
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Anisotropic character of low-order turbulent flow
descriptions through the proper orthogonal decomposition

Nicholas Hamilton, Murat Tutkun, and Raúl Bayoán Cal
Phys. Rev. Fluids 2, 014601 — Published  5 January 2017

DOI: 10.1103/PhysRevFluids.2.014601

http://dx.doi.org/10.1103/PhysRevFluids.2.014601


ANISOTROPIC CHARACTER OF LOW-ORDER TURBULENT FLOW

DESCRIPTIONS WITH THE PROPER ORTHOGONAL DECOMPOSITION

NICHOLAS HAMILTON, MURAT TUTKUN, RAÚL BAYOÁN CAL

Abstract. Proper orthogonal decomposition (POD) is applied to data resulting from distinct data
sets in order to characterize the propagation of error arising from basis truncation in the description
of turbulence. Experimental data from stereo particle image velocimetry measurements and direct
numerical simulation data from a fully developed channel flow are used to illustrate dependence of
the anisotropy tensor invariants as a function of POD modes used in low-order descriptions. In all
cases, ensembles of snapshots illuminate a variety of anisotropic states of turbulence. In the near
wake of a model wind turbine, the turbulence field reflects the periodic interaction between the
incoming flow and the rotor blade. The far wake of the wind turbine is more homogenous by com-
parison, confirmed by the increased magnitude of the anisotropy factor. By contrast, the channel
flow exhibits many anisotropic states of turbulence. In the inner layer of the wall-bounded region,
one observes one component turbulence at the wall, immediately above, the turbulence is dominated
by two components, the outer layer shows fully three-dimensional turbulence, conforming to theory
for wall-bounded turbulence. The complexity of flow descriptions resulting from truncated POD
bases can be greatly mitigated by severe basis truncations. However, the current work demonstrates
that such simplification necessarily exaggerates the anisotropy of the modeled flow and, in extreme
cases, can lead to the loss of three-dimensionality. Application of simple corrections to the low-
order descriptions of the Reynolds stress tensor significantly reduces the residual root-mean-square
error. Similar error reduction is seen in the anisotropy tensor invariants. Corrections of this form
reintroduce three-dimensionality to severe truncations of POD bases. A threshold for truncating
the POD basis based on the equivalent anisotropy factor for each measurement set required many
more modes than a threshold based on energy. The mode requirement to reach the anisotropy
threshold after correction is reduced by a full order of magnitude for all example data sets, ensuring
that economical low-dimensional models account for the isotropic quality of the turbulence field.

1. Introduction

The proper orthogonal decomposition (POD) is a well-known tool used extensively in the analysis
of turbulent flows for the purposes of identifying and organizing structures according to their energy.
Through a series of projections of the ensemble of input signals onto a vectorial subspace, the
POD produces the optimal modal basis (in a least-squares sense) to describe the kernel of the
decomposition. In terms of turbulent flows, the kernel is commonly composed of the correlation
tensor [1, 2], and the eigenvalues describe the energy associated with each mode. As such, the
POD is capable of representing the dominant turbulent flow features (in terms of energy) with a
small portion of the full mode basis. Since its introduction to the field of turbulence by Lumley [3],
the POD has evolved considerably, most notably by Sirovich [4], who, along with advancements
in particle image velocimetry (PIV) technology, pioneered the method of snapshots. This widely
used variant of the POD capitalizes on spatial organization of data resulting from experimental
techniques such as PIV and numerical simulations.

Often, the basis of POD modes is truncated to exclude contributions to the flow from low-
energy modes. Such descriptions of the flow are typically made with small numbers of modes
relative to the complete basis [5, 6, 7]. Because the POD organizes the resultant modes in terms
of their contribution to the turbulence kinetic energy, large-scale features of the flow are often
well represented with very few modes. While they account for the majority of turbulence kinetic
energy, the largest modes selected by the POD also represent the geometry-dependent, anisotropic
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structures of a turbulent flow. Contrarily, the modes toward the end of the spectrum of the POD
basis are taken to be the smallest in terms of energy and the most isotropic contribution to the
turbulence. Often when truncating the POD basis for the purpose of flow description, a threshold
is established accounting for a prescribed portion of the turbulence kinetic energy according to the
eigenvalues associated with each POD mode.

Anisotropy tensor invariant analysis is often employed to characterize turbulence and to underpin
assumptions used in theoretical development [8, 9]. The second and third mathematical invariants of
the normalized Reynolds stress anisotropy tensor together describe the possible states of realizable
turbulence, represented with the anisotropy invariant map, referred to as an AIM, or Lumley’s
triangle [10]. Theoretical development of the anisotropic state of turbulence has further been
employed in predictive models of turbulence often seen in the form of boundary conditions, as for
wall-bounded turbulence. Anisotropy tensor invariants are integral to the Rotta [11] model, which
describes the tendency of turbulence to return to an isotropic state at a rate linearly proportional to
the degree of anisotropy in a turbulent flow. The Rotta model forms the basis of many second-order
closure schemes such as the explicit algebraic models of turbulence as presented in Menter et al.
[12], Rodi and Bergeles [13].

Anisotropic turbulence evolving in a flat-plate boundary layer was detailed by Mestayer [14],
confirming that local isotropy exists in the dissipative range of scales, typically smaller than twenty
times the Kolmogorov microscale. Local isotropy at small scales is generally accepted at sufficiently
high Reynolds number, provided that an inertial subrange separates the energetic scales from the
dissipative ones. It was further shown by Smalley et al. [15] and Leonardi et al. [16] that surface
characteristics of the wall influence the balance of turbulent stresses, and subsequently the invariants
of the anisotropy tensor. Normal stresses tend toward isotropy in boundary layers evolving over
rough surfaces more than over smooth walls. Smyth and Moum [17] found that anisotropy in
large-scale turbulence generates Reynolds stresses that contribute to the extraction of energy from
the atmospheric boundary layer. Computational work detailing the anisotropy of turbulence in the
wakes of wind turbines has been undertaken by Gómez-Elvira et al. [18] and Jimenez et al. [19]. Both
studies employ a second-order closure scheme with explicit algebraic models for the components
of the turbulent stress tensor. Recent experimental work by Hamilton and Cal [20] explored the
anisotropy in wind turbine arrays wherein the rotational sense of the turbine rotors varied. There
it was found that the flux of mean flow kinetic energy and the production of turbulence correlate
with the invariants of the normalized Reynolds stress anisotropy tensor.

Local and small-scale isotropy is expected in the dissipative range of turbulent scales or far
from any bounding geometry of the flow, as in the outer boundary layer [11] or far into a wake
[18, 21, 22]. However, large scales, such as those favored by low-rank POD modes, favor the most
energetic and the least isotropic, turbulence structures. Error propagation through the POD mode
basis has been explored to some degree as far as implications to reduced-order models (see e.g.
[23, 24, 25, 26]). The propagation of error through data-driven POD representations of turbulence
remains a subject requiring development. Absent from the literature is the dependence of the
anisotropy tensor invariants on the point of basis truncation. Reduced-order models aim to capture
and reproduce important turbulent flow features. Physical insights gained from such models should
include an informed discussion of the anisotropic state of the simulated turbulence as compared to
turbulence seen in real flows.

The following work develops the relationship between low-dimensional representations of turbu-
lence via the POD and the resulting turbulence field in terms of the Reynolds stress tensor and
the anisotropy tensor invariants. Error propagation of the Reynolds stresses and turbulence ki-
netic energy are compared to the invariants of the normalized anisotropy tensor as functions of the
truncation point of POD models. Low-order descriptions are found to exaggerate the anisotropy
of a given flow; modes excluded from the truncated POD basis supply highly isotropic turbulence.
Severe basis truncations are unable to reproduce three-dimensional turbulence on their own. With
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the aid of correction terms, more accurate and realistic turbulence is produced including three-
dimensionality, and flow description errors are significantly reduced.

2. Theory

2.1. Anisotropy of the turbulent stress tensor. In the development here, capital letters indi-
cate an ensemble mean quantity is being considered, lower case letters imply mean-centered fluctu-
ations, and an overbar indicates that the ensemble average of the product of fluctuating quantities
has been taken. The discussion of turbulence anisotropy necessarily begins with the Reynolds stress
tensor, of which the diagonal terms are normal stresses and off-diagonal terms representative of
shear stresses in the flow. According to convention, the Reynolds stress tensor is written as,

(1) uiuj =

 u2 uv uw

vu v2 vw

wu wv w2

 ,
where u, v, and w distinguish components of velocity in the streamwise, wall-normal, and span-
wise directions, respectively. The Reynolds stress tensor is symmetric, arising from the Reynolds
averaging process. The turbulence kinetic energy, TKE or k, is defined as half of the trace of uiuj ,

(2) k =
1

2
(u2 + v2 + w2).

The turbulence kinetic energy in Equation (2) reflects the mean kinetic energy in the fluctuating
velocity field and acts as a scale for the components of the Reynolds stress tensor.

The particular balance of terms in the Reynolds stress tensor is important when considering
turbulent transport phenomena. In an ensemble sense, isotropic turbulence does not contribute to
a net flux in any particular direction, as what is instantaneously transported in one direction would
be balanced by an equal and opposite transport at a later time [27]. To quantify deviation from
an isotropic stress field, it is useful to define the Reynolds stress anisotropy tensor bij , normalized
with the turbulence kinetic energy, as in the development by Rotta [11],

bij =
uiuj
ukuk

− 1

3
δij ,(3a)

=


u2

u2+v2+w2
− 1

3
uv

u2+v2+w2

uw

u2+v2+w2

uv

u2+v2+w2

v2

u2+v2+w2
− 1

3
vw

u2+v2+w2

uw
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vw
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w2

u2+v2+w2
− 1

3

 ,(3b)

where δij is the Kronecker delta.
The first invariant of the normalized anisotropy tensor, the trace of bij , is identically zero as

a consequence of its normalization. The traces of b2ij and b3ij are related to the second and third

invariants (η and ξ) of the anisotropy tensor as,

6η2 = b2ii = bijbji,(4)

6ξ3 = b3ii = bijbjkbki.(5)

Invariants of the normalized Reynolds stress anisotropy tensor are related to the local degree of
three-dimensionality in the turbulence (η) and the characteristic shape associated with the par-
ticular balance of stresses (ξ). The invariants are combined into a single parameter F that scales
the degree of anisotropy from zero to one, ranging to one- or two-component turbulence to fully
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three-dimensional and isotropic turbulence, respectively [28, 15]. With the present definitions of
invariants, the anisotropy factor is defined as

(6) F = 1− 27η2 + 52ξ3.

In the ensuing analysis, the anisotropy factor is often integrated over the domain (denoted below
as Fint) to provide an effective value of the anisotropy. Fint is presented along side the invariants
η and ξ and is used to to gauge the degree of anisotropy in each measurement domain.

Invariants of bij are frequently plotted against one another in the anisotropy invariant map (AIM),
also known as Lumley’s triangle [10]. Theoretical limits and special forms of turbulence are shown
as vertices or edges of the triangle in Figure 1. These cases are often used in scale analysis of flows
and represent theoretical limits of ‘realizable’ turbulence. See table 1 for descriptions of each state
of turbulence in terms of their respective invariants. The invariants may also be defined with the
eigenvalues of the normalized Reynolds stress anisotropy tensor. Such eigenvalues are interpreted
as the spheroidal radii of shapes that characterize the turbulence anisotropy and correspond to
the limits shown in Lumley’s triangle (see e.g. [20]). Characteristic shapes for special cases of
turbulence are noted in table 1.

Table 1. Limiting cases of turbulence given on Lumley’s triangle in terms of
anisotropy tensor invariants.

State of turbulence Invariants Shape of spheroid
Isotropic ξ = η = 0 Sphere

Two-component axisymmetric ξ = −1
6 , η = 1

6 Disk
One-component ξ = η = 1

3 Line
Axisymmetric (one large eigenvalue) ξ = η Prolate spheroid
Axisymmetric (one small eigenvalue) −ξ = η Oblate spheroid

Two-component η =
(

1
27 + 2ξ3

)1/2
ellipse

Special cases of turbulence outlined in Table 1 are often used in scaling and theoretical development
but are not typically observed in real turbulence. Perfectly isotropic turbulence occurs when the
deviatoric of the Reynolds stress tensor (the anisotropy tensor) is null and ξ = η = 0. Due to the
mathematical relationship between the invariants given by equations (4) and (5), ξ = 0 occurs only
when η = 0, at the perfectly isotropic condition. The upper limit in Lumley’s triangle describes
two-component turbulence, where η = (1/27 + 2ξ3)1/2. This relationship corresponds to the point
where F = 0 and is reflected in the definition of F from Equation (6).

Axisymmetric turbulence is commonly observed in round jets, circular disk wakes, swirling jets,
etc. The characteristic shapes associated with axisymmetric turbulence are either oblate or prolate
spheroids. Oblate spheroids exhibit two eigenvalues that are of equal magnitude and one eigenvalue
that is much smaller. This results in a spheroid squeezed in one direction. Prolate spheroids show
the opposite effect with one eigenvalue that is of a larger magnitude compared to the other (equal
or very similar) eigenvalues, resulting in a spheroid that is stretched in one direction.

One-component turbulence shows the least uniformity between components and the greatest
sensitivity to rotation. Two-component turbulence, occurs as the small eigenvalue is reduced to
zero, and the characteristic shape becomes an ellipse. In two-dimensional axisymmetric turbulence,
the characteristic shape is a circle and is invariant to rotation only along the axis defined by its
null eigenvalue.

2.2. Snapshot proper orthogonal decomposition. Snapshot POD presented below follows the
development by Sirovich [4]. The decomposition provides an ordered set of modes and associated
eigenvalues delineating the energy associated with each mode. The organized basis of modes from
the POD has been described as projections common to the span of snapshots in a dataset [4, 29, 1].
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Figure 1. Lumley’s triangle showing limits of realizable turbulence according to
the anisotropy tensor invariants η and ξ.

Hereafter, bold math symbols represent vectorial quantities and symbols in plain text are scalar
quantities. The flow field is assumed to be stochastic and to depend on both space and time.
Vectorial velocity snapshots are then denoted as u(x, tm), where x and tm refer to the spatial
coordinates and time at sample m, respectively. The spatial correlation tensor forms the kernel of
the POD and is defined,

(7) R(x,x′) =
1

M

M∑
m=1

u(x, tm)uT (x′, tm),

where M signifies the number of snapshots and the prime represents the spatial coordinate of
another point in the domain and the superscript T refers to the transpose of the velocity field. It is
assumed that a basis of M modes can be written in terms of the original data. The POD equation
is a Fredholm integral equation of the second kind over the spatial domain Ω,

(8)

∫
Ω
R(x,x′)Φ(x′)dx′ = λΦ(x).

Equation (7) is substituted into Equation (8) and discretized such that the POD integral equation
may be solved numerically. The discretized integral equation becomes an eigenvalue problem in
following form,

(9) CA = λA,

where A is the basis of eigenvectors corresponding to the snapshot basis and C approximates the
correlation tensor from Equation (7). Eigenvalues of the POD equation λ delineate the integrated
turbulence kinetic energy associated with each eigenvector and POD mode, which are computed
by projecting the snapshot basis into the eigenvector space and normalizing with their respective
L2-norms forming an orthonormal basis,

(10) Φ(n)(x) =

∑N
n=1A

n(tm)u(x, tm)

‖∑N
n=1A

n(tm)u(x, tm)‖
, n = 1, ..., N.
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The velocity snapshots may be represented as the superposition of the POD modes and respective
amplitudes, typically referred to as POD coefficients,

(11) u(x, tm) =
N∑
n=1

anΦ
(n)(x).

POD mode coefficients an are obtained by back-projecting the set of velocity fields onto the basis
of POD modes and integrating over the domain,

(12) an =

∫
Ω
u(x, tm)Φ(n)(x)dx.

Reconstruction with a limited set of POD modes results in a filtered representation of the turbulent
flow field. The truncation point of the POD mode basis is often determined by setting an arbitrary
threshold of the energy described by the POD eigenvalues (λ(n)).

3. Example Data

The following evaluation of the POD through anisotropy invariant analysis is demonstrated
using multiple data sets in order to provide generality. Data samples are of similar geometry
and orientation with respect to the mean flow field; all data are two-dimensional, three component
snapshots where the mean flow is normal to the plane sampled. The nature of the sampled flow differ
in geometry and focus; the first set of data considered is experimentally acquired via stereo-PIV in
wind tunnel experiments at Portland State University. As the data is used exclusively to illustrate
the accuracy of the representations of physical processes, only a summary of the experiment is
provided. Further details of the data collection and experimental techniques may be found in
Hamilton et al. [30, 31]. The second set of data comes from DNS of a fully-developed channel
flow simulated at Johns Hopkins University (JHU). The reader is referred to the documentation
provided by JHU and summarized in Graham et al. [32] (see also, [33, 34]). Through investigation
of several sets of data, focus is placed on interpretation the physics presented through the POD
and anisotropy invariant analyses, rather than a detailed exploration of a particular turbulent flow.

3.1. Wind turbine wake – experimental data. For the purposes of detailing the streamwise
evolution of the turbulent wake of a wind turbine in a large array, successive SPIV planes were
interrogated parallel to the swept area of the rotor of a selected model turbine. The wind turbine
array consisted of four rows and three columns of models following a Cartesian grid; rows are
spaced six rotor diameters (6D) apart in the streamwise direction, columns are spaced three rotor
diameters (3D) apart in the spanwise direction. Figure 2 shows the arrangement of wind turbine
models in the wind tunnel in addition to the measurement planes.

Although many planes were sampled in the experiment, only two of them will be discussed in the
following, selected as representations of different regions of the wake. Figure 2 shows the selected
planes as bold dashed lines in the wake of the fourth row of wind turbines. Sample data correspond
to measurements at x/D = 0.5, reflecting the near wake where the intermittency is greatest [35],
and x/D = 6 in the far wake, where the momentum deficit in the wake has largely recovered and
the flow is well-mixed [36]. Turbulence seen at x/D = 6 represents the flow that would be seen by
successive rows of devices.

3.2. Turbulent channel flow – DNS data. Direct numerical simulation data of a fully-developed
channel flow from the Turbulence Database hosted at the Johns Hopkins University is compared
to the wind turbine wake data. The Reynolds number based on the bulk velocity and full channel
height is Reb = Ub2H/ν = 4 × 104, where Ub = 1 is the dimensionless bulk velocity integrated
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Figure 2. Schematic of experimental arrangement of wind turbine array. Measure-
ment planes are shown as black dashed lines and occur at x/D ∈ [0.5, 6] following
the fourth row turbine in the center of the tunnel.

over the channel cross section, H = 1 is the channel half-height, and ν = 5 × 10−5 is the non-
dimensional viscosity. Based on the friction velocity uτ = 5× 10−2 and H, the Reynolds number is
Reτ = uτH/ν = 1000. A single spanwise plane representing a small subset of the total channel flow
DNS data is discussed in the following analysis. The particular location of the plane was fixed for
all samples at a randomly selected position along both the x− and z−coordinates. The near-wall
region was of particular interest for the current study as it is well-characterized by anisotropic
turbulence. Data spans from −1 ≤ y/H ≤ −0.7114 (normalized by H) representing one fourth of
the data points across the channel. In viscous units y+ = yuτ/ν, sample data spans 0 ≤ y+ ≤ 288,
renormalized by the viscous length scale δν = ν/uτ = 1 × 10−3. Resolution of the sample data
corresponds to that of the full DNS in the spanwise direction ∆z/H = 6.13×10−3, again normalized
by the channel half-height. A total of 1180 uncorrelated snapshots were randomly sampled from
the channel flow throughout the full simulation time of t ∈ [0, 26].

x/H
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y/H

-1
0

−0.71
288.14

7.83 8.12

x/H = 15.81

y+

Figure 3. Schematic of the lower half of the channel flow DNS simulation space.
Only a small region of the total channel is shown. Sampling window (white rectan-
gle) was sized to span the inner layers. Location of the window in x/H and z/H
was selected randomly.

Spatial limits of the sampled DNS data were selected to focus on the near-wall turbulence. The
maximum wall-normal distance of y/H = −0.7114 corresponds to half of the logarithmically spaced
data points from the wall to the center of the channel. The spanwise limit was set to represent
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the same total span, resulting in a square measurement window. Data analyzed here include the
viscous sublayer, buffer layer, and the log layer. Turbulence seen in the central region of the channel
is expected to exhibit the passage of large, anisotropic structures, although in an ensemble sense,
the turbulence there is more isotropic. The half-channel velocity profile is shown in viscous units
(U+ = u/uτ vs. y+) in Figure 4. As reference, two Reynolds stresses are shown from the DNS of
the channel flow in Figure 5. The stresses shown are the streamwise normal stress and the shear
stress combining fluctuations in the streamwise and wall-normal velocities.
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Figure 4. Half-channel velocity profile. Dashed lines correspond to the viscous
sublayer and the log-layer.
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(b) Reynolds shear stress −uv.

Figure 5. Turbulent stresses spanning the half-height of the channel flow.

4. Results

Results pertaining to the example data are reviewed in several stages: a brief review of the
turbulence field statistics followed by the corresponding Reynolds stress anisotropy tensor invariant
analysis, and the proper orthogonal decomposition. Analytical methods are then combined and
discussed in terms of the anisotropy of the turbulence field as represented through truncated POD
bases. Finally, effects of a least-square correction applied low-order descriptions are discussed in
terms of error reduction.



LOW-ORDER ANISOTROPY TENSOR INVARIANT ANALYSIS VIA POD 9

4.1. Turbulence field. The first SPIV plane discussed is located at one half rotor diameter down-
stream from the model wind turbine (x/D = 0.5) and represents the location of greatest intermit-
tency imparted on the flow by the passage of the rotor blades. At this location, evidence of the
rotor is quite clear in each component of the Reynolds stress tensor, seen in Figure 6. An artifact
resulting from a reflection is seen in the area about (z/D, y/D) = (0.35, 0.4) in many of the contour
plots in Figure 6.
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Figure 6. Reynolds stresses tensor and k from the wake of a wind turbine at x/D = 0.5.

The Reynolds normal stresses (uu, vv, and ww) are shown in the diagonal positions of Figure
6. Together, they account for the energy described by k. All the normal stresses exhibit high
magnitudes following the mast of the model turbine. The streamwise normal stress shows peak
values tracing the swept area of the roots and tips of the rotor blades. Minimum values of uu follow
the nacelle of the model turbine. The vertical normal stress vv shows an area of high magnitudes
combining several effects. Vertical fluctuations in the wake are greatest in intensity issuing from
the rotor at top-tip and bottom tip heights, rotated by the bulk flow field. An analogous effect is
seen for ww where the greatest fluctuations occur at the spanwise extremes of the rotor, and are
similarly rotated in the wake by the bulk flow.

Asymmetry of the wake arising from the rotating geometry of the wind turbine is evident in
the Reynolds shear stresses, especially those including fluctuations of the streamwise velocity. As
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expected from other wind tunnel studies for wind energy [37, 38, 36], positive values of −uv occur
above hub height in the wake. This stress is associated with the vertical flux of mean flow kinetic
energy by turbulence and remediation of the wake. Correlations between the streamwise and
spanwise fluctuations of velocity are seen in the contour plot of −uw and contribute to lateral flux
of kinetic energy. Rotation of the turbine rotor influences −uv and −uw similar to the normal
stresses discussed above. The Reynolds shear stress −vw is approximately symmetrical about the
hub in both the xy− and xz−planes.

In the bottom left corner of Figure 6 is a contour plot of the turbulence kinetic energy. It
is unsurprising that the dominant features of k correspond with those of uu, as it is the largest
component of the Reynolds stress tensor for the flow in question. The turbulence kinetic energy is
included for its theoretical contribution to the present analysis methods; turbulence kinetic energy
integrated over the measurement domain is reflected by the POD eigenvalues and it is used to
normalize the Reynolds stress tensor in arriving at the anisotropy tensor.

A measurement plane from the far wake was selected located at x/D = 6 as the turbulence
exhibits different behavior here than near the model wind turbine. At this location the wake is
largely recovered and the flow is well-mixed. Each of the turbulent stresses is more uniformly
distributed in the measurement plane and has decreased in magnitude from the previous examples.
Evidence of rotation is almost completely absent from the normal stresses with the exception of
uu, which continues to demonstrate some asymmetry.

The magnitudes of the shear stresses are greatly reduced compared to their previous values.
Those stresses contributing to the flux of kinetic energy (−uv and −uw) demonstrate magnitudes
less than 50% of their corresponding near-wake values, indicating that the turbulence field is fairly
uniform at this point in the wake. The stress −vw has reduced in magnitude to approximately
10% of its former level, although it retains the features seen throughout the wake. Although they
differ slightly in magnitudes, each of the normal stresses demonstrate that the flow tends toward
homogeneity far into the wake. As the shear terms fall off, one may also consider that the normal
terms become more representative of the principle stresses. This tendency toward uniformity is
characteristic of well-mixed turbulence and is reflected in the invariants of the normalized Reynolds
stress anisotropy tensor.

Data from the DNS of the fully developed channel flow is seen in Figure 8. The data presented
follows the same arrangement as the above figures for the wind turbine wake. The data presented
is a small subset of the total data from the simulation, accounting for decreased convergence of
turbulence statistics. The data included here was intentionally down sampled, both spatially and
temporally, for the purposes of low-order description. Regardless of downsampling, the character-
istic features of the turbulence close to the wall on one side of the channel are represented in the
contours in Figure 8.

Stresses presented for the channel flow differ from those of the wind turbine wake; the spatial
organization of energy present in each component of the stress tensor reflects the influence of
the wall on the flow. Direct numerical simulation undertaken here is the product of extensive
technical development such that the resulting turbulence field matches boundary conditions derived
theoretically and observed in closely controlled experiments. The inner layer of the wall-bounded
region is seen in the simulation results as minimum values of all components of the Reynolds
stress tensor. Profiles of the stress field are seen in the associated documentation [32] with greater
statistical convergence.

The simulation data includes boundary conditions applied at the wall as identically null values of
all Reynolds stresses at y+ = 0. Immediately above the wall, stresses and turbulence kinetic energy
take on non-null values. The inner layer is evidenced as the region where viscous forces dominate
and the resulting turbulence is low in magnitude. Turbulence stresses increase quickly with y+;
the streamwise normal Reynolds stress and k show peak values at y+ = 16.5 (y/H ≈ −0.9835).
Maximum values of vv and ww occur further from the wall. Shear terms are lower in magnitude
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Figure 7. Reynolds stresses tensor and k from the wake of a wind turbine at x/D = 6.

than the normal stresses and take on negative values in the flow. All stresses from the DNS channel
flow are non-dimensionalized by the channel half-height H, and the friction velocity uτ = 0.0499.
The DNS was performed with non-dimensional values, and as a result each component of uiuj
demonstrates values approximately two orders of magnitude lower than in the wake of the wind
turbine seen above. In the following review of the anisotropy tensor invariants, it is clear that the
anisotropy of a turbulent flow is dependent on the deviation from isotropic turbulence rather than
the magnitudes of the Reynolds stress tensor.

4.2. Reynolds stress anisotropy. The second and third Reynolds stress anisotropy tensor in-
variants and the anisotropy factor are shown in Figure 9 for both planes in the wind turbine wake
and the channel flow. Agreeing with the Reynolds stresses above, the invariants demonstrate a
decrease in spatial organization moving downstream from the model wind turbine. Subfigures cor-
respond to x/D = 0.5 in Figure 9(a), x/D = 6 in Figure 9(b), and the channel flow in Figure 9(c).
Contours of η from the near wake (Figure 9(a)) indicate that the minimum values occur trailing
the nacelle of the turbine close to the device. Increased η indicates a higher degree of anisotropy
in the turbulence. Maxima of η ≈ 0.22 occur at the spanwise borders of the wake (z/D ≈ ±0.5)
and in the upper corners of the measurement plane. By x/D = 6 (Figure 9(b)), large-scale mixing
in the wake increases the uniformity of the turbulence field. Downstream from the wind turbine,
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Figure 8. Reynolds stresses tensor and k from the fully developed channel flow DNS.

turbulence decays and becomes increasingly homogeneous and tends toward isotropy. Accordingly,
the second invariant is smaller than the second invariant observed in the near wake.

The third invariant ξ delineates whether the turbulence field is well represented by a single
dominant component (ξ > 0) or two co-dominant components (ξ < 0). Near the turbine (x/D =
0.5), the third invariant shows a region of ξ < 0 trailing the mast and the lower part of the rotor
area. As with the turbulent stresses, the region of negative ξ is made asymmetric by rotation of
the bulk flow. In the far wake (x/D = 6), ξ is symmetrically distributed in the wake as effects of
rotation are largely absent from the flow at that location. The magnitude of ξ is reduced in the
far wake following the transition of the turbulence toward homogeneity. As with η, increasingly
isotropic flow requires small magnitudes of ξ.

The anisotropy factor F , Equation (6), combines the second and third invariants of the anisotropy
tensor into an order-one local description of the isotropic state of the turbulence. Figure 9(a) shows
that the region of highest F occurs following the nacelle and mast of the model wind turbine and
the region of the flow below the rotor. Within the swept area of the rotor, F demonstrates values
below 0.5, taken to indicate local anisotropy; immediately outside the swept area of the rotor,
F ≈ 0.75, suggesting that structures shed by the tips of the rotor blades contribute more isotropic
turbulence in an ensemble sense. Looking to the far wake in Figure 9(b), the entire measurement
field is more isotropic with peak values on the order of F ≈ 0.95 following the nacelle. The wake
expands as it convects downstream, shown by the regions where F ≈ 0.6. The channel flow wall-
bounded region demonstrates the anticipated gradient of F with y/H. Minimum values of F occur
at and immediately above the wall; F increases to approximately 0.75 with increasing wall normal
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(c) Channel flow DNS

Figure 9. Contours of the η, ξ, and F , from left. Color range reflects maximum
and minimum theoretical values for each quantity.

coordinate. The data presented here do not include the center of the channel, where F would reach
its maximum values.

Lumley’s triangles are shown for the SPIV measurement planes in Figure 10. Points in each
Lumley’s triangle are colored by their respective wall-normal locations, shown by Figures 10(d)
through 10(f). Dark blue points correspond to the smallest wall-normal coordinate; yellow points
correspond to larges values of the wall-normal coordinate. For clarity in the anisotropy invariant
maps, only the points in subfigures 10(d) through 10(f) are shown. Data for the near wake shows
that the turbulence occupies a large region of the anisotropy invariant space. Interesting to note is
that ξ is always either significantly positive or significantly negative; the center of Lumley’s triangle
is not occupied by the invariants for x/D = 0.5. The wind turbine wake tends toward positive ξ,
indicating that the turbulence is dominated by a single large principle stress for much of the wake.
Further downstream, the turbulence is much more isotropic as indicated by the occupation of the
lower region of Lumley’s triangle at x/D = 6, although it never reaches the perfectly isotropic
condition, where η = ξ = 0.
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Figure 10. Anisotropy invariant maps for each measurement set (a-c). Points in
the invariant space are colored according to their wall-normal location in physical
space (d-f).

Invariants of the channel flow show different behavior than the wind turbine wake according
to the nature of the flow. Differences are seen in the near-wall region y/H < −0.95, where the
magnitudes of both invariants are quite large. This region conforms to boundary conditions imposed
on the flow during simulation. Turbulent stresses peak in the near-wall region arising from strong
shearing of the mean flow. In the viscous sublayer (y+ ≈ 10), nearly all turbulence is suppressed.
Immediately above the wall, the only non-null Reynolds stress is uu, there leading to data with
identically one-dimensional turbulence (η = ξ = 1/3). With increasing wall-normal distance, the
spanwise normal stress begins to emerge and the turbulence follows the two-component boundary
of Lumley’s triangle. With increasing y/H, the remaining Reynolds stresses express energy and
the invariants shift suddenly to exhibit values corresponding to three-dimensional turbulence. In
the outer region of thewall-bounded region (y+ ≥ 50), the turbulence is less organized in the sense
of the anisotropy tensor invariants; meaning, the second invariant spans 0.1 ≤ η ≤ 0.3 and the
third invariant spans −0.1 ≤ ξ ≤ 0.3. The turbulence in the center of the channel flow (not shown)
is more isotropic than the wall-bounded region. With increasing wall-normal distance, anisotropy
invariants follow the trends described by Rotta [11] and Pope [27], where η and ξ tend toward zero
with increasing y/H and turbulence becomes more isotropic.

4.3. Snapshot POD. The two selected measurement planes from the wind turbine wake each have
2000 POD modes corresponding to the 2000 velocity snapshots used to formulate the kernel of the
POD. Each mode is also associated with an eigenvalue that communicates the energy associated
with that mode throughout the measurement set. Similarly, the channel flow data has 1180 POD
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modes issuing from the snapshots sampled from the simulation data. Normalized eigenvalues from
the POD for each dataset are seen in Figure 11(a).

One of the major benefits of the POD arises from its ability to sort important features of the flow
toward the front of the resulting modal basis. In this way, features that dominate in terms of their
contribution to the TKE, may be selected to represent the full turbulence field with very few modes.
Figure 11(b) shows the cumulative summation of the eigenvalues from each dataset compared to
frequently used thresholds. The point of truncation of a POD mode basis is frequently arbitrary,
often taking a threshold of a given portion of the total energy expressed by the eigenvalues of the
POD. Thresholds of these sort are seen in Figure 11(b) as gray horizontal lines. Reconstructing
the Reynolds stress tensor with a truncated set of POD modes typically describes the important
features of the turbulence but necessarily excludes energy from the description. The 50% threshold
of integrated TKE requires very few modes (8, 13, and 18 modes for the channel flow, wake at
x/D = 6, and wake at x/D = 0.5, respectively) but omits energy from the majority of the modal
basis. Intermediate and high modes are taken to describe small scales of turbulence that are
relatively isotropic and contribute little energy to the turbulence field. Gray lines in Figure 11(b)
correspond to 50%, 75%, and 90% thresholds of energy expressed by the cumulative summation
of POD eigenvalues. Shorthand notation for the portion of energy expressed by a truncated mode
basis is introduced as,

(13) ε =

∫
Ω
k̊dΩ

/∫
Ω
kdΩ =

Nr∑
n=1

λ(n)

/
N∑
n=1

λ(n),

where the point of truncation is designated by Nr. In equation (13), quantities designated with an

over-ring (e.g. k̊) represent the truncated turbulence described with the low-rank POD modes.
The flows are easily distinguished by the trends shown in Figure 11(b). POD eigenvalues from

wake data indicate that many more modes are required to recover the full range of dynamics in
the flow. Trends for x/D = 0.5 and x/D = 6 in the solid and dashed lines are flatter than for
the channel flow, indicating that there is a broader range of energetic structures in the wake. In
contrast, the channel flow data accumulates energy with few modes. Nearly all of the energy is
present in the first 100 modes and the remaining basis describes very little in terms of turbulence
kinetic energy. This is due in part to limiting the range of the sampled data to exclude the outer
portion of the domain. In wall-bounded flows, the range of length scales observed is a function of
wall-normal distance. Applying the POD to the channel half-height yields a greater range of POD
modes describing energetic structures in the flow. Energy accumulates across the channel half-height
faster than in the wake data, seen as a flat region of the eigenvalue spectrum for Nr/N ≥ 10−1.

Figure 11(a) shows that energy associated with each POD mode is normalized by the turbulence
kinetic energy integrated over each measurement domain. Each normalized eigenvalue of the POD
describes the relative importance of its respective POD mode to the turbulence field. The distri-
bution of energy in the normalized eigenvalues for the wake measurements (solid and dashed lines)
are nearly identical to one another, arising from the similarity in POD modes throughout the wake.
Hamilton et al. [31] demonstrated that POD modes are subject to streamwise evolution throughout
the wake. Eigenvalues for the channel flow (indicated with circles) fall off more quickly than for
the wake. The concentration of energy in few eigenvalues suggests that energy is contained in a
few coherent structures that exist in the wall-bounded region of the channel flow.

In the low-order descriptions, the POD basis is separated into isotropic and anisotropic portions
analogous to decomposing the turbulence field according to Equation (3). The isotropic portion
of the field is assumed to be accounted for by the small scales, represented by intermediate and
high-rank POD modes. The anisotropic contribution to the total turbulence field, is represented by
the lowest ranking POD modes representing the most energetic structures. The POD eigenvalues
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Figure 11. Eigenvalues from the snapshot POD for the wind turbine wake at
x/D = 0.5 (solid black lines), x/D = 6 (dashed lines), and the channel flow DNS
data (circles).

delineate the turbulence kinetic energy expressed by the Reynolds stress tensor integrated over the
domain, equal to the sum of the isotropic and anisotropic turbulence,

(14)

N∑
n=1

λ(n) =

∫
Ω
k̊dΩ +

∫
Ω
k̂dΩ.

In the current interpretation of the POD modes, anisotropic contributions to the turbulence field
are composed with the lowest ranking POD modes, and the complementary isotropic contributions
are designated with the caret (e.g. k̂) composed of the remaining POD modes. The majority of tur-
bulence structures are considered to be part of the isotropic turbulence field, including contributions
from intermediate and high-rank POD modes.

The Reynolds stress tensor is represented with the superposition of modes up to Nr, according
to,

(15) ˚uiuj =

Nr∑
n=1

λ(n)φ
(n)
i φ

(n)
j .

With the low-order description of the Reynolds stress tensor calculated according to Equation
(15), the anisotropic turbulence kinetic energy is written k̊ = 1

2(ůu+ v̊v+ ẘw). In the same sense,
the isotropic contributions to the turbulence field may be represented with the range of modes from
the point of truncation Nr to the end of the basis,

(16) ˆuiuj =

N∑
n=Nr+1

λ(n)φ
(n)
i φ

(n)
j .

Common practice in low-order descriptions via POD is to establish the truncation point of the
modal basis at the point where 50% of the total turbulence kinetic energy is included according
to the cumulative summation of λ(n) (as seen in Figure 11(b)). A division at this point imposes

the balance
∫
k̊dΩ =

∫
k̂dΩ. Truncating at a desired threshold of energy accounts for much of the

dynamic information of the turbulence field with an economy of modes, in fact, the POD is defined
to do exactly this.
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However, an energy threshold offers no guarantee of a quality reconstruction in terms of turbu-
lence isotropy. To this end, the equivalent anisotropy factor Fint is computed for each case and
shown in Figure 12 as a function of the number of POD modes used to represent the turbulence
field. Theoretically, F̊int ranges from zero for anisotropic (one or two-dimensional) turbulence to

one for isotropic turbulence. In the data shown, F̊int converges to Fint with increasing Nr but never
reaches unity as the example data exhibit anisotropy throughout the fields. The horizontal gray
line included in the figure illustrates a threshold where Fint = 0.5, an even division of the range of
the anisotropy factor, taken here to separate anisotropic and isotropic turbulence. The three cases
demonstrate values of the equivalent anisotropy factor of 0.63, 0.77, and 0.55 for the wind turbine
wake at x/D = 0.5, x/D = 6, and the channel flow, respectively. The equivalent anisotropy factor
is an integrated average value over the measurement domain, thus smaller values of Fint indicate
local contributions of anisotropic turbulence. The number of modes required to reach the Fint = 0.5
threshold in each case depends on the number of modes that account for anisotropic features in the
flow. In the current cases, the Fint = 0.5 threshold is reached when including Nr = 149, 36, and
115 modes for the wind turbine wake at x/D = 0.5, x/D = 6, and the channel flow, respectively.
The number of modes required to reach the anisotropy threshold is much larger than that required
to reach the 50% energy threshold in all cases. Table 2 relates the cases and thresholds including
the complementary values in question (in terms of ε or F̊int).
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Figure 12. Equivalent anisotropy factor the wind turbine wake at x/D = 0.5 (solid
black lines), x/D = 6 (dashed lines), and the channel flow DNS data (circles).

Table 2. Comparison of energy and anisotropy thresholds for the wind turbine
wake and channel flow. The relative portion of energy accounted for by the truncated
basis up to Nr is designated as ε.

Case ε ≥ 0.5 F̊int ≥ 0.5

x/D = 0.5 Nr = 18, F̊int = 0.21 Nr = 149, ε = 0.78

x/D = 6 Nr = 13, F̊int = 0.29 Nr = 36, ε = 0.67

Channel flow Nr = 8, F̊int = 0.13 Nr = 115, ε = 0.94

Figures 13, 14, and 15 show reconstructions of components of the Reynolds stress tensor including
fluctuations of the streamwise velocity. Each figure compares low-order descriptions of the stresses
based on the thresholds on ε or F̊int, delineated in Table 2. In the contours of Figure 13(a),
one observes that many of the distinctive features seen in the full stress field at x/D = 0.5 are
represented by ˚uiuj using the 50% energy threshold, although the magnitude of each stress is

reduced in the low-order description. The streamwise normal stress ůu exhibits azimuthal streaks
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resulting from passage of the rotor blades seen in the full statistical values. However, the isotropic
portion ûu shows no evidence of rotation in the flow. Instead, the isotropic part is nearly uniform
in the swept area of the rotor. Similar behavior is seen in the shear stresses in Figure 13(a). Both
ův and ůw show characteristic regions of positive and negative magnitudes and the effects of bulk
rotation discussed above. While the most energetically significant dynamics are accounted for in the
50% energy threshold, the equivalent anisotropy factor using only 18 modes is F̊int = 0.21, which
indicates that the anisotropy of low-order description of the turbulence is greatly exaggerated as
compared to the original field. Reconstructing the Reynolds stress tensor up to the anisotropy
threshold (Figure 13(b), 149 modes for x/D = 0.5) brings the equivalent anisotropy factor up to

F̊int = 0.5, and naturally accounts for more kinetic energy in the modal basis. Interestingly, the
contours in Figures 13(a) and 13(b) are qualitiatively similar, the key difference being that using
more modes in the description of turbulence increases the magnitude of each stress. This indicates
that while many modes are needed to reach the F̊int = 0.5 threshold, energy introduced in the
intermediate range is relatively homogeneously distributed in the field.
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(a) ˚uiuj at x/D = 0.5 using Nr = 18 modes and accounting for F̊int = 0.21 and ε = 0.5.
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−ů v

−0.5 0 0.5

0.5

1

1.5

2

2.5

−0.1

0

0.1

0.2

0.3

z /D

y
/
D

−ůw
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(b) ˚uiuj at x/D = 0.5 using Nr = 149 modes and accounting for F̊int = 0.5 and ε = 0.78.

Figure 13. Low-order descriptions of the turbulence field at x/D = 0.5 using the
kinetic energy threshold (ε = 0.5) (a) and the anisotropy factor threshold Fint = 0.5
(b).

A greater difference between the two thresholds is observed for the far wake of the wind turbine.
Again, a low-order description recovers the dominant flow features in the field, but the difference
in magnitudes is more significant than in the near wake. At x/D = 6, the salient features of
the stresses are all present in the first 13 modes, seen in Figure 14(a), but the magnitudes of the
Reynolds stresses are as small as 30% of their full statistical values. Comparing ˚uiuj to uiuj from
Figure 7, the behavior is accounted for by the anisotropic contribution of 36 modes. Magnitudes of
the contours in 14(b) are approximately 80% of the original statistical values, much closer to the
full field. Even more than in the near wake, the isotropic contributions are uniform and small for
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x/D = 6. The far wake of the wind turbine exhibits the most isotropic turbulence of the selected
data, with a full-order equivalent anisotropy factor of 0.77. Figure 12 confirms that Fint is larger
for the far wake and that the threshold is reached much more quickly than for the other cases,
indicating that a greater range of the POD contribute to isotropic turbulence structures.
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(a) ˚uiuj at x/D = 6 using Nr = 13 modes and accounting for F̊int = 0.29 and ε = 0.5.
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Figure 14. Low-order descriptions of the turbulence field at x/D = 6 using the
kinetic energy threshold (ε = 0.5) (a) and the anisotropy factor threshold Fint = 0.5
(b).

Low-order descriptions of the channel flow turbulence are shown in Figure 15. In the turbulence
accounted for by the modes below the 50% energy threshold (Nr = 8), magnitudes of the Reynolds
stresses in Figure 15(a) are already quite similar to those shown in the original statistics, although
the reconstructed features differ. In the channel flow, the energetic portion of the modal basis is
incapable of capturing all of the near-wall behavior. Like the wind turbine wake in Figures 13
and 14, the shear stresses in the channel flow are nearly identical to the description using the full
statistics, although they reconstruct at different rates. The streamwise-spanwise stress ůw slightly
overestimates the shear close to the wall. The F̊int = 0.5 threshold uses many more modes (Figure
15(b), Nr = 115) than the energy threshold for the channel flow. This difference is taken to indicate
that many intermediate modes may be considered anisotropic but contribute little in the way of
energy. As anticipated, including more modes results in estimates of the Reynolds stresses with
greater detail and magnitudes that are more similar to their respective statistical values.

Gauging the quality of POD reconstructions by comparing their invariants as in equations (4) and
(5) yields parallel insights to the customary energy-based analysis. The resulting invariants reveal a
great deal about the character of the flow not immediately visible in contours of the stresses. Figure
16 offers a comparison between the AIMs of the invariants of bij , b̊ij , and b̂ij based on the anisotropy

threshold of F̊int = 0.5, from left to right, respectively. The center column of Figure 16 plots η̊ and
ξ̊ for the three data cases. All measurement points exhibit invariants that are greater than in the
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(a) ˚uiuj for the channel flow using Nr = 8 modes and accounting for F̊int = 0.13 and ε = 0.5.
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(b) ˚uiuj for the channel flow using Nr = 115 modes and accounting for F̊int = 0.5 and ε = 0.94.

Figure 15. Low-order descriptions of the turbulence field in the channel flow using
the kinetic energy threshold (ε = 0.5) (a) and the anisotropy factor threshold Fint =
0.5 (b).

original data, with the exception of data describing one- or two-component turbulence (these points
already show the greatest magnitudes of η allowed for realizable turbulence), confirming that the
lowest ranking POD modes correspond to the least isotropic contributions to the turbulence field.
Further, the data suggest that low-order descriptions of the flow ‘flatten’ turbulence, moving from
fully three-dimensional states toward two-component turbulence. Three-dimensional turbulence
requires three principle stresses for complete description. In contrast, a two-component turbulence
field requires only two principle stresses, the orientation of which vary with location.

The complimentary effect is observed for the isotropic contribution to the flow. Invariants for
isotropic contributions η̂ and ξ̂ are compared in the right column of Figure 16. For representations
of the flow using intermediate and high-rank POD modes, the invariants tend toward the isotropic
condition where η̂ = ξ̂ = 0. In the channel flow, there are points that contradict the tendency of
invariants to decrease, located in the near-wall region. Areas where η̂ and ξ̂ indicate less isotropic
flow coincide with locations where −uw = 0 at the wall. In both of the sampled measurement
windows from the wind turbine wake, η̂ and ξ̂ are everywhere smaller in magnitude than η and
ξ. Decreasing the threshold associated with Nr exaggerates the anisotropy seen in η̊ and ξ̊ while
relaxing the distortion seen in η̂ and ξ̂. In using a truncated basis of POD modes for low-order
models, a small number of modes greatly reduces the complexity of the resulting model. Extreme
reductions of the invariants leads to cases where the turbulence becomes identically one- or two-
dimensional. Truncating the basis of POD modes used in low-order descriptions of the flow are
shown analytically in appendix A.

4.4. Error propagation via basis truncation. An important consideration in gauging the qual-
ity of a low-order description of the turbulence field is the accuracy of each component of the
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(c) Channel flow DNS, basis divided at Nr = 115.

Figure 16. Lumley’s triangle composed with invariants derived from uiuj (left),
˚uiuj (center), and ˆuiuj (right). In each case, the threshold of Fint = 0.5 is used.

reconstructed stress field. In the following error analysis, the normalized root-mean-square error
(NRMSE) of Reynolds stresses, invariants and anisotropy factors is considered according to,

(17) NRMSE(̊g) =

√
(g − g̊)2

max(g)−min(g)
,

where g is a reference quantity from the full statistics, g̊ is the quantity derived via low-order
description, and the root-mean-square error is normalized by the span of g.

Figure 17 shows the NRMSE of the components of the Reynolds stress tensor as a function of
the number of modes used in the description Nr. In the near wake of the wind turbine model
(Figure 17(a)), a truncated modal basis shows greatest error for vv regardless of the number of
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modes included. The near wake shows the most consistent behavior of all the cases; for all points
of truncation of the POD basis, the normal stresses demonstrate greater error than the shear terms
and a rough proportionality is maintained between the errors.

The far wake in Figure 17(b) shows considerably different behavior, wherein the normalize RMS
error for normal stresses is far greater than for the shear stresses. The far wake is the most
isotropic of the cases, and the span of the normal stresses used to normalize the errors of ˚uiui are
quite small. Additionally, because the shear terms contribute more significantly to the anisotropy
tensor accounting for structures favored by low-rank POD modes, they reconstruct much faster
than normal stresses. As the anisotropic features come out of the POD basis first, characteristic
features of the shear terms are visible with as few as two modes. In the wake data, the spanwise
normal stress is associated with large structures captured by the POD. Spanwise homogeneity
leads to decreased magnitudes of ww and low-rank POD modes fail to accurately reconstruct the
spanwise normal stress.

Each dataset indicates that the NRMSE is greatest for the normal stresses, with the excep-
tion of the channel flow in Figure 17(c), which shows NRMSE(ův) >NRMSE(ůu). Error of the
streamwise/wall-normal shear stress falls below that of the streamwise normal stress after Nr = 11,
just beyond the 50% energy threshold for the channel flow, but well below the anisotropy threshold.
Normalizing the RMS errors demonstrates that error propagation through the POD basis is on the
same order for the channel flow data as for the near wake of the wind turbine. Without normaliza-
tion the magnitudes of the stresses (and of NRMSE( ˚uiuj)) for the channel flow are approximately
three orders of magnitude smaller than for the wake data.
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(c) Channel flow DNS

Figure 17. NRMSE associated with reconstructed Reynolds stress tensor as a func-
tion of number of basis modes. In all subfigures, uu solid black lines, vv dashed lines,
ww dash-dot lines, −uv circles, −uw diamonds, −vw squares.

A similar gauge of quality for low-order descriptions compares the NRMSE of the invariants of
the anisotropy tensor as functions of the number of modes included in the truncated POD basis.
Due to the definition of η and ξ from the Reynolds stresses, it is expected that the error propagation
of low-order descriptions of the invariants will be related to that of the turbulence stresses. The
NRMSE of the anisotropy tensor invariants is quite similar for the channel flow and the far wake,
but are both dominated by the normalized RMS error of the invariants in the near wake. For all
data, the error of ξ̊ is less than for η̊. The NRMSE of the second invariant at Nr = 1 shows a
maximum error of approximately 120% for x/D = 0.5 and a minimum error of approximately 75%
for the channel flow. Because the wake data have a different number of modes than the channel
flow, the mode numbers have been normalized by the respective total number of modes for each
case. The equivalent anisotropy factor is computed from η̊ and ξ̊ and compared to original values,
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Figure 18(c). Whereas the NRMSE of the anisotropy tensor invariants differ considerably for the

near and far wake data, NRSME(F̊ ) is quite similar between the two cases beyond the first few
modes.
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Figure 18. NRMSE of anisotropy tensor invariants and anisotropy factor as a
function of Nr. Mode numbers are normalized by the total number of modes, N .
Lines are x/D = 0.5 (solid lines), x/D = 6 (dashed lines), and the channel flow
DNS data (circles).

It is from the invariants of b̊ij that insight regarding the quality of the low-order descriptions
of turbulence is gained. The invariants describe the relative balance of elements in the Reynolds
stress tensor the state of turbulence in quantifiable terms. The NRMSE of the invariants provides
a quantitative account of the ability of a low-order description to match statistics in the turbulence
field. A visualization of the quality of low-order description is provided in Figure 19, wherein the
AIM of the channel flow is composed with increasingly complex descriptions of the flow. Increasing
Nr leads the invariants to their original values, conforming to the reduction of NRMSE discussed
above. Values of the normalized RMS error and the portion of energy accounted for in low-order
descriptions are delineated in Table 3.

Table 3. Percent kinetic energy and NRMSE values for anisotropy factor and ten-
sor invariants for channel flow data with increasing number of POD modes. Data
correspond to Figures 19(a) through 19(f)

Nr NRSME(η̊) NRMSE(ξ̊) NRMSE(F̊ ) ε
1 0.71 0.48 1.0 0.19
2 0.60 0.42 1.0 0.28
4 0.38 0.25 0.46 0.39
8 0.30 0.18 0.38 0.50
16 0.22 0.13 0.30 0.63
32 0.14 0.09 0.19 0.76
115 0.034 0.042 0.048 0.94

A few points of interest arise from Figure 19 regarding the ability of POD descriptions to represent
the actual turbulence field. Figure 19(a) demonstrates that using a single mode (here accounting
for 19% of the integrated TKE) is capable of formulating exclusively one-dimensional turbulence.
Similarly, reconstruction with Nr = 2 (Figure 19(b), 27.5% of the integrated TKE) is capable
of reproducing identically two-dimensional turbulence only. It should be noted here that severe
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Figure 19. Lumley’s triangle for channel flow represented with increasing number
of POD modes. See Table 3 for energy and NRMSE values for anisotropy factor
and tensor invariants.

basis truncations (Nr = 1 and Nr = 2) still require three components of velocity to describe
the turbulence field in the domain. The one- or two-dimensional turbulence is a local flattening
only; while only one or two principle stresses are needed to describe the local stress field, their
orientation changes in the domain. A global description of the turbulence still requires three
velocity components. The reduction to one-and two-dimensional turbulence occurs identically for
the wake data, although those Lumley’s triangles are not shown.

Figures 19(c) through 19(f) show the AIM for invariants derived with models using Nr = 4, 8,
16, and 32 modes, accounting for 38.8%, 50.3%, 63.1%, and 75.9% of the turbulence kinetic energy,
respectively. In each plot, the region of Lumley’s triangle spanned by η̊ and ξ̊ approaches the span
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described by η and ξ, provided in 19(h) for reference. NRMSE for each low-order description is
included in the captions, matching the error propagation in Figure 18. In Figures 19(c) and 19(d)
the range of invariants is constrained to the upper region of the AIM as a result of the exclusion
of the isotropic contribution to the Reynolds stress tensor. Increasing the truncation point to the
threshold based on F̊int = 0.5 (Figure 19(e), Nr = 115), the invariants demonstrate behavior nearly
identical the full statistics. The one- and two-dimensional behavior seen in the innermost region of
the wall-bounded region is distinct from the three-dimensional turbulence seen in the outer layer. As
more modes are included, the low-order description contains more isotropic background turbulence
and the invariants move downward, toward their respective positions in the AIM described by η
and ξ, Figure 19(h). As the POD representation tends toward the state derived statistically, the

balance of terms ˚uiuj more closely resembles that seen in uiuj , a tendency reflected in η̊ and ξ̊.

4.5. Correction of the reduced-order flow description. A correction to the low-order flow
descriptions arises from the observation that energy excluded from the truncated POD basis ac-
counts for features that are both small and fairly homogeneous. This indicates that the energy
excluded from the flow using ˚uiuj may be considered as nearly constant background energy. Re-
cent extensions of the double POD [31] corrected estimates of the Reynolds stresses by way of a
constant coefficients used to push the magnitudes of each component toward the values seen in the
full statistics. The basic formulation of such a correction is,

(18) uiuj = Cij ˚uiuj .

The correction coefficient Cij is found through a minimization of the root-mean-square error errij
between the statistical stress field and the corrected reduced-order model,

(19) Cij 3 min


√
〈
(
uiuj − Cij ˚uiuj |Nr

)2〉
max(uiuj)−min(uiuj)

 = min
[
NRMSE(Cij ˚uiuj)

]
.

The correction applied to each component of ˚uiuj is a constant that minimizes the NRMSE and
effectively matches the magnitudes of the low-order descriptions to the statistical values. Correction
of this type is attractive in that it is quite simple to derive and apply. However, there remains
some error in the corrected stress fields arising from heterogeneity in ˆuiuj that is ignored in the
minimization of the error. As Cij accounts for the difference between the turbulence field and its

low-order description, it is necessarily a function of the number of modes used to compose ˚uiuj .

Figures 20 and 21 show Cij and the NRMSE between uiuj and Cij ˚uiuj , respectively.
Seen in Figure 20, the corrections associated with the normal stresses are larger in every case

than for the shear stresses. This result is expected as the reconstruction of energy by the POD is
slower in the normal stresses than in the shear terms. The corrections C2,2 and C3,3 applied to the
wall-normal and spanwise normal stresses are greatest in each case and for all POD truncations. Cij
falls off quickly for each case, where Cij < 2 for all components beyond Nr ≈ 100. An unanticipated

result comes in the correction for the shear stress −v̊w. This correction, unlike the others, is less
than unity, which implies that the low-order description over estimates the energy using a truncated
basis. In each of the data sets explored here, vw has the least energy of the Reynolds stress tensor.
All other correction terms are strictly greater than unity, signifying that energy is excluded in the
POD reconstruction.

Correction with Cij leads to a significant reduction in NRMSE for all stresses and all cases.
Figure 21 details the error of the corrected POD reconstructions according to the definition in
Equation (19). The maximum error for each case is associated with C1,1ůu, similar to the error
seen in the uncorrected low-order descriptions. The error with shear stresses is maximum for the
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Figure 20. Correction coefficient Cij as a function of Nr. In all subfigures, uu
solid black lines, vv dashed lines, ww dash-dot lines, −uv circles, −uw diamonds,
−vw squares.
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Figure 21. NRMSE between uiuj and Cij ˚uiuj . In all subfigures, uu solid black
lines, vv dashed lines, ww dash-dot lines, −uv circles, −uw diamonds, −vw squares.

C1,2ův from the data located at x/D = 0.5 but falls of quickly to be less than 5% everywhere.

Comparing the NRMSE( ˚uiuj) to NRMSE(Cij ˚uiuj) indicates that truncation error is reduced by
30% for the near wake and channel flow data and about 55% for the far wake.

The correction factors shown in Figure 20 and the associated errors shown in Figure 21 indicate
that there are notable gains in terms of accuracy of low-order descriptions of turbulence from
simple corrections. Invariants derived from corrected low-order descriptions are denoted with a
subscript c, as in η̊c and ξ̊c. Application of Cij to the low-oder description reduces the NRMSE
of the resulting anisotropy invariants by more than 50% for both η and ξ. Error associated with
correction of this form is within 5% except in the near wake of the wind turbine. The correction is
nonlinear and has effects in the overall balance of the modeled Reynolds stresses, that in turn alter
the behavior of the anisotropy tensor invariants. Each component of the correction tensor is defined
to minimize the NRMSE of ˚uiuj with the respective component of uiuj . Energy is distributed to
each component of the stress tensor at a different rate and the corrections attempt to account for
energy excluded from the truncated basis. A constant correction coefficient imperfectly assumes
that energy is excluded homogeneously in the domain, leading to the NRMSE seen in Figure 21.
Despite any remaining deviation from the original statistical field, it is encouraging to note that
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the proposed model correction can account for significant improvements in the behavior of the
low-order invariants η̊c and ξ̊c.
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Figure 22. Normalized NRMSEs by mode number (black) compared to those after
correction with Cij (blue). Lines are x/D = 0.5 (solid lines), x/D = 6 (dashed lines),
and the channel flow DNS data (circles).

Corrected low-order invariants offer significant improvements to the equivalent anisotropy factor
as well. Figure 23 compares the normalized RMS error of the invariants and the anisotropy factor
before (black) and after correction (blue) with Cij . After correction, the equivalent anisotropy factor
is not identically zero indicating that for severe basis truncations energy in the low-order description
of turbulence is rebalanced. Stated otherwise, with the correction factor, three-dimensionality is
introduced, where it was previously out of reach. These truncations were able to produce only
one- and two-dimensional turbulence without correction. While reductions of error by 50% are
certainly noteworthy by themselves, the accelerated convergence of F̊int,c as compared to F̊int offers
a hopeful result. The trends in Figure 23(a) indicate that with the correction proposed above, the

number of modes required to reach the F̊int = 0.5 threshold is greatly reduced for all cases. After
correction with Cij , the anisotropy threshold is reached with as few as 8, 3, and 10 modes for the

near wake, far wake, and channel flow (recall that before correction, F̊int = 0.5 required 149, 36,
and 115 modes).
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Figure 23. Equivalent anisotropy factor F̊int (a) and the normalized RMS error

of F̊ (b) by truncation point Nr, before (black) and after correction (blue). Mode
numbers are normalized by their respective totals to allow even comparison.
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A visual demonstration of the improvements to the anisotropy tensor invariants is provided in
Figure 24. As indicated by F̊int,c, the AIMs with a Nr = 1 and Nr = 2 (Figures 24(a) and 24(b))
are no longer constrained to one- and two-dimensional turbulence. Under correction, severe model
reduction is capable of reproducing three-dimensional turbulence. As before, increasing the number
of modes used in the low-order description leads to invariants that more closely match those of the
original stress field. In each of the corrected AIMs, the minimum values of η̊c are nearly identical
to those of η (Figure 24), indicating that for at least some of the domain, the correct degree of
isotropy is generated in the corrected turbulence fields. The two-dimensional behavior seen in the
inner layer is unaffected by the correction and reconstructs accurately with a mode basis of any
size. As it does for the Reynolds stress tensor, Cij reduces the NRMSE between the anisotropy
tensor invariants and their respective low-order descriptions. Although behavior of the low-order
invariants seen in Figure 24 is much closer to η and ξ than the uncorrected versions, is clear that
error remains in the low-order description.

5. Conclusions

The proper orthogonal decomposition is a widely used analytical tool in the study of turbulent
fluid flows. Large scales, expressing much of the turbulence kinetic energy, are accounted for by the
first POD modes, and often describe the most important features of the flow. Because the POD is
able to efficiently describe the flow, POD modes are used in reduced-order models as in Galerkin
projection and artificial neural-networks. Analysis of the invariants of the normalized Reynolds
stress anisotropy tensor is a well-developed theoretical platform for characterizing the state of
a turbulent flow. The second and third invariants are typically mapped against one another in
Lumley’s triangle, whose boundaries correspond with special states of turbulence used as limiting
cases and boundary conditions. Mapping the invariants in Lumley’s triangle provides insight to
the balance of the Reynolds stress tensor and provides clues as to the nature of the flow.

The above work samples data from substantially different turbulent flow fields in an exploration
of the anisotropic quality of low-order descriptions derived through truncated POD bases. Experi-
mental data from a model-scale wind turbine wake is sampled very close to the model device, where
the flow is intermittent and dominated by highly anisotropic turbulence, as well as the far wake,
where the turbulence field is well-mixed and relatively isotropic. An alternate case is provided
in the form of a sample of a direct numerical simulation of a fully developed channel flow. The
innermost regions of the wall-bounded region of the flow are well-resolved in the data and have
anisotropic properties conforming to the boundary conditions imposed on the simulation.

Application of the POD to the data sets reveals the expected accumulation of energy expressed
by the cumulative summation of POD eigenvalues. Low-order descriptions are made by truncating
the basis of POD modes according to a 50% energy threshold, common practice in the use of
POD. Although this threshold is arbitrary in terms of the error of the low-order description of
the turbulence field, the 50% threshold is used frequently, presumably due to the comfortable
equality of turbulence kinetic energy included and excluded from the resulting approximation of
uiuj . Mapping the propagation of normalized RMS errors between the low-order description and
the statistically derived turbulence fields demonstrates that although a fair portion of the energy is
excluded, the stress field represented with little residual error. Composing the normalized Reynolds
stress anisotropy tensor with the low-order description leads to new insights regarding the quality
of the POD reconstructions.

An alternate truncation point for the POD basis is found by integrating the anisotropy factor
of the low-order descriptions. As the lowest ranking POD modes account for the least isotropic
turbulence structures, using only a few modes results in reduced values of F̊int. A new threshold is
introduced seeking the number of modes required to demonstrate F̊int = 0.5, the midpoint between
limiting values of F . Because a greater number of modes are required to reach the anisotropy
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Figure 24. Lumley’s triangle for channel flow data after correction. Subfigure (g)

shows the 10 mode approximation required to reach F̊int = 0.5, (h) shows the full
data for reference.

threshold than the energy threshold, the resulting description of the turbulence field is more similar
to that of the original statistics. Lumley’s triangles composed with the low-rank POD modes
exhibit higher values of η̂ and ξ̂ than those derived from the full statistics due to the exclusion of
any isotropic turbulence from the POD. Contrarily, the intermediate- and high-rank POD modes
contribute much more to small-scale and homogeneous turbulence, and result in smaller magnitudes
of η and ξ, confirming that they express mainly isotropic turbulence structures. There is a non-linear
relationship between the Reynolds stress tensor and the anisotropy tensor invariants. Thus, there
is no intuitive combination of invariants of b̊ij and b̂ij that recovers anisotropy tensor invariants
conforming to the original data.
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A tensor of constant coefficients was defined to correct the magnitudes of each component of
the low-order Reynolds stress tensor, minimizing the remaining NRMSE. Correction of this form
assumes that the energy excluded from the POD approximation is homogeneously distributed
isotropic turbulence kinetic energy. Residual NRMSE between the corrected POD approximation
and the original statistics is approximately 25% lower than the uncorrected low-order description
for the channel flow and approximately 30% lower for the wind turbine wake. The anisotropy
tensor invariants show even greater reduction in residual error, nearly 50% of the uncorrected
version. Most notably, correction with a tensor of constant coefficients effectively rebalances the
magnitudes of the Reynolds stresses such that the invariants of the anisotropy tensor more closely
resemble realistic three-dimensional turbulence. In the cases of severe basis truncation, the POD
descriptions are able to account for only one- or two-dimensional turbulence. Correction with
constant coefficients enables the representation of three-dimensional turbulence for severe basis
truncations. The correction further shifts the point where F̊int = 0.5 by rebalancing the Reynolds
stress tensor. After correction, the anisotropy threshold is reached using an order of magnitude
fewer modes for all cases.

Through anisotropy tensor invariant analysis, the specific nature of the inaccuracy of low-order
models arising from truncated POD basis is made evident. Specifically, it is shown that low-order
models underestimate the magnitudes of the Reynolds stresses by excluding energy from the modal
basis and simultaneously exaggerate the anisotropy of the flow. The proposed correction method
accounts for both the exclusion of energy and the distortion of the anisotropy. Similarity apparent
in the error propagation of POD models as well as correction tensor suggests that generalized
corrections may be made for specific flow types or arrangements. Corrections explored above also
make severe basis truncations accessible for modeling of three-dimensional turbulence.

Appendix A. Anisotropy of severely truncated bases

The following development details the relationship of the POD mode basis to the invariants of the
normalized Reynolds stress anisotropy tensor. According to the theory for the proper orthogonal
decomposition, a low-order description of the Reynolds stress tensor may be composed as the linear
combination of POD modes and their respective eigenvalues,
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The POD lends energy to the reconstructed stresses equally, rather than distributing energy
following the balance of terms in the original stress tensor. This leads ultimately to an alteration
of the anisotropic state of the turbulence as shown in the invariants of b̊ij |Nr . Division by the
turbulence kinetic energy is required to reach the normalized Reynolds stress anisotropy tensor.
According to the low-order description above, the TKE is,

k̊Nr =
1

2
tr
(

˚uiujNr

)
=

1

2

Nr∑
n=1

λ(n)φ
(n)2
i .(21)
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A.1. Nr = 1. Limiting the POD basis to a single mode results in the simple description of the
turbulence kinetic energy as,

(22) k̊1 =
1

2
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w

)
.

The turbulence kinetic energy is used to normalize the low-order description of the Reynolds
stress tensor.
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Considering that only the first POD mode was used to formulate the above quantities, and that

the large structures are organized to the beginning of the basis, b̊ij,1 is taken to represent only the
most anisotropic turbulence.

As a consequence of normalization of the first invariant of bij , defined as the trace of the tensor
is zero.
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However, the second and third invariants are non-zero quantities. In the low-order reconstructions
shown here, the higher invariants take on special values not typically seen in real turbulence. The
degree of anisotropy of the flow is well described by the second invariant of bij . For the low-order
description using a single POD mode, the second invariant η is equal to the trace of the square of
the normalized Reynolds stress anisotropy tensor. With a single POD mode, η is written,
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.

Similarly, the third invariant of the normalized Reynolds stress anisotropy tensor, which describes
the characteristic shape of the turbulence, is equated to the trace of the cube of normalized Reynolds
stress anisotropy tensor. Using a single mode to describe the turbulence field, ξ evolves as,
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(26)

In the above definitions for η̊1 and ξ̊1, the expressions may be simplified by substitution of the
reduced-order turbulence kinetic energy k̊1. In doing so, both invariants collapse identically to 1

3

for the entire measurement domain. According to Lumley’s triangle, η = ξ = 1
3 corresponds to

1-component turbulence. Thus reduction of the POD mode basis to a single degree of freedom
can represent only a single component of turbulence. The resultant turbulence need not be fixed
to any coordinate system and in fact changes direction relative to the original measurements; its
alignment in space is expressed by the corresponding eigenvectors of bij,1.
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A.2. Nr = 2. Increasing the mode basis used in the low-order descriptions of the turbulence field
to Nr = 2 results in a similar but distinct development of the invariants of bij . With a basis of two
POD modes, the low-order turbulence kinetic energy is written,
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The two terms in Equation (27) represent the respective contributions to the low-order TKE
by the first and second POD modes. Note that each normal stress is multiplied by the respective
eigenvalue, indicating that energy is distributed evenly to the u, v, and w components. The differ-
ence seen in the stresses is ultimately arbitrated by the POD modes rather than the eigenvalues.
Using a basis of two mode, the normalized Reynolds anisotropy tensor is written,
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Normalization of ˚uiuj |2 to arrive at b̊ij,2 above is accomplished identically for that of ˚uiuj |1.

Consequently, the first invariant remains zero by definition.
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Higher invariants quickly become quite complicated to write in full. The second and third

invariants now include terms involving the squares of POD mode components (φ
(n)2
i ) as well as

cross-rank mode products (φ
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i φ
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i ) and products of eigenvalues (λ(1)λ(2)). The two-mode definition

of η is,
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Similarly, the two-mode definition of ξ is,
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(31)

While complicated in full, the two invariants can be simplified using the definition of the two-
mode TKE as done above for the single-mode approximation. Further, the invariants are related
through an expression familiar to the analysis of turbulence anisotropy,
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(32) η̊2 =

(
1

27
+ 2ξ̊3

2

)1/2

.

The relationship posed in Equation (32) defines the upper boundary of Lumley’s triangle and
describes two-component turbulence. As for the expansion of the invariants with a single POD
mode, the orientation of the two resultant components is well described by the eigenvectors of b̊ij,2.

The above development indicates that in order to reproduce three-dimensional turbulence, a
minimum of three POD modes are required to formulate the truncated basis. Using fewer modes
results in either one- or two-component turbulence fields. This is an intuitive result if one considers
the POD modes to be degrees of freedom of a dynamical system. Although each POD mode
vectorial in nature containing three distinct components, they represent a single projection of the
fluctuating velocity fields and thus a single degree of freedom. In the development including three
or more POD modes, the definitions of η and ξ become arduously long and have not been included
here.
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