculated directly from each bead. Third, the direct
interactions amongst all bead pairs can be summarized
in the grand sparse mobility tensor of rank 3n, which is
also unchanged during the corrector step. Finally, the
indirect multipole interactions are also summarized in a
tensorial format, which should be recalculated in each
iteration. This last step, is the most time consuming
step of the B&H method for implementation of HI in the
bead-rod BD simulations; future efforts should especially
target enhancing the efficiency of this step.

D. Stress calculation

While formulation of stress tensor in terms of force
vector and conformation tensor is readily available for
dilute polymeric solution models both with and with-
out HI6,10,30; the existing algorithms for estimation of
the transient stress tensor for dilute polymeric systems
described with micromechanical models with constrains
is limited to the case with no HI.27 Although the ex-
isting algorithms discuss the various methods for noise
reduction either via Stratonovich method, with sepa-
ration of Brownian and viscous contribution,31 or Ito
formulation,32 there are no established algorithm that al-
lows accurate determination of the transient stress for the
bead-rod description of dilute polymeric solution in pres-
ence of HI due to the relatively large error associated with
the stochastic force, especially at small Wi = Peλ∆.27A
summary of stress algorithms can be found in the excel-
lent review by Morse.23 Our proposed algorithm decom-
poses the stress into deterministic and stochastic portions
using the projection matrix; this also allows determina-
tion of the contribution of each deterministic force such
as the metric force or potentials individually. Hence, in
the transient regime, due to this novel noise reduction
technique, this method produces accurate results with
limited number of trajectories.
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1. Stress calculation: summary of implementation

In order to find the noise reduced stress, it is neces-
sary to decompose the tensions (constraint forces, i.e.,
F (c)) into a stochastic and deterministic part. In the

Öttinger30 algorithm the total drift velocity in terms of
all forces is determined as:

dR/dt = Y ·
(
F (r) + F (f) + F (φ) + F (e)

)
+ Ỹ · Ñ ·Λ (7)

, where N ≡ ∇rC.
The total drift velocity must occur adjacent to the hy-

per surface defined by the constraints:

N ·∆R = 0

= N ·
[
Y ·
(
F (r) +F (f) +F (φ) +F (e)

)
+Y∗ ·N∗† ·Λ

]
For a linear chain this condition clearly can be rewrit-

ten as −2Ui · dRi−1 + 2Ui.dRi = 0 with Ui = Ri −Ri−1.
This in turn can be rewritten as 2Ui · dUi = dU2

i = 0 or
constant bond length if N is calculated at the end of each
time step. The tension values then will be given by:

[N ·Y* ·N∗†]
−1
·N ·Y ·

(
F (r) +F (f) +F (φ) +F (e)

)
= Λ

= Λ(r) + Λ(f) + Λ(φ) + Λ(e)

Each tension term on the RHS is defined correspond-
ing to the decomposition of total force on the LHS,
respectively. The stochastic and deterministic portion
of the constraint forces are then easily defined via the
following expressions, F (c,r) = n∗† · Λ(r) and F (c,d) =
n∗† ·

(
Λ(f) + Λ(φ) + Λ(e)

)
. The deterministic drift veloc-

ity due to each of the forces is simply found from: Y ·F .
For the RPY HI tensor with no external forces, the poly-
mer contribution to the stress tensor can be found from:

¯̄τ =
∑

Rµζ̃ · (Ṽµ − V s − κ ·R) + kT (tr(P)− ι) (8)

where ζ̃ is the modified effective friction tensor
as defined in equation (5.4) of Öttinger30 and

P = I-[N ·Y∗ ·N∗†]−1 · Y∗ is the projection tensor cor-
responding to the numerical midpoint algorithm.

III. RESULT AND DISCUSSION

To determine the relative computational efficiency of
each algorithm as function of the number of beads in a
given chain in a dilute solution, the relative performance,
computational cost and accuracy of the B&H method
versus the direct formation of the mobility tensor is dis-
cussed first. In turn, the efficiency of the estimation
of the correlation tensor of the stochastic force via the
Krylov subspace method and the Cholesky decomposi-
tion of the mobility tensor is considered.

The computational efficiency of the proposed Picard-
CG in the corrector step , in which the constraint forces
are calculated, is compared with the näıve matrix inver-
sion known to require O(n3) operations.
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FIG. 1. (a) Simulation of a single chain trajectory at equilib-
rium. (b) The relative performance of algorithms in terms of
wall clock time (sec.) per one step. (c) The corrector com-
putational time and the scaling factor in the B&H method
are both reduced by increasing the θ criterion from 0.4 to 0.5.
Terms until the first dipole are considered in obtaining the
above results. (d) The scaling of the computational cost of
each method. Elapsed time is normalized by the time required
by each method for n=400.

A. Accuracy and performance of the B&H method

In order to determine the accuracy of the B&H
method, a single chain trajectory obtained via this
method is compared with the trajectory obtained from
the direct formation of the RPY HI tensor. As shown in
Fig. 1-a; the two trajectories almost exactly follow the
same path and there is no error accumulation for a chain
with 25 beads. Moreover, the random error falls within
a few percentage of the observable value. Comparison of
the decomposition times, for a wide range of n, reveals
that the direct formation of mobility tensor with Krylov
subspace method is the most efficient method for a wide
range of practical chain sizes, while the B&H method be-
comes the more efficient method at about n∗ ≈ 12000 (n∗

is the number of beads in the system at which the B&H
method outpaces the direct Krylov method). The correc-
tor step CPU time shows a similar trend (see Fig. 1-c); As
expected, the parameter θ , which determines the thresh-
old of substitution of the multipole effect of the source
instead of the direct effect, reduces n∗. The theoretical
computational cost of the code using the näıve method
(Cholesky decomposition) is O(n3) for large n, however
the scaling exponent of the elapsed time vs. the number
of beads is about 1.25 for the B&H method, compared to
the value of 2 for the direct method utilizing the Krylov
subspace technique. Both B&H and direct method are
implemented in the Picard-CG algorithm.

Three important factor should be considered in inter-
preting the aforementioned results. First, the bottle-
neck of calculation within both decomposition and cor-
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rector steps is the matrix-vector multiplication. In case of
the direct method, all multiplications are performed via
the highly optimized Intel MKL library, while the B&H
method relies on the inferior optimization offered by the
authors. The B&H implementation should be around 4
times faster than its current version in order to surpass
the Direct-Krylov method for a chain of n = 1000. It is
highly likely that a tailor-made code targeted for an op-
timized B&H method could further reduce the n∗ value.
Next, the timings reported here are estimated from a
single chain at equilibrium. The equilibrium condition in
which the chain bead-to-bead distance distribution fol-
lows the Gaussian distribution constitutes an unfavorable
condition for the B&H method compared to a uniform
distribution or a stretched chain under flow. Moreover,
in the semi-dilute regime where several chains are present
in the simulation box, the B&H method gains a signif-
icant advantage. Specifically, in the semi-dilute regime,
where distances between chains center of mass are rela-
tively long, i.e., existence of favorable θ values, the mul-
tipole effect of the neighboring chain replaces the many
contributions from individual bead-bead interactions.

The long-time limit (t > λ) of the translational dif-
fusion coefficient of the center of mass of the chain (D)
follows theoretically determined power law scaling with
the size of the chain. For the free-draining Gaussian chain
D ∼ n−1.0, while for a Zimm model, HI enhances the dif-
fusion so that D ∼ n−3/5. The corresponding value from
the simulation:

D ∼ 1

nt
limt→∞

(〈∑
rij(t)

〉
−

〈∑
rij(0)

〉)
of each chain type, is shown in Fig.2. The ideal (no EV)
and real (with EV) free-draining chains scaling agrees
well with the theoretical predictions of the Rouse model.
For the chain with HI, both in Θ- and good-solvent, the
scaling exponent is in good agreement with theory and
experiment.33

The longest relaxation time of the polymer chain was
found via Birefringence value as described by Doyle,
Shaqfeh, and Gast.31 Similar values obtained via an ex-
ponential fit to the last 10% of the conformational re-
laxation of the fully-extended chains are also shown in
Table I; however, in order to rescale the Pe to Wi, the
former values where utilized (λ = λ∆). Closer examina-
tion of the relaxation plot of re reveals two regimes of re-
laxation spectrum: at high extension (x = (r · r)0.5

/n >
0.6) the relaxation is influenced by HI; therefore, irrespec-
tive of the EV interactions, chains with HI demonstrate
similar relaxation behavior. On the other hand, below
x = 0.5, (see Fig.3) the EV interaction dominates the
relaxation behavior, consequently, the relaxation process
slows down and the scaling exponent of the longest re-
laxation time with the molecular weight increases from
2.0 (for ideal FD chain) to 2.2 (for chains with EV but
no HI). Moreover, as seen in Fig. 3, the pairs with the
EV , i.e., real free draining and with HI in good-solvent,
follow a similar slope, while the (ideal free draining and

FIG. 2. Scaling of the translational diffusion coefficient of the
chain center of mass. HI significantly increases the diffusion
coefficient and EV effect on the scaling is only significant in
presence of HI.

TABLE I. Longest relaxation time of bead rod chains ob-
tained via birefringence and re relaxation of fully extended
chains from BD simulation.

Ideal FD Real FD HI Θ-solvent HI Good-solvent
n ∆ re ∆ re ∆ re ∆ re
49 43 38 56 61 15 22 19 32
99 162 198 266 362 43.8 66 60 114
199 595 904 1145 1569 119 197 172 265
349 1783 2600 3984 5410 230 - 420 -

with HI in a Θ-solvent) curves are parallel to each other.
This leads to the conclusion that below x = 0.5 the re-
laxation process is greatly influenced by EV effects. It
should be noted that the extension at which the transi-
tion between these two regimes occurs is roughly equal
to the extension at which the Langevin and the force law
for real chains intercept.15

100 200 300 400
10

100

1000
2.2

1.6

 

 Ideal Free Draining
 Real  Free Draining
 HI in Θ-solvent
 HI in Good solvent

λ ∆

n

2.0

1.4

FIG. 3. Scaling of the longest relaxation time (left). Relax-
ation plot of the end-to-end distance (right). The dotted line
qualitatively separates the two regions.
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FIG. 4. Transient rheological properties of the chain with HI
in a good solvent (n = 350) for the start-up of a shear flow.
The legend is the (Pe;Wi) pair.

B. Shear flow: transient and steady state properties

In order to test the proposed stress estimation algo-
rithm, the rheological properties of macromolecules in
a good solvent in presence of HI are examined. The
contribution of the polymer chain to the stress tensor
is calculated for both shear flow and uniaxial extension
flow kinematics over a broad range of Wi for chains with
n = 100 and n = 350. The ensemble size is set to 256
chains (due to parallel implementation, size of the ensem-
ble does not affect the simulation time). The latter chain
is at least twice the size of the largest chain considered in
the literature; hence, the results should provide a better
estimate of the effect of EV, i.e., closer to the long chain
limit also referred to as universal behavior.15

The transient viscosity (η+) and first normal stress co-
efficient (ψ+) for start-up of shear flow are shown in Fig. 4
and Fig. 5 for an ensemble of 256 chains. The overshoot
of first normal stress coefficient, for Wi > 10, occurs at
about 10-30 strain units (Fig. 4a and Fig. 5a). The mag-
nitude of the overshoot ψ+

max ∼ Wi−0.635. In the case
of transient viscosity, the maximum occurs at slightly
smaller Henky strain, and more importantly, at large Wi
it is followed by a minima before it plateaus at the steady
state level. Although the maxima is well characterized by
the Henky strain and it is in exact agreement with ex-
perimental observation of start-up of DNA solutions,34

the minima in the shear viscosity shifts to higher Henky
stresses as Wi increases. The magnitude of the maxi-
mum shear viscosity contribution of the polymer in the
range shown in Fig. 4b follows η+

max ∼Wi0.266. For ideal
free draining chain this exponent is 0.4-0.45. The over-
shoot and oscillatory behavior of the shear stress com-
ponents also appears in the conformational relaxation of
the polymeric chain35. However as shown in Fig. 6a,
the overshoot in re as a measure of chain conforma-
tion is out of phase when compared to the overshoot of
the stress, which consistently occurs around 10-30 strain
units (10 < γmax < 30). This phase shift between confor-
mation and stress results in an oscillatory behavior that
extends beyond the longest relaxation time, and the fre-
quency of the oscillation increases with Wi as shown in
Fig. 6b.

FIG. 5. Transient rheological properties of chain with HI in
a good solvent (n = 100) subjected to start-up of shear flow.
The Wi for each data set is shown in the legend.

0 . 1 1 1 0 1 0 0 1 0 0 0
0 . 1

0 . 2

0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
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 0 . 0 0 3 ;  1 . 2 6
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FIG. 6. Transient conformational properties of chain with HI
in a good-solvent (n = 350) for start-up of shear flow. The
Wi for each data set is shown in the legend. The left figure
illustrates the oscillatory behavior which continues over cou-
ple of relaxation times and on the right, wide variations of the
strain at the overshoot γmax with flow strength is depicted.

EV and HI also affect the shear-thinning behavior of
the rheological properties. In general, our results indicate
that the shear-thinning behavior for both shear viscosity
(η) and first normal stress coefficient (ψ1) at high Wi
is close to the estimates of Doyle, Shaqfeh, and Gast31,
i.e., ψ ∼ Wi−14/11). However in the intermediate Wi
the absolute value of the power law exponent is smaller,

and the exponent is not fixed at −4/3 (ψ ∼ Wi−4/3),
irrespective of HI and EV as it was concluded earlier
for n < 150.36 In the case of shear viscosity, Petera
and Muthukumar24 attained a power-law exponent of ap-
proximately -0.5 (η ∼Wi−0.5 ) in the presence of HI and
EV for shorter chains (n < 20), which is similar to the
exponent of free-draining chain,31,37 while Hur, Shaqfeh,
and Larson38 found a scaling of -0.257 from bead-spring
simulations.39 Fig. 7 demonstrates the shear thinning
properties of dilute solution of polymers in a good solvent
calculated in this work for both n = 100 and n = 350.
As expected, both chains demonstrate power-low behav-
ior. For n = 100 a single exponent of −0.28 fits the
region of 10 < Wi while for the longer chain (n = 350),
the shear thinning exponents is −0.4315 in the region
30 < Wi < 1000 and the −0.28 exponent is only found
for 1000 < Wi. In the case of n = 350 the pronounced
non-linear region in the log-log plot 0.8 < Wi < 4 cor-
responds to the non-linear F-X regime of the initial lin-
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(a) Shear viscosity (b) First normal stress coefficient

FIG. 7. Steady-state scaling of shear rheology for a dilute
solution of chains in a good solvent with HI. After the initial
low shear rate plateau, longer chain show at last two regimes
of shear thinning as discussed in the text.

ear extension of polymeric chain. This initial regime for
small Wi also appears in the scaling of the first nor-
mal stress coefficient (ψ1) with a smaller absolute power-
law exponent. While in the first shear-thinning regime
(as depicted in Fig. 7b) ψ ∼ Wi−1.13, in the second
regime ψ ∼ Wi−1.4. Although a similar trend exists for
n = 100, the difference between two exponents is smaller
(-1.09 and -1.14 for the second regime), these results are
consistent with the smaller non-linear effects of EV for
n = 100.15

Recent investigation of conformational properties of
polymeric chain subject to HI and EV modeled as stiff
Fraenkel springs have revealed a second region in the
chain extension due to the shear flow in which the chain
extension decreases as Wi increases.40,41 This effect is
captured in the bead-rod model presented in this research
as well (Fig.8). It has been demonstrated that the shear
plateau at x ≈ 0.5 is due to the tumbling effect. Specifi-
cally, Dalal, Hoda, and Larson41,42 have recently argued
that reduced tumbling time (partial tumbling) of chain
segments is the main mechanism that gives rise to chain
shrinkage at very high Wi. However, the tumbling time
for chains with no HI (free draining) scales similarly with
Pe irrespective of EV despite the clear qualitative differ-
ence behavior of re variation at high Wi (See Fig. 8b).
In order to describe this qualitative difference for chains
without HI, it was argued that chains with EV are locked
in a fully extended state.

An alternative explanation for the shrinkage observed
in the aforementioned region is the existence of meta-
stable folded conformations. The meta-stable folded con-
formations occur at high shear rates when a small por-
tion of the chain that is folded on itself is frozen due to
the strong aligning shear flow. For instance, in a chain
with 100 segments dynamic existence of a small folded
region with length 2 (total of 5 beads) can decrease re by
10%. Based on this hypothesis, an interaction that in-
creases the possibility of such folds will result in a more
pronounce shrinkage regime of re. In other words, the
dynamic equilibrium between extended and folded state
is shifted in favor of the folded states. For instance, HI

1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4
0 . 0 1

0 . 1
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 / n
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r e / 
(n-

1)

W i

FIG. 8. Variation of the root mean squared end-to-end dis-
tance with Wi in shear flow. The plot on left demonstrates
three distinct regimes of re(Wi) − re(0). On the right, re is
shown for ideal and real free draining chain and also chain
only with HI and no EV interaction.

as a overall cohesive potential will significantly enhance
shrinkage of re as shown in Fig. 8b. In the absence of
EV, HI results in chain conformation with beads that
are unrealistically close together; the velocity of these
two beads with small distance is strongly correlated due
to the large coefficient of the HI tensor where other forces
are relatively small. Hence, their translational degrees of
freedom will be highly correlated. This results in a per-
manent folded region. On the other hand, repulsive po-
tentials such as EV reduce the possibility of folded states
and suppress the shrinkage of re. For chains with EV
and no HI, formation of meta-stable folds is less likely
since the strong velocity gradient in the second direction
, i.e., direction of shear, will convect the beads away from
each other. When both HI and EV are present, adjacent
beads in a folded configuration can move into the neutral
direction (~z) and create a fold in xz-plane. Detailed in-
spection of diagonal components of the radius of gyration
reveals that when rg,y → 1 then rg,z → 2 , this is equiv-
alent to thickness of two beads, and stays constant as
Wi increases (Fig. 9). Meanwhile, the τzz component of
stress tensor increases, although the second normal stress
coefficient stays close to zero, as demonstrated in Fig. 9c.

C. Uniaxial flow : coil-stretch transition

The uniaxial flow kinematics, such as the flow in fila-
ment stretching rheometer, include the interesting coil to
stretch transition feature. Indeed, such effect is also ob-
served in our BD flow simulations; as shown in Fig. 10a
the coil-stretch transition approaches a first order transi-
tion as the number of segments increases. However, the
critical Wi remains constant at ≈ 0.5. This suggests that
the critical strain rate scales as n1.6 for the chain in good
solvent which is in good agreement with the experimental
observation27.
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FIG. 9. Diagonal components of the (a) radius of gyration
tensor and (b) the corresponding stress tensor components
(chains with HI and EV). Despite the growth of diagonal
components of the stress in velocity gradient and neutral di-
rection, the second normal stress coefficient remains approxi-
mately zero (c).
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FIG. 10. The elongational viscosity (right) and coil to stretch
transition for dilute polymeric solution subject to uniaxial
flow kinematics

IV. SUMMARY

In summary, a new method for BD simulation of bead-
rod model of dilute macromolecular solutions with HI is
developed, which reduces the computational cost scaling
to n≈2. Incorporating the B&H based method reduces
the scaling exponent of the computational cost further
(to n1.2). While the B&H method for dilute solutions
at equilibrium is not superior to the Picard-CG direct
method (except for n > 10000), its optimized application
for the semi-dilute solutions should produce the theoret-
ical n log(n) scaling and reduce the cross-over threshold
to a smaller value of n.

Furthermore, a new algorithm for estimation of the
stress tensor has been deployed to study transient rhe-

ological properties in shear and uniaxial flows. In the
shear flow, consistent with the effect of EV on the force-
extension curves,15 at least two shear thinning regimes
for shear rheological properties were observed. More-
over, close inspection of radius of gyration tensor and
stress tensor components under shear flow and high Wi
reveal existence of frozen states due to folds in the neu-
tral (third) direction. It is also shown that the coil-
stretch transition generated by uniaxial existential flow
approaches a first order transition as n is increased and
the critical strain rate scales with n1.6.
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Appendix A: Picard+CG algorithm

Please see section I in supplemental material.

Appendix B: Computationally efficient multipole expansion
of RPY

Please see section II in supplemental material.

Appendix C: The Metric force formulation

Please see section III in supplemental material.
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5J. Janovà, “Applications of a constrained mechanics methodology
in economics,” European Journal of Physics 32, 1443 (2011).

6R. B. Bird, C. Curtiss, R. Armstrong, and O. Hassager, Dy-
namics of Polymeric Liquids, 2 Volume Set (Wiley-Interscience,
1996).

7H. A. Kramers, “The behavior of macromolecules in inhomoge-
neous flow,” The Journal of Chemical Physics 14, 415 (1946).

8J. G. Kirkwood and J. Riseman, “The intrinsic viscosities and
diffusion constants of flexible macromolecules in solution,” The
Journal of Chemical Physics 16, 565 (1948).



10

9O. Hassager, “Kinetic theory and rheology of bead-rod models for
macromolecular solutions. i. equilibrium and steady flow proper-
ties,” The Journal of Chemical Physics 60, 2111–2124 (1974).
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