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Abstract

This work uses the Mori-Zwanzig (M-Z) formalism, a concept originating from non-equilibrium statistical
mechanics, as a basis for the development of coarse-grained models of turbulence. The mechanics of the
generalized Langevin equation (GLE) are considered and insight gained from the orthogonal dynamics
equation is used as a starting point for model development. A class of sub-grid models is considered
which represent non-local behavior via a finite memory approximation (Stinis, P., “Mori-Zwanzig reduced
models for uncertainty quantification I: Parametric uncertainty,” arXiv:1211.4285, 2012.), the length of
which is determined using a heuristic that is related to the spectral radius of the Jacobian of the resolved
variables. The resulting models are intimately tied to the underlying numerical resolution and are capable
of approximating non-Markovian effects. Numerical experiments on the Burgers equation demonstrate that
the M-Z-based models can accurately predict the temporal evolution of the total kinetic energy and the
total dissipation rate at varying mesh resolutions. The trajectory of each resolved mode in phase-space
is accurately predicted for cases where the coarse-graining is moderate. LES of homogeneous isotropic
turbulence and the Taylor Green Vortex show that the M-Z-based models are able to provide excellent
predictions, accurately capturing the sub-grid contribution to energy transfer. Lastly, LES of fully developed
channel flow demonstrate the applicability of M-Z-based models to non-decaying problems. It is notable
that the form of the closure is not imposed by the modeler, but is rather derived from the mathematics of the
coarse-graining, highlighting the potential of M-Z-based techniques to define LES closures.

I. Introduction

The pursuit of efficient and accurate simulation of turbulent flows continues to present great challenges
to the scientific computing community. The continuous cascade of scales makes Direct Numerical Simula-
tion (DNS) methodologies prohibitively expensive for most practical flows. Generally, the solution of high
Reynolds number turbulent flows is made tractable by developing a set of surrogate equations that display
a reduced range of scales. The reduction of scales in Large Eddy Simulations (LES) can be viewed as a
type of coarse-graining (CG) technique for the Navier-Stokes equations. Typically associated with atomistic
simulations, the coarse-graining approach removes the degrees of freedom associated with the microscopic
scales and attempts to only compute the macroscopic dynamics [1]. The effects of the microscopic scales
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on the macroscopic scales are expressed through a constitutive relation. This relation is central to a coarse-
grained model [2]. In a continuum solution of a turbulent flow, the macroscopic processes are the large
scale energy-containing flow structures while the microscopic processes can be taken to be the small scale
turbulent fluctuations that occur at the Kolmogorov scales.

The prediction of macroscopic quantities in the absence of explicit microscopic information constitutes
a classical problem of multi-scale modeling. For systems that display some degree of separation between
the large and small scales, elegant mathematical treatments have been established and significant progress
has been made [3]. Systems that exhibit a continuous cascade of scales present a greater challenge as the
coarse-graining process leads to non-Markovian effects that are challenging to understand and model. In
turbulent flows, the sub-grid effects are generally accounted for through a sub-grid model. The majority of
sub-grid scale models for LES are Markovian and are based on scale invariance, homogeneity, and rapid
equilibration of small scales. These models are inadequate in many problems and warrant improvement.

The Mori-Zwanzig (M-Z) formalism provides a mathematical procedure for the development of coarse-
grained models of systems that lack scale separation. Originating from irreversible statistical mechanics, the
M-Z formalism provides a method for re-casting a dynamical system into an equivalent, lower-dimensional
system. In this reduced system, which is commonly referred to as the generalized Langevin equation (GLE),
the effect of the microscopic scales on the macroscopic scales appears as a convolution integral (which
is sometimes referred to as memory) and a noise term. The appearance of the memory term in the GLE
demonstrates that, in a general setting, the coarse-graining procedure leads to non-local memory effects. The
M-Z formalism alone does not lead to a reduction in computational complexity as it requires the solution
of the orthogonal (unresolved) dynamics equation. In the past decade, however, the M-Z formalism has
gained attention in the setting of model order reduction. The optimal prediction framework developed by
the Chorin group [4, 5, 6, 7, 8] uses the GLE to obtain a set of equations that describe the evolution of the
macroscopic scales conditioned on the knowledge of the microscopic scales. The framework additionally
begins to address how the memory convolution integral can be approximated without solving the orthogonal
dynamics.

Constructing an appropriate surrogate to the memory integral requires an understanding of the structure
of the orthogonal dynamics and its impact on the convolution integral. Obtaining insight into this structure
is challenging as it requires the solution of the orthogonal dynamics equation, which is a high-dimensional
partial differential equation. Givon et al. [9] prove the existence of classical solutions to the orthogonal
dynamics equation for a simple set of projection operators and show the existence of weak solutions in
the general case. Hald et al. [10] demonstrate that the memory consists of convolving a sum of temporal
covariances of functions in the noise subspace. Chorin et al. [5] make use of the fact that the Hermite
polynomials are orthogonal with respect to the conditional expectation inner product and develop a set
of Volterra integral equations that can be used to approximate the memory integrand. This finite-rank
projection is shown to provide a reasonably accurate representation of the memory kernel for a system of
two oscillators with a non-linear coupling, but the process is intractable for high-dimensional problems
unless a low-dimensional basis is used. Bernstein [11] applies this methodology and uses a first order basis
to attempt to gain information about the memory kernel for Burgers equation. The simplicity of the basis
functions, however, limits the insight gained from this process.

Despite the challenges in understanding the structure of the memory, various surrogate models exist.
The most common approximation to the memory term is the t-model; so named because time appears ex-
plicitly in the closure. The t-model results from both a long memory and a short time approximation [11]
and has been applied with varying success to numerous systems. Bernstein [11] applied the t-model to
Fourier-Galerkin solutions of Burgers equation. Numerical experiments showed that the t-model accurately

2



characterized the decay of energy resulting from the formation of shocks. Hald and Stinis [12] applied the
t-model to two and three-dimensional simulations of the Euler equations. The t-model correctly preserved
energy for two-dimensional simulations and provided results consistent with theory for three-dimensional
simulations of the Taylor-Green Vortex. Chandy and Frankel [13] used the t-model in Large Eddy Sim-
ulations of homogeneous turbulence and the Taylor-Green vortex. The model was found to be in good
agreement with Direct Numerical Simulation and experimental data for low Reynolds number cases, but
discrepancies were seen for higher Reynolds numbers. Additionally, the Large Eddy Simulations of the
Taylor-Green vortex were performed with high enough resolution that simulations not utilizing any sub-grid
model are more accurate than Smagorinsky-type models. Stinis [14, 15] introduced a set of renormalized
models based on expansions of the memory integrand. These models were applied to Burgers equation and
were found to be in good agreement with the full order model. For all of these problems, the reason for the
relative success of the t-model has remained a mystery and is an outstanding question in the literature.

Stinis [16, 17] proposed a class of approximations to the memory integral that utilize the concept of
a finite memory. The models involve the integration of additional differential equations that describe the
evolution of the memory integral. The models were applied to Burgers equation and the 3D Euler equations.
In these numerical experiments it was found that a finite memory length was required for stability, but the
validity of the finite memory assumption was not addressed. This class of models appears to be more
capable and robust than the t-model and will be a main consideration of this work.

While we have restricted our discussion to fluid-dynamics applications, a large body of research regard-
ing the Mori-Zwanzig formalism exists in the molecular dynamics community, for instance, Refs. 18, 19.
Additionally, the Mori-Zwanzig approach can be used in contexts outside of coarse-graining. Uncertainty
quantification, for example, is one such field where the Mori-Zwanzig formalism has attracted recent atten-
tion [20, 21].

The objective of this work is to extend the applicability of Mori-Zwanzig-based closures to Fourier-
Galerkin simulations of turbulent flows and to rigorously investigate their performance in a number of
problems. Emphasis will be placed on Stinis’ finite memory models [16, 17]. This class of closures has
not gained substantial exposure in the fluids community. The organization of this paper will be as follows:
Section 2 will present an introduction to the Mori-Zwanzig formalism. The mechanics of the convolution
memory integral and construction of surrogate models will be discussed. In Section 3, the models will be
applied to the viscous Burgers equation. In Sections 4 and 5, the models will be applied to the incompress-
ible Navier-Stokes equations, where homogeneous isotropic turbulence, the Taylor Green vortex, and fully
developed channel flow are considered. In Section 6, conclusions and perspectives will be provided.

II. Mori-Zwanzig Formalism

A brief description of the Mori-Zwanzig formalism is provided in this section. A demonstrative example
is first provided to introduce the unfamiliar reader to the Mori-Zwanzig formalism. Consider a two-state
linear system given by

dx
dt

= A11x+A12y (1)

dy
dt

= A21x+A22y. (2)

Suppose that one wants to created a ‘reduced-order’ model of the system given in Eqns. 1 and 2 by creating
a surrogate system that depends only on x(t). For example,

dx
dt

= A11x+F(x). (3)
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The challenge of the numerical modeler is to then construct the function F(x) that accurately represents
the effect of the unresolved variable y on the resolved variable x. For this simple linear system, F(x) can
be exactly determined by solving Eq. 2 for y(t) in terms of a general x(t). Through this process, the two-
component Markovian system can be cast as a one-component non-Markovian system that has the form

dx
dt

= A11x+A12A21

∫ t

0
x(t− s)eA22sds+A21y(0)eA22t . (4)

Equation 4 has no dependence on y(t) and hence is closed. This reduction of a Markovian set of equations
to a lower-dimensional, non-Markovian set of equations is the essence of the Mori-Zwanzig formalism. The
formalism provides a framework to perform this reduction for systems of non-linear differential equations.

A formal presentation of the Mori-Zwanzig formalism is now provided. The discussion here is adapted
from Refs. 5, 6. Consider the semi-discrete non-linear ODE

dφ

dt
= R(φ), (5)

where φ = {φ̂, φ̃}, with φ̂ ∈ RN being the relevant or resolved modes, and φ̃ ∈ RM being the unresolved
modes. The initial condition is φ(0) = φ0. The non-linear ODE can be posed as a linear partial differential
equation by casting it in the Liouville form,

∂

∂t
u(φ0, t) = Lu(φ0, t), (6)

with u(φ0,0) = g(φ(φ0,0)). The Liouville operator is defined as

L =
N+M

∑
k=1

Rk(φ0)
∂

∂φ0k
,

where φ0k = φk(0). It can be shown that the solution to Eq. 6 is given by

u(φ0, t) = g(φ(φ0, t)). (7)

The semigroup notation is now used, i.e. u(φ0, t) = g(etL φ0). One can show that the evolution operator
commutes with the Liouville operator, i.e., etL L = LetL . Consider the initial conditions to be random
variables drawn from some probability distribution P(φ0). Given this distribution, the expected value of a
function g(φ0) is given by

E[g(φ0)] =
∫

Γ

g(φ0)ρ(φ0)dφ0,

where ρ is the probability density. Assume φ ∈ Γ, where Γ is an L2 Hilbert space endowed with an inner
product ( f ,g) = E[ f g]. Consider now the coarse-grained simulation of Eq. 5, where the variables in φ̂ are
resolved and the variables in φ̃ are unresolved. By taking g(φ0) = φ0 j, an equation for the trajectory of a
resolved variable can be written as

∂

∂t
etL

φ0 j = etL Lφ0 j. (8)

The term on the right hand side is a function of both the resolved and unresolved variables. To proceed,
define the space of the resolved variables by L̂2. Further, define P : L2 → L̂2, as well as Q = I−P . An
example of a possible projection operator would be, for a function f (φ̂0, φ̃0), P f (φ̂0, φ̃0) = f (φ̂0,0). Using
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the identity I = P +Q , the right hand side of Eq. 8 can be split into a component that depends on the
resolved variables and one that depends on the unresolved variables,

∂

∂t
etL

φ0 j = etL P Lφ0 j + etL Q Lφ0 j. (9)

At this point the Duhamel formula is utilized,

etL = etQ L +
∫ t

0
e(t−s)L P LesQ L ds.

Inserting the Duhamel formula into Eq. 8, the generalized Langevin equation is obtained,

∂

∂t
etL

φ0 j = etLP Lφ0 j︸       ︷︷       ︸
Markovian

+etQLQ Lφ0 j︸          ︷︷          ︸
Noise

+
∫ t

0
e(t−s)L P LesQ L Q Lφ0 jds︸                                 ︷︷                                 ︸

Memory

. (10)

Equation 10 is the Mori-Zwanzig identity. The system described in Eq. 10 is exact and is an alternative
way of expressing the original system. Equation 10 makes a profound statement: coarse-graining leads to
memory effects. Note that the convolution integral represents numerical memory, as opposed to physical
memory. One can expect the time-scales of this numerical memory to depend both on the physics of the
problem at hand and the level of coarse-graining.

For notational purposes, define

Fj(φ0, t) = etQ L Q Lφ0 j K j(φ0, t) = P LFj(φ0, t). (11)

By definition, Fj(φ0, t) satisfies
∂

∂t
Fj(φ0, t) = Q LFj(φ0, t), (12)

where Fj(φ0,0) = Q Lφ0 j. Equation 12 is referred to as the orthogonal dynamics equation. It can be
shown that solutions to the orthogonal dynamics equation live in the null space of P for all time, meaning
P Fj(φ0, t) = 0. Using the notation in Eq. 11, Eq. 10 can be written as

∂

∂t
φ j(φ0, t) = R j(φ̂(φ0, t))+Fj(φ0, t)+

∫ t

0
K j
(
φ̂(φ0, t− s),s

)
ds. (13)

A simplification comes from projecting Eq. 13 to eliminate the dependence on the noise term,

∂

∂t
P φ j(φ0, t) = P R j(φ̂(φ0, t))+P

∫ t

0
K j
(
φ̂(φ0, t− s),s

)
ds. (14)

Eq. 14 provides a set of equations for P φ(φ0, t), the best possible approximation for φ̂ j on L̂2 given knowl-
edge about the initial density of φ̃. The evaluation of the memory kernel is, in general, not tractable as
it requires the solution of the orthogonal dynamics equation. It does, however, provide a starting point to
derive closure models. Additionally, note that the final projection does not necessarily imply a reduction
in computational complexity. Although Eq. 14 has no dependence on the noise term, one is left with the
challenge of projecting the potentially non-linear Markovian term. For general non-linear functions, the
projection operator does not commute (E[ f (x)] , f (E[x])).

5



A. The Orthogonal Dynamics Equation and the Memory Kernel

The challenge of the M-Z procedure for model order reduction is to construct an accurate, computation-
ally tractable approximation to the memory integral. The construction of such an approximation requires an
understanding of the form of the integrand and the underlying mechanics of the memory kernel. In its prim-
itive form, the orthogonal dynamics equation (Eq. 12) is a partial differential equation that has dimension
N +M (with N being the number of resolved variables and M being the number of unresolved variables).
Pursuing solutions to the orthogonal dynamics in this form is not tractable. Recall, however, that the gener-
alized Langevin equation itself is a PDE with dimension N+M, but its solution may be obtained by solving
a set of ordinary differential equations. It can be shown that, when the original dynamical system is linear,
that solutions to the orthogonal dynamics equation can be obtained by solving a corresponding set of auxil-
iary ordinary differential equations. This methodology was suggested in [22] as a procedure to approximate
the orthogonal dynamics in non-linear systems and was further developed and investigated in detail in [23].
To gain insight into the orthogonal dynamics, we consider a simple linear system.

Consider a linear system governed by
dφ

dt
= Aφ (15)

with φ(0) = φ0. The linear system can be split into resolved and unresolved components,

dφ

dt
= AP

φ̂+AQ
φ̃. (16)

It can be shown that solutions to the orthogonal dynamics equation can be obtained by solving the auxiliary
system

dφQ

dt
= AQ

φ
Q (17)

with φQ(0) = φ0. Assuming AQ to be diagonalizable, the linear system has the solution

φ
Q (t) = SeΛtS−1

φ0, (18)

where Λ and S are the eigenvalues and eigenvectors of AQ . The memory is then given by∫ t

0
e(t−s)L P LesQ L Q Lφ0 jds =

∫ t

0
e(t−s)L P LSeΛsS−1Q Lφ0ds. (19)

For cases where the eigenvectors and eigenvalues can be obtained analytically, or are independent of the
initial conditions, the memory kernel can be directly evaluated.

Significant insight is gained from Eq. 18. It is seen that the convolution memory integrand contains the
exponential term eΛs. When the eigenvalues are negative (a general characteristic of stable systems), the ex-
ponential operator leads to the integrand having finite support. The timescale of this support is proportional
to the inverse of the eigenvalues. To explain this, a pictorial representation of the evaluation of a simple
convolution integral is given in Figure 1. The figures show the graphical evaluation of the convolution inte-
gral

∫ t
0 f (s)eλ(t−s)ds with f (t) = H(t) and λ =−1. It is seen that the exponential operator limits the support

of the integrand. The time scale of this support is related to the argument of the exponential operator, which
is related to the eigenvalues of the auxiliary system.
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(a) t = 0. (b) t = 2. (c) t = 6.

Figure 1: Evolution of the convolution integral
∫ t

0 f (s)e−(t−s)ds. To evaluate the convolution integral graphically, first reflect et ,
add a time offset, and then slide it along the t-axis. Then f (t) is plotted as a function of t. The integral is the area under the curve
of e(t−s) f (t).

B. Modeling of the Memory Kernel
To obtain a reduction in complexity, a surrogate to the memory must be devised. The t-model is perhaps

the simplest approximation to the memory term and can be obtained by expanding the memory integrand in
a Taylor series about s = 0 and retaining only the leading term,

P
∫ t

0
e(t−s)L P LesQ L Q Lφ0 jds≈ P

∫ t

0
etL P LQ Lφ0 jds = tP LQ Lφ j(t). (20)

Various interpretations of the t-model exist, the most common of which is that the memory is infinitely long.
The t-model can be expected to be accurate when minimal flow is invoked by the orthogonal dynamics, i.e.
esQ L Q Lφ0 j ≈ Q Lφ0 j. Its accuracy additionally requires that the flow invoked by the true dynamics etL is
slow to evolve in time. Despite its simplicity, the t-model has been successfully applied to Burgers equation
and as a sub-grid model in Large Eddy Simulations [13].

The insight gained from Section A suggests that the memory integrand has a finite support. Based on
this, a more general class of models that assume a finite support of the memory integrand is now considered.
The models derived here were first considered by Stinis [12, 17]. For notational purposes, define

w(m)
j (φ0, t) = P

∫ t

am(t)
esL P Le(t−s)Q L(Q L

)m+1
φ0 jds, (21)

where am(t) = t−τm(t). Note the change of variables t ′ = t− s. For clarity of presentation, the dependence
of φ̂ on the initial conditions φ0 and time t will be implicitly assumed throughout the rest of this section.
Setting m = 0 (in which case Eq. 21 is simply the memory term) and differentiating Eq. 21 with respect to
time yields

d
dt

w(0)
j (φ0, t) = etL P LQ Lφ0 j− e(t−τ0)L P Leτ0Q L Q Lφ0 ja′0(t)+P

∫ t

a0(t)
esL P Le(t−s)Q L Q LQ Lφ0 jds.

(22)
Note that the first term on the right hand side does not require the solution of the orthogonal dynamics
equation. The second term on the right hand side is dependent on the orthogonal dynamics. This dependence
can be eliminated by using a discrete integration scheme to express the memory integral. In the case of the
trapezoidal rule

w(0)
j (t) =

[
etL P LQ Lφ0 j + e(t−τ0)L P Leτ0Q L Q Lφ0 j

]
τ0(t)

2
+O(τ2

0).
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In order to handle the case where the memory length τ0 is not necessarily small, the memory integral in
Eq. 21 is partitioned into N sub-intervals,

P
∫ t

t−τ0

esL P Le(t−s)Q L Q Lφ0 jds = P
∫ t

t−∆τ0

esL P Le(t−s)Q L Q Lφ0 jds+

P
∫ t−∆τ0

t−2∆τ0

esL P Le(t−s)Q L Q Lφ0 jds+ . . . +P
∫ t−(N−1)∆τ0

t−N∆τ0

esL P Le(t−s)Q L Q Lφ0 jds, (23)

where ∆τ0 = τ0/N. Define

w(m,n)
j = P

∫ t−(n−1)∆τ0

t−n∆τ0

esL P Le(t−s)Q L(Q L
)m+1

φ0 jds

for n = 1,2, ...,N. Applying the trapezoidal integration scheme to each sub-interval yields the general form

d
dt

w(0,n)
j (φ0, t) =

[ n−1

∑
i=1

(−1)n+i+1w(0,i)
j

]
2

∆τ0

(
2− (2n−1)∆τ

′
0

)
− 2

∆τ0
w(0,n)

j

(
1−n∆τ

′
0
)
+

(
2− (2n−1)∆τ

′
0
)
etL P LQ Lφ0 j +P

∫ t−(n−1)∆τ0

t−n∆τ0

esL P Le(t−s)Q L Q LQ Lφ0 jds+O(∆τ
2
0). (24)

The right hand side of Eq. 24 is now closed with the exception of the memory term. Assume that the new
memory term has a finite support from t− τ1(t) to t. A differential equation for w(1,n) can be developed by
again differentiating the convolution integral in Eq. 24 with respect to time and using the trapezoidal rule.
The differentiation process can be continued to build an infinite hierarchy of Markovian equations. The
general form obtained is

d
dt

w(m,n)
j (φ0, t) =

[ n−1

∑
i=1

(−1)n+i+1w(m,i)
j

]
2

∆τm

(
2− (2n−1)∆τ

′
m

)
− 2

∆τm
w(m,n)

j

(
1−n∆τ

′
m
)
+

(
2− (2n−1)∆τ

′
m
)
etL P L

(
Q L

)m+1
φ0 j +P

∫ t−(n−1)∆τm

t−n∆τm

esL P Le(t−s)Q L(Q L)m+2
φ0 jds+O(∆τ

2
m). (25)

The infinite hierarchy of equations must be truncated at some point. This can be done by modeling the
effects of w(m+1,n)

j or, more simply, by neglecting it. Neglecting w(m+1,n)
j can be justified if the support or

magnitude of the integrand decreases with the repeated application of Q L . The derivation above can be
carried out using higher order quadrature [17]. In this work, models with a constant memory length and one
sub-interval are considered. In this case the models simplify to

d
dt

w(m)
j (φ0, t) =−

2
τm

w(m)
j (t)+2etL P L

(
Q L

)m+1
φ0 j +w(m+1)

j . (26)

III. Application to Burgers Equation

The viscous Burgers equation (VBE) is a one-dimensional equation that serves as a toy-model for tur-
bulence. The VBE has been well-studied and is a canonical problem to test the performance of sub-grid
models. It should be noted that solutions of the VBE are not chaotic, a property that is one of the defining
features of turbulence. The VBE in Fourier space is given by

∂uk

∂t
+

ık
2 ∑

p+q=k
p,q∈F∪G

upuq =−νk2uk, k ∈ F ∪G (27)
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with uk(0) = u0k. The Fourier modes u = {û, ũ} are contained within the union of two sets, F and G. In the
construction of the reduced order model, the resolved modes are û∈ F and the unresolved modes are ũ∈G.
Partitioning Eq. 27 into the resolved and unresolved sets, the evolution equation for the resolved variables
is written as

∂uk

∂t
+

ık
2 ∑

p+q=k
p∈F,q∈F

upuq =−νk2uk−
ık
2

(
∑

p+q=k
p∈G,q∈G

upuq + ∑
p+q=k

p∈F,q∈G

upuq + ∑
p+q=k

p∈G,q∈F

upuq

)
k ∈ F. (28)

Eq. 28 is equivalent to the LES form of the VBE with a sharp spectral cutoff filter. Note that the sub-grid
stress in Fourier space is written as

τ
SGS
k =

1
2

(
∑

p+q=k
p∈G,q∈G

upuq + ∑
p+q=k

p∈F,q∈G

upuq + ∑
p+q=k

p∈G,q∈F

upuq

)
.

The last term on the RHS of Eq. 28 represents the effect of the unresolved scales on the resolved scales and
must be modeled.

Traditional sub-grid models make an isotropic eddy viscosity approximation, where the sub-grid stress
is assumed to be linearly proportional to the strain-rate of the resolved scales. In such models the sub-grid
stress is modeled in the physical domain by

τ
SGS
i j =−2νsgsSi j,

with S being the resolved strain-rate tensor. The eddy viscosity νsgs is determined from the filtered flow
field. The Smagorinsky [24] model is perhaps the most notable sub-grid model and uses

νsgs = (Cs∆)
2|S̃|.

The static and dynamic Smagorinsky models will be used as a reference to compare the Mori-Zwanzig
based closures.

A. Construction of Mori-Zwanzig Models

Mori-Zwanzig closures based on the expectation projection are considered. Let f ∈ L2. The projection
of f onto L̂2 is given by

(P f )(φ̂0) = E[ f |φ̂0] =

∫
f (φ0)ρ(φ0)dφ̃0∫

ρ(φ0)dφ̃0
. (29)

The density of the initial conditions is assumed to consist of independent Gaussian distributions in the zero-
variance limit as in Ref. 11. For this density, the expectation projection sets all unresolved modes to be zero,
i.e.

P
(

f (φ̂0, φ̃0)
)
= f (φ̂0,0).

The high fidelity model is taken to have support−N ≤ k≤N−1, while the reduced order model has support
for−N/2≤ k≤N/2−1. Evaluating Eq. 14 for the VBE and casually commuting the non-linear Markovian
term yields

∂uk

∂t
+

ık
2 ∑

p+q=k
p∈F,q∈F

upuq =−νk2uk +P
∫ t

0
K(u(t), t− s)ds. (30)
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Evaluation of the convolution integral in Eq. 30 is not tractable, and it is estimated with the models previ-
ously discussed. For the VBE, finite memory models for m = 1,2,3 are considered; as well as the t-model.
One sub-interval is used in the trapezoidal approximation. For the VBE the first order term is found to be

etL P LQ Lu0k =−ık ∑
p+q=k

p∈F,q∈G

up

[
− ıq

2 ∑
r+s=q
r,s∈F

urus

]
k ∈ F. (31)

The form of the required terms in the higher order models are given in the Appendix. Throughout the
remainder of this manuscript, the finite memory model based on the first order expansion (Eq. 31) will be
referred to as the first order finite memory model, FM1. Similarly, the second and third order expansions
will be referred to as FM2 and FM3.

B. Numerical Implementation
The VBE is solved numerically using a Fourier-Galerkin spectral method. The FFT calculations are

padded by the 3/2 rule. An explicit low storage 4th order Runge-Kutta method is used for time integration.
Numerical simulations of the VBE are performed with the initial condition [25]

u(x) =U∗0
kc

∑
i=1

√
2E(ki)sin(kix+βi), (32)

where E(k) = 5−5/3 if 1 ≤ k ≤ 5 and E(k) = k−5/3 for k > 5. Eq. 32 initializes an energy spectrum with a
-5/3 slope for k > 5. The phase angle β is a random number in the domain [−π,π]. A constant seed value
is used in all of the simulations. No energy is added to the flow after a cut-off frequency kc, such that LES
simulations are initially fully resolved.

1. Selection of the Memory Length
To determine the memory length, one would ideally like to directly compute the memory kernel. Com-

puting the memory kernel involves solving the orthogonal dynamics equation and is not directly tractable.
In this work, an intuitive approach is considered. In Section A it was demonstrated that, in the linear case,
the memory length could be related to the eigenvalues of the auxiliary dynamical system that solves the
orthogonal dynamics. Since Burgers equation does not exhibit scale separation, a logical hypothesis is that
a mean time scale can be related to the spectral radius of the Jacobian of the resolved variables

τ ∝ 1/ρ

(
∂R
∂u

)
.

To provide evidence for this argument, a parametric study was performed involving 60 cases. The simu-
lations were initialized with Eq. 32 and operated over a range of Reynolds numbers and resolutions. The
cases considered were permutations of the following parameters: ν= [0.05,0.01,0.005,0.001,0.0005],kc =
[8,16,32],U∗0 = [1,2,5,10]. The DNS simulations were carried out using 4096 resolved modes. For each
case, the time constant τ0 in the first order model is found by solving an inverse problem. For simplicity, τ0
is taken to be constant in time. The optimal time constant in the least squares sense was found by minimiz-
ing the difference of the total kinetic energy dissipation rate between the reduced order model solution and
a high resolution DNS solution. The solution was minimized for t ∈ [0,2] using data at discrete time-steps
spaced by intervals of ∆t = 0.01. The discrete penalty function is given by

J =
N

∑
n=1

([
dKn

dt

]
M−Z
−
[

dKn

dt

]
DNS

)2
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Figure 2: MAP solution for the first order model time constant τ0 plotted against the inverse of the spectral radius of the Jacobian
of the resolved variables.

where N = 2/0.01 = 2000. The penalty function was minimized using SciPy’s optimization suite. A
downhill simplex algorithm was used. It is noted that the inferred results were similar to a penalty function
that minimized the difference in total kinetic energy. Figure 2 shows the inferred time constants plotted
against the temporal mean of the spectral radius of the Jacobian of the resolved variables. The kc = 16 and
kc = 32 cases are seen to collapse to the same line. The kc = 8 cases also collapse to a linear line, but with a
slightly greater slope. Given the wide range of cases considered, the collapse of the data is quite good. This
result suggests that the properties of the Jacobian of the resolved variables can be used as a good indicator
of the memory length. A fit of the above data yields τ0 ≈ 0.2/ρ

(
∂R
∂u0

)
. A more rigorous fitting process and

the effect of uncertainty in the time constant is provided in Appendix B.
Before proceeding further, we make several comments. First, the results of this section should be

viewed as evidence rather than proof that a finite memory approximation is appropriate for the Burgers
equation. The first order model has errors that are due to the trapezoidal integration as well as neglecting
w(1)

j . We note that the inferred memory length should not be viewed as a physical parameter. Nonetheless,
the memory length has a physical meaning and the inferred results are consistent with that assertion. An
increased Reynolds number leads to a decreased time scale, while a decrease in numerical resolution leads
to an increase in time scale. This makes the time constant different than a heuristic tuning constant.

C. Numerical Results

Direct numerical simulations of the VBE were performed with 2048 resolved modes (−1024 ≤ k ≤
1023) on a spatially periodic domain of length 2π for t ∈ [0,2]. The initial condition given in Eq. 32 is used
with U∗0 = 1 and ν = 0.01. LES is performed with the SGS models described above. The LES simulations
are initialized with the DNS solution for k ≤ kc such that the initial condition of the LES is fully resolved.
The simulations were performed with 32 resolved modes, corresponding to a cut-off frequency at kc = 16.
The memory length τ0 was selected by the procedure described in the previous section. A formal estimation
procedure was not used for the memory lengths of the higher order models, which were simply chosen
to be τ1 = τ2 = 0.5τ0. A summary of the relevant computational details is given in Table 1. Figures 3
and 4 compare the Mori-Zwanzig based models to the filtered DNS data, the Smagorinsky model, and a
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DNS Smagorinsky t-model FM1 FM2 FM3
N 2048 32 32 32 32 32
∆t 1e-4 1e-3 1e-3 1e-3 1e-3 1e-3
Constants NA Cs = 0.2 τ0 = t τ0 = 0.135 τ0,1 = 0.135,0.07 τ0,1,2 = 0.135,0.07,0.07

Table 1: Summary of computational details for the numerical experiments of Burgers equation.

simulation ran on a 32 point mesh without any sub-grid model. Figure 3a shows the temporal evolution of
the total kinetic energy and rate of kinetic energy decay. Figure 3b shows the temporal evolution of the mean
magnitude of w(0) (note w(0) = ikτsgs) and the energy spectrum at t = 2.0. Figure 4 shows the trajectories
of the 8th (Fig. 4a) and 15th (Fig. 4b) modes of u and w(0) in the complex plane. A brief discussion of the
results of each simulation will now be provided.

The simulation performed without an SGS model severely under-predicts the rate of energy decay at
early time, leading to an over-prediction in total kinetic energy. As expected, the simulation under-predicts
the dissipation rate. With no sub-grid mechanism present to remove energy from high wave numbers, a pile-
up of energy is seen for high k, as evidenced in Figure 3b. This phenomena indicates that the simulation is
under-resolved and a sub-grid model is indeed required. The evolution of the individual modes of û contain
significant error, particularly around the cutoff frequency. The evolution of the 15th mode, as shown in
Figure 4a, is an excellent example of the error present in high wave numbers.

The Smagorinsky model offers improvements. The simulation utilizing the basic SGS model provides
decent predictions for both the total kinetic energy and the dissipation of kinetic energy. The energy spec-
trum at t = 2.0 and trajectories of the individual modes are additionally much improved. However, the
Smagorinsky model is unable to differentiate the resolved scales from the unresolved scales. Despite be-
ing completely resolved at t = 0, the Smagorinsky model predicts that the sub-grid content is maximum at
t = 0. The resulting predictions for w(0) are both quantitatively and qualitatively incorrect. In particular, the
individual trajectories of w(0) show no similarity to that of the DNS. It is recognized that the Smagorinsky
model was developed for homogeneous turbulent flows in the physical domain, so a critical evaluation of
the model on the Burgers equation is not completely appropriate.

Simulations performed using the t-model provide improved predictions. The largest error is present in
the prediction for w(0), where it is seen that the t-model slightly over predicts sub-grid content (especially
for t > 0.5), but the predictions are still qualitatively correct. The model correctly predicts the initial peak
in dE/dt and w(0) around t = 0.15 and qualitatively shows the presence of the second peak around t = 0.6.
The trajectories of the individual modes in u and w(0) are improved, but become less accurate for late
time. The prediction for the energy spectrum at t = 2.0 is not noticably better than that predicted by the
Smagorinsky model. The explicit presence of t in the model leads to substantial error for large time. The
performance of the t-model for the VBE shows the merit in the M-Z-based models. To reiterate, the t-model
contains no heuristics or coefficients. Work by Stinis [15] and our own numerical experiments show that
re-normalization of the t-model can lead to more accurate results.

The finite memory models provide relatively accurate predictions for all quantities. The evolution of
total kinetic energy, dissipation of kinetic energy, and mean sub-grid predictions are in good agreement
with the DNS. The first order finite memory model accurately predicts the instantaneous energy spectrum at
t = 2.0 for low wave numbers, while the second and third order models provide accurate predictions for all
wave numbers. The trajectories of the individual modes are close to that of the DNS, as are the trajectories
for the sub-grid-terms.
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(a) Temporal evolution of total kinetic energy (left) and rate of decay of kinetic energy (right).

(b) Temporal evolution of the mean magnitude of w(0) (left) and energy spectrum at t = 2.0. Note that w(0) = ikτsgs.

Figure 3: A comparison of Large Eddy Simulations performed with 32 resolved modes to filtered DNS data obtained from a
simulation performed with 2048 resolved modes.
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(a) Evolution of the eighth mode of u (left) and w (right).

(b) Evolution of the 15th mode of u (left) and w (right).

Figure 4: Evolution of select modes of u and w in phase space. In phase space the DNS data (denoted by �) is sparse around t = 0
and becomes clustered as t→ 2.
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Results of the first order finite memory model are shown in Figure 5 for two additional cases. The first
is run at a resolution of kc = 8, a viscosity of ν = 0.01, and a scaling of U∗0 = 5. The second case is run at a
resolution of kc = 32, a viscosity of ν = 5×10−4, and a scaling of U∗0 = 10. The time constants were again
selected by the scaling of the spectral radius of the Jacobian. Both of these cases are significantly under-
resolved. The low viscosity case in particular has numerous shocks and required 4096 resolved modes for
the DNS calculation.

IV. Application to the Triply Periodic Navier-Stokes Equations

Coarse-grained simulations of the Navier-Stokes equations are now considered. The incompressible
Navier-Stokes equations in Fourier space are given by(

∂

∂t
+νk2

)
ui(k, t)+

(
δim−

kikm

k2

)
ık j ∑

p+q=k
p,q∈F∪G

u j(p, t)um(q, t) = 0 k ∈ F ∪G, (33)

where the Fourier modes again belong to the union of two sets. Separating the modes into the resolved and
unresolved sets yields,(

∂

∂t
+νk2

)
ui(k, t)+

(
δim−

kikm

k2

)
ık j ∑

p+q=k
p,q∈F

u j(p, t)um(q, t) =−
(

δim−
kikm

k2

)
ık jτ jm(k, t) k ∈ F,

(34)
where F are the resolved modes and G are the unresolved modes. Note that Eq. 34 is the LES equations
one obtains if they apply a sharp spectral cutoff filter to the Navier-Stokes equations. The modes in G are
the unresolved modes that are filtered out, while the modes in F are retained. The objective is to solve for
the modes in F as accurately as possible. The sub-grid stress is written as

τ jm(k, t) = ∑
p+q=k
p,q∈G

u j(p, t)um(q, t)+ ∑
p+q=k

p∈G,q∈F

u j(p, t)um(q, t)+ ∑
p+q=k

p∈F,q∈G

u j(p, t)um(q, t).

Note that, in Fourier space, the pressure term appears as a projection. This projection leads to additional
non-linear interactions between the resolved and unresolved scales.

A. Construction of the Mori-Zwanzig Models

For the incompressible Navier-Stokes equations, the t-model and the first order finite memory model
are considered. The expectation projection and Gaussian density in the zero variance limit are again used.
Casually commuting the non-linear Markovian term, the projected Mori-Zwanzig identity reads(

∂

∂t
+νk2

)
ui(k, t)+

(
δim−

kikm

k2

)
ik j ∑

p+q=k
p,q∈F

u j(p, t)um(q, t) = P
∫ t

0
K(u(t), t− s)ds k ∈ F (35)

The evaluation of Eq. 35 is made tractable by approximating the memory integral. Here only first order
models are considered, which require the evaluation of P LQ Lu0k. After much tedious algebra it can be
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Figure 5: Evolution of select quantities of the additional simulations of the VBE. The conditions are kc = 8,ν = 0.01,U∗0 = 5 (left)
and kc = 32,ν = 5×10−4,U∗0 = 10.
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shown that

etL P LQ Lui(k,0) =
(
−δim +

kikm

k2

)
ık j ∑

p+q=k
p∈F,q∈G

u j(p, t)etL P Lum(q,0)−

(
δim +

kikm

k2

)
ık j ∑

p+q=k
p∈F,q∈G

um(p, t)etLP Lu j(q,0), (36)

where

etL P Lui(k,0) =−νk2ui(k, t)︸           ︷︷           ︸
k∈F

−
(

δim−
kikm

k2

)
ık j ∑

p+q=k
p,q∈F

u j(p, t)um(q, t)

Eq. 36, along with Eqns. 20 and 22, can be used to write equations for the t-model and the first order finite
memory model. It is noted that the terms P Lui are simply the right hand side of the filtered equations
without any sub-grid model and are already computed. It is additionally noted that, when expanded, several
terms in P LQ Lui can be combined for a faster evaluation.

B. Numerical Implementation
The Navier-Stokes equations are solved using a Galerkin spectral method with an explicit low storage

RK4 time integration scheme. The main solver is written in Python and interfaces with the FFTW discrete
Fourier transform library [26] via the pyFFTW wrapper. FFT calculations are padded by the 3/2 rule. For
the Mori-Zwanzig models, a 2x padding is used such that F ∈ [−N/2,N/2− 1] and G ∈ ([−N,−N/2−
1], [N/2,N−1]). Convolutions of the form

∑
p+q=k

p∈F,q∈G

u j(p, t)u j(q, t),

which have a support of 2N, are padded by construction [16].

C. Homogeneous Isotropic Turbulence
The simulation of decaying Homogeneous Isotropic Turbulence (HIT) is considered. HIT has been a

baseline case for the development of sub-grid models. In this study, the spectrum used by Rogallo [27] is
used for initialization. The velocity field is given by

ui(k) = αe1
i +βe2

i , (37)

where e1
i and e2

i are mutually orthogonal unit vectors in the plane orthogonal to the wave vector. The initial
spectrum is taken to be

E(k,0) =
q2

2A
1

kσ+1
p

kσ exp
(
− σ

2
( k

kp

)2
)
,

where kp is the wave number at which the energy spectra is maximum, σ is a parameter set to 4, and
A =

∫
∞

0 kσ exp(−σk2/2)dk. DNS data from a 5123 simulation initialized with Eq. 37 are used as an initial
condition for LES simulations. The Taylor microscale-based Reynolds number of the filtered field is Reλ ≈
200. The LES simulations are performed using 643 resolved modes with a time step of ∆t = 0.005. The M-
Z-based models are compared to filtered DNS data, both the dynamic and static Smagorinsky models, and
an LES with no sub-grid model. An alternate heuristic to select the memory length is to scale the time step
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HIT DNS Smagorinsky t-model Finite Memory
N 5123 643 643 643

∆t 0.005 0.005 0.005 0.005
Constants NA Cs = 0.16 NA τ0 = 0.1

Table 2: Summary of computational details for homogeneous isotropic turbulence case.

in the LES with the ratio of the grid size to the estimated Kolmogorov scale. The relevant computational
details are given in Table 2.

Figure 6 shows the energy, dissipation, resolved transfer spectra, and sub-grid transfer spectra at t = 4.0.
Results are compared to filtered DNS data. The resolved transfer spectra is computed by

T (k) =−u∗i (k, t)
(

δim−
kikm

k2

)
ık j ∑

p+q=k
p,q∈F

u j(p, t)um(q, t) k ∈ F.

The sub-grid energy transfer is extracted from the DNS data by

T SGS(k) =−u∗i (k, t)
(

δim−
kikm

k2

)
ık j ∑

p+q=k
p,q<F

u j(p, t)um(q, t) k ∈ F.

For the large eddy simulations, the sub-grid energy transfer is computed by

T SGS(k) = u∗i (k, t)w
(0)
i (k, t) k ∈ F.

The simulation ran with no sub-grid model has a pileup of energy at high frequencies, indicating that the
simulation is under-resolved. Both the static and dynamic Smagorinsky models provide good predictions
for the energy, dissipation, and resolved spectra. The sub-grid-contribution to the energy spectra is qual-
itatively correct for both models, but error is present. The t-model performs well for low wave numbers,
but under predicts the energy content at high wave numbers. The performance of the finite memory model
is comparable to the dynamic Smagorinsky model and provides good predictions for all wave numbers.
In particular, the finite memory model provides excellent predictions for the sub-grid-contributions to the
transfer term.

For the HIT case, it is perhaps not prudent to conclude that the M-Z-based models performed signifi-
cantly better than the Smagorinsky models. The derivation of the Smagorinsky models, however, proceeds
directly from equilibrium assumptions that are most relevant specifically in homogeneous isotropic turbu-
lence. Further, there is an implicit assumption that the simulation has resolution into the inertial subrange.
The M-Z models, on the other hand, are insensitive to any assumptions about the state of the flow. This
generality allows the models to be used in a variety of flow regimes, including ones where use of the
Smagorinsky model is inappropriate. This robustness is evident in the next example, where the Taylor
Green vortex is considered.

D. Taylor Green Vortex

The Taylor Green Vortex (TGV) is a canonical problem with deterministic initial conditions that is
often used to study the accuracy of computational methods. The flow is characterized by a breakdown of
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(a) Filtered energy spectra (left) and filtered dissipation spectra (right).

(b) The transfer spectra as computed by the resolved modes are shown on the left. The sub-grid contribution to the
transfer spectra from the DNS are compared to the contribution of the sub-grid models on the right.

Figure 6: Energy, dissipation, and transfer spectra at t = 4.0 for the homogeneous isotropic turbulence case.
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Re=800 DNS Smagorinsky t-model Finite Memory
N 1283 323 323 323

∆t 0.005 0.02 0.005 0.02
Constants NA Cs = 0.16 NA τ0 = 0.1

Table 3: Summary of computational details for Taylor Green Vortex cases for Re=800.

Re=1600 DNS Smagorinsky t-model Finite Memory
N 2563 323 323 323

∆t 0.005 0.02 0.005 0.02
Constants NA Cs = 0.16 NA τ0 = 0.1

Table 4: Summary of computational details for Taylor Green Vortex cases for Re=1600.

organized coherent structures into fine-scale features. The initial conditions are

u1(x1,x2,x3) = cos(x1)sin(x2)cos(x3)

u2(x1,x2,x3) = − sin(x1)cos(x2)cos(x3)

u3(x1,x2,x3) =0,

in a periodic domain x1,x2,x3 ∈ [−π,π]. The Reynolds number of the flow is given by the inverse of viscos-
ity. Traditional LES sub-grid models do not perform well on the TGV since they are generally designed for
fully developed turbulent flows. Two cases are considered, one at Re = 800 and the other at Re = 1600. All
comparisons are made to filtered DNS quantities. Tables 3 and 4 summarize the relevant simulation details.
Note that the t-model required a lower time step for stability.

The results of the Re = 800 case are shown in Figure 7. The large eddy simulations are performed with
323 resolved modes, while the DNS simulation uses 1283 resolved modes. At this Reynolds number and
resolution, the system is only slightly under-resolved, as evidenced by the reasonable performance of the
simulation with no sub-grid model. Figure 7a shows the temporal evolution of the kinetic energy integrated
over the whole domain as well as the temporal evolution of the kinetic energy dissipation rate (computed by
−dE

dt ). The performance of the Smagorinsky model is poor. As was previously discussed, this is due to the
fact that the model is designed for fully turbulent flows. The Smagorinsky model is unable to account for
the fact that the solution is fully resolved at early time, and incorrectly removes energy from the resolved
scales at t = 0. The Mori-Zwanzig models, particularly the finite memory model, perform notably better.
The t-model recognizes that the simulation is completely resolved at early times, but is seen to remove too
much energy from the resolved modes soon after. The finite memory model provides good predictions for
the total energy and dissipation. In particular, the model is able to capture the double peaked structure of
the kinetic energy dissipation rate around t = 8. The energy and dissipation spectra of the simulations at
t = 5 and t = 10 are shown in Figures 7b and 7c. The finite memory model is again in good agreement with
the DNS. The spectra predicted by the t-model is in good agreement with the DNS for early time, but the
dissipative nature of the model is evident at t = 10.

The results of the Re = 1600 case are shown in Figure 8. The LES is again performed with 323 resolved
modes, while the DNS used 2563 modes. The sub-grid models in the coarse-grained simulations are more
active at this higher Reynolds number. The finite memory model performs well. The temporal evolution
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of the total kinetic energy and dissipation of kinetic energy are well characterized, showing that the model
is removing energy from the resolved scales at an appropriate rate. The predicted spectra are also in good
agreement. The t-model and Smagorinsky models are again highly dissipative.

V. Application to Fully Developed Channel Flow

An M-Z-based finite memory model is now applied to turbulent channel flow. Unlike the previously
considered cases, the channel flow is a steady-state non-decaying problem. For such problems, a finite
memory assumption is critical for the application of M-Z-based models. The construction of a first order
finite memory M-Z-based model for fully developed turbulent channel flow is now outlined. The flow is
taken to be streamwise (x) and spanwize (z) periodic. The model is constructed by coarse-graining in the
periodic directions.

A. Construction of the Finite Memory Mori-Zwanzig Model

Fourier transforming the incompressible Navier-Stokes equations in the x and z direction yields

∂̂

∂x̂ j
û j(k, t) = 0 (38)

∂

∂t
ûi(k, t)+

∂̂

∂x̂ j
∑

p+q=k
p,q∈F∪G

ûi(p, t)û j(q, t) =−
1
ρ

∂̂

∂x̂i
p̂(k, t)+ν

(
− k2

1− k2
3 +

∂2

∂y2

)
ûi(k, t) (39)

where
∂̂

∂x̂ j
=
{

ık1,∂y, ık3
}
.

Unlike in the triply periodic case, the continuity equation can not be implicitly satisfied by a simple solution
to the pressure Poisson equation in Fourier space. Solution of the pressure Poisson equation is complicated
by inhomogeneity in the y direction and boundary conditions. This makes the derivation of M-Z models
difficult as the framework is formulated for time varying dynamical systems. However, the effect of the
pressure projection on the sub-grid scale models for triply periodic problems has been observed to be min-
imal. As such, the M-Z models are formulated by neglecting the effects induced by coarse-graining the
pressure. In this case one finds

P LQ L ûi(k) =−
∂̂

∂x̂ j
∑

p+q=k
p∈F,q<F

û j(p)P L ûi(q)−
∂̂

∂x̂ j
∑

p+q=k
p∈F,q<F

ûi(p)P L û j(q), k ∈ F. (40)

B. Numerical Implementation

The Navier-Stokes equations are solved in skew-symmetric form via a Fourier-Chebyshev pseudo-
spectral method. A coupled semi-implicit Adams-Bashforth scheme is used for time integration, as in [28].
The continuity equation is directly enforced at each time-step, bypassing the need for pressure boundary
conditions. The main solvers are written in Python and utilize mpi4py for parallelization. All FFT calcula-
tions (including the Chebyshev transforms) are de-aliased by the 3/2 rule.
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(a) Evolution of integral quantities for Re=800 case.

(b) Energy spectra at t = 5 (left) and t = 10 (right) for Re=800 case.

(c) Dissipation spectra at t = 5 (left) and t = 10 (right) for Re=800 case.

Figure 7: Results for numerical simulations of the Taylor Green Vortex at Re = 800. DNS quantities are obtained from filtered data
obtained on a 1283 grid. All other models are ran on 323 grids.
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(a) Evolution of integral quantities for Re=1600 case.

(b) Energy spectra at t = 5 (left) and t = 10 (right) for Re=1600 case.

(c) Dissipation spectra at t = 5, (left) and t = 10 (right) for Re=1600 case.

Figure 8: Results for numerical simulations of the Taylor Green Vortex at Re = 1600. DNS quantities are obtained from filtered
data obtained on a 2563 grid. All other models are ran on 323 grids.
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Lx Ly Lz Reτ Nx Ny Nz ∆t
4 π 2 2π 180 32 64 32 0.01

Table 5: Physical and numerical details for Large Eddy Simulations of the channel flow.
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Figure 9: Statistical properties for fully developed channel flow at Reτ = 180.

C. Numerical Results

Large Eddy Simulations of channel flow are now discussed. The solutions are compared to the dynamic
Smagorinsky model. Simulations at Reτ = 180 are considered. The LES simulations are evolved using
32× 64× 32 resolved modes in the x,y, and z directions respectively. Simulation parameters are given in
Table 5.

Statistical properties of the LES solutions are compared to DNS data from [29] in Figure 9. The M-Z-
based models are seen to offer improved solutions similar to that produced from the dynamic Smagorinsky
model. In particular, the mean velocity profiles are much improved and the model correctly reduces the
Reynolds stresses.

VI. Conclusions and Perspectives

The Mori-Zwanzig formalism provides a mathematically consistent framework for model order reduc-
tion. Recasting a high-order dynamical system into the generalized Langevin equation (GLE) provides both
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a starting point for the development of coarse-grained models as well as insight into the effects of coarse-
graining. Utilizing insight gained from solutions of the orthogonal dynamics equation for linear dynamical
systems, a class of models based on the assumption that the memory convolution integral in the GLE has
a finite, time-dependent support (Stinis, 2012) was presented. The appeal of these models is that they are
formally derived from the governing equations and require minimal heuristic arguments.

Coarse-grained simulations of the viscous Burgers equation and the incompressible Navier-Stokes equa-
tions were considered. The closures derived under the assumption of a finite memory proved to be robust
and accurate for the cases considered. For varying mesh resolutions, the M-Z-based models were shown to
accurately predict the sub-grid contribution to the energy transfer. The trajectory of each resolved mode in
phase-space was accurately predicted for cases where the coarse-graining was moderate. The models pro-
vided accurate results for Burgers equation, transitional and fully turbulent periodic incompressible flows,
and fully developed channel flow. This accuracy is believed to be due to the close link between the mathe-
matics of the coarse-graining process and the derivation of the closure model. An analysis of the memory
term for Burgers equation demonstrated the need for the finite memory length and provided further insight
into the performance of the t-model and finite memory models. The models used in this work should be con-
sidered a first order approximation. Extensions to the models, such as a spatio-temporal memory lengths,
models for the unclosed w(n+1)

j terms, etc., are yet to be considered.
The models are capable of addressing non-local effects characteristic of systems that lack scale-separation.

The only heuristic that was used in the model development is an estimation of the length of the memory
(i.e. the time scale of the convolution memory integral) based on the spectral radius of the Jacobian of the
resolved variables. An alternate heuristic is the scaling of the time step in the LES with the ratio of the grid
size to the estimated Kolmogorov scale. We note that more rigorous methodologies such as renormaliza-
tion [15] and dynamical procedures [30] can be used to derive estimates of the memory length. In this work,
our objective was to mainly gain insight into the mechanics of the memory kernel.

M-Z-based approaches have not gained substantial exposure in the fluid mechanics community and
the results presented in this work highlight the promise of these techniques as a basis for LES. Extension
to practical problems requires further development. In particular, the Mori-Zwanzig procedure requires
that one can discretize the governing equations as a dynamical system that can be naturally separated into
resolved and unresolved sets. The Fourier-Galerkin approach, as was used in this work, is perhaps the
most natural setting for such a hierarchical description. The Fourier-Galerkin approximation, however,
restricts the applicability to periodic problems. The extension to traditional finite element/volume/difference
schemes will require a formulation that makes use of specialized scale-separation operators. The variational
multiscale method [31, 32] and spectral element method are two such promising candidates.

The models considered in this work were derived under the assumption of a Gaussian density in the zero-
variance limit for the initial conditions. For problems that involve initial conditions that are unresolved, it
will be appropriate to derive the models under a non-zero variance. Further investigations are required
regarding the stability of the resulting models. Tests confirmed that the t-model required a lower time-step
for stability compared to the finite memory models. Future work should explore opportunities to enforce
physical constraints such as Galilean invariance of the sub-grid stress.
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Appendix A Higher Order Models for the Burgers Equation

The higher order finite memory models FM2 and FM3 require the evaluation of P LQ LQ Lu0k and
P LQ LQ LQ Lu0k. The forms follow a pattern that is similar to Pascal’s triangle and can be verified to be
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Appendix B Burgers equation: Sensitivity of Results to Memory Length

The finite memory models discussed require the specification of a memory length. In Section 1, an
empirical methodology to determine the memory length was presented. It was shown that the optimal
memory constant τ0 (in the L2 sense of the error in predicted dissipation rate) can be approximated by a
linear scaling of the spectral radius of the Jacobian. The reader will note that the collapse of the data,
although good, was not perfect. This scatter gives rise to a statistical uncertainty in the memory length and
raises concern over the dependence of the model results on the memory length. To provide a measure of
this uncertainty, we consider a statistical parametrization of the inferred memory constant for the viscous
Burgers equation.

As in Section 1, assume that the memory constant is given by the linear model

τ0 = w
[

ρ

(
∂F
∂u

)]−1

where w is the weighting parameter. The regression problem is now approached from a stochastic point of
view, where τ (and hence w) is assumed to be a random variable. We assume w to be Gaussian with mean
µ0 and variance σ2. To determine the mean and variance of the distribution, linear regression is performed
for each of the data points inferred in Section 1. The results of the regression provide a distribution for
the weight w from which we compute a mean and variance. This process minimizes over-fitting the data.
The resulting model distribution is shown in Figure 10. Note that approximating the distribution for w as
Gaussian is not particularly accurate since the inferred results for τ0 are bi-modal. However, the linear
model itself is an approximation and the Gaussian distribution is sufficient to demonstrate the sensitivity of
the models to the memory length.
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Figure 10: Modeled probability distribution for τ0. The mean of the Gaussian PDF is shown in red. The shaded regions correspond
to the 95% confidence intervals.

By assuming τ0 to be stochastic, the results of the Mori-Zwanzig models become random variables.
The probability distributions of these variables are determined by Monte Carlo sampling. For each sample,
the time constant τ0 is drawn from the modeled probability distribution and the viscous Burgers equation
is evolved from t = 0 to t = 2. One-thousand samples are used. The resulting distributions for several of
the cases presented earlier are shown in Figure 11. The probability distributions of integrated first order
quantities, such as the total energy and total energy dissipation rate, are seen to be well concentrated around
their mean value. The relatively low variance of these distributions shows that concern over selecting the
exact optimal time scale τ0 is not justified for these cases. The variance of the predicted sub-grid content
w(0) is slightly larger than that of the integrated quantities, which can be attributed to the fact that the sub-
grid predictions are more dependent on the time scale. The variance of the distributions is still reasonable
and the mean values remain accurate.

Appendix C A Note on the Physical Space Equivalent of the Finite Memory Models

A physical space equivalent to the finite memory models is derived for the triply periodic case. Define
a filtering operation G that removes content for k > kc; i.e. a traditional sharp spectral cutoff filter. For the
zero-variance projection used in this work, one can write

etL P Lui(k,0) = etL P Lui(k,0)− etL P Lui(k,0) k ∈ G. (43)

Evaluating Eq. 43 for the Navier-Stokes equations yields

etL P Lui(k,0) =−Aimik j

(
∑

p+q=k
p,q∈F

u j(p, t)um(p, t)− ∑
p+q=k
p,q∈F

u j(p, t)um(p, t)
)

k ∈ F.

The term inside parenthesis on the RHS is the (negative) Leonard stress when the test filter is applied at the
same scale as the true filter,

etL P Lui(k,0) = Aimik jL jm.
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(a) Probability distributions for the VBE case using kc = 16,ν = 0.01, and U∗0 = 1.

(b) Probability distributions for the VBE case using kc = 32,ν = 5×10−4, and U∗0 = 1.

Figure 11: Probability distributions for the VBE obtained through Monte Carlo sampling. The solid lines indicate the mean of the
distribution and the shaded regions are the 95% confidence intervals.

The finite memory model can thus be written as

d
dt
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)
. (44)

Next, we note that the projection tensor Aim includes the effects of pressure. The physical space model be-
comes transparent if the effects of pressure on the coarse-graining process is neglected. Neglecting pressure
effects simplifies Aim to δim and one obtains

d
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Taking the inverse Fourier transform yields
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where τi j,u, and Li j in Eq. 46 are the Fourier transforms of their counterparts in Eq. 45. Interestingly,
Eq. 46 is not a transport equation. No traditional convection term for ∂ jτi j is present. Another interesting
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observation is that Eq. 46 bears a qualitative resemblence to the relaxation equations in the Lagrangian
dynamic model [33]. The Lagrangian dynamic model follows the temporal trajectories of fluid particles
to determine the Smagorinsky constant. When an exponential weighting function is used, the Lagrangian
dynamic model contains a memory time scale that appears in a similar fashion to that which appears in the
finite memory models. The construction of physical space M-Z inspired models will be a topic of future
research.
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