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Abstract

The collapse dynamics of an axisymmetric fluid cavity that wets the bottom of a rotating bucket

bound by vertical sidewalls are studied. Lubrication theory is applied to the governing field equa-

tions for the thin film to yield an evolution equation that captures the effect of capillary, gravi-

tational and centrifugal forces on this converging flow. The focus is on the quasi-static spreading

regime, whereby contact-line motion is governed by a constitutive law relating the contact-angle to

the contact-line speed. Surface tension forces dominate the collapse dynamics for small holes with

the collapse time appearing as a power law whose exponent compares favorably to experiments in

the literature. Gravity accelerates the collapse process. Volume dependence is predicted and com-

pared with experiment. Centrifugal forces slow the collapse process and lead to complex dynamics

characterized by stalled spreading behavior that separates the large and small hole asymptotic

regimes.
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I. INTRODUCTION

Coating processes strive to produce uniform thin films on the underlying solid substrate.

In certain circumstances a hole can be nucleated in the film. Sometimes these holes disap-

pear and other times they remain as an undesirable defect. As the thickness of the uniform

film decreases, it becomes susceptible to instabilities and holes will form in a process called

spinodal dewetting [1]. Controlling the dewetting process allows one to create objects of pre-

determined size and spatial distribution, as required in many technological applications [2].

For example, micropatterning by dewetting has been used to create desired features in solids

ranging from metallic thin films [3] to soft rubber substrates [4]. The review by Geoghegan

and Krausch [5] summarizes the extensive experimental research on wetting/dewetting in

polymer films, focusing on the role of pattern formation caused by dewetting; see Reiter [6]

for a more modern review on dewetting of polymer films. On the scientific side, Sellier et al.

[7] have shown how to estimate the viscosity of a fluid by measuring the collapse time of a

nucleated hole, while Reiter et al. [8] demonstrate how the rheology of thin polymer films

can be characterized using careful dewetting experiments.

Hole formation is determined by the stability of the liquid film, which depends on the

film thickness h and the sign of the spreading parameter S ≡ σsg − (σls + σlg), relating the

solid/gas σsg, liquid/solid σls and liquid/gas σlg surface energies. When S < 0, the film

dewets by two mechanisms separated by the scale of the magnitude of the film thickness.

In nanometer-sized films (h < 10−9m), thickness fluctuations lead to intrinsic instabilities

that result in spinodal dewetting [1]. In contrast, mesoscopic films (10−3m > h > 10−8m)

are neutrally-stable and dewetting occurs by nucleation of a hole via external means, such

as capillary suction or air jets [9]. For completely-wetting substrates S > 0, the nucleated

hole is unstable and always collapses. In this paper, we are interested in studying holes in

the mesoscopic regime, where surface tension forces play a dominant role in the collapse

dynamics.

The experimental literature is filled with novel techniques to nucleate a hole in a thin film.

Padday [10] performed one of the first experimental studies on hole formation in which the

critical thickness below which water films ruptured on a variety of surfaces was measured and

found to increase with the contact angle. Taylor and Michael [11] utilized air jets to study

hole formation in water and mercury films. They showed that there exists a critical hole size
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above which larger holes grow and below which smaller holes heal. Experiments by Redon

et al. [9] focus on the rate of hole growth showing that the velocity is independent of film

thickness, but critically dependent on the receding contact angle. High velocity drop impact

[12] and annular retaining dams [13] have similarly been used. Backholm et al. [14] have

notably studied the interactions between multiple holes in viscous films. Recent experiments

by Mukhopadhyay and Behringer [15] and Dijksman et al. [16] utilize centrifugal forces by

rotating an axisymmetric fluid reservoir. These forces drive fluid to the outer edge of the

container thereby creating uniform and centered holes. We use an identical geometry in

deriving the theoretical model presented here.

With regard to films on partially-wetting substrates, Sharma and Ruckenstein [17] showed

that two equilibrium holes of different radii are possible for a given contact angle. They used

energy arguments (statics) to show that the small and large hole were unstable and stable,

respectively, thereby concluding that small enough holes will eventually close. Moriarty and

Schwartz [18] use lubrication theory to study the dynamics of hole closure for thin films to

show that a statically stable hole can be dynamically unstable if there is significant contact-

angle hysteresis. Bankoff et al. [19] report dynamic measurements of front velocities, dynamic

contact angles and interface shapes, as they depend upon the initial fluid depth. Their results

show that the final hole size increases as the initial fluid depth decreases. López et al. [20]

conduct a linear stability analysis using a lubrication model with contact line motion to show

small holes are unstable to axisymmetric disturbances and large holes eventually become

unstable to nonaxisymmetric disturbances. For films in bounded containers, the wetting

properties of the sidewalls can also play a significant role in dewetting [21].

Viscous gravity currents occur in industry [22] and in nature [23] and can be viewed as

a limiting case of the problem we consider here. The flow is primarily horizontal and can

be modeled by lubrication theory [24]. For unbounded flows, the resulting equations admit

a self-similar solution of the first kind [25] relevant to the dam break problem [26]. The

focusing flows that occur in hole collapse can also take a self-similar form of the second

kind, although the power law exponent can not be predicted a priori from scaling arguments

and must be computed as part of the solution. Experiments on hole collapse can be viewed

as convergent viscous gravity currents with Diez et al. [13] showing that the size of a hole

a ∼ (tc − t)0.762, where tc is the total time for the dry spot to collapse. We recover the

exponent predicted by Diez et al. [13] in the limit where gravitational forces dominate the
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collapse dynamics.

In capillary flows, the spreading of a liquid over a solid substrate is controlled by the

motion of the contact-line formed at the intersection of the liquid, solid and gas phases. The

importance of modeling the contact-line region has been the topic of the reviews by Dus-

san V. [27], de Gennes [28], Bonn et al. [29], and Snoeijer and Andreotti [30], with complex

constitutive laws dealing with actual and effective contact angles discussed therein. The

most common ad hoc assumption is to allow the fluid to slip at the contact-line in order

to relieve the well-known shear stress singularity in the flow field that arises if the no-slip

condition is applied [31]. Constitutive laws that relate the contact-angle to the contact-

line speed, θ = f(uCL) [32], are then introduced in both thin film [33–35] and irrotational

[36, 37] flows. Fluids in unbounded domains, i.e. drops, will spread with characteristic

power law in the capillary-dominated limit, as shown in experiments on silicone oil drops

by Tanner [38] and Chen [39]. Driving forces such as gravity can alter the spreading ex-

ponent [40], while applied thermal fields can cause complex spreading dynamics [41]. We

use the constitutive law proposed by Greenspan [33], where the contact-angle is linearly

related to the contact-line speed, when developing our model for hole collapse. This law is

commonly referred to as the Hocking condition [37, 42]. Our use of this macroscopic law

gives a model that is consistent with the experimental observations in this paper. Here we

note that alternative contact-line models, like the Cox-Voinov law, do not reproduce the

experimental results. Characteristic spreading exponents are reported in the i) capillary-

and ii) gravity-dominant limits.

Spin coating is a commonly used technique to assist fluids in spreading on solid sub-

strates. One of the first such studies was by Emslie et al. [43], who analyzed the evolution

of an axisymmetric film on a substrate rotating with constant angular velocity to show that

initially non-uniform profiles become uniform as a result of centrifugal and viscous forces.

If surface tension effects are included in the analysis a capillary ridge may develop near the

contact-line of a thin film on a partially-wetting substrate [44, 45]. The capillary ridge is seen

as a precursor to the fingering instability Melo et al. [46], Fraysse and Homsy [47], and Spaid

and Homsy [48]. McKinley and Wilson [49] analyze the linear stability for the equilibrium

states of a thin drop on a uniformly rotating substrate, both with and without a central

dry patch, and report the growth rate and wavenumber of the critical disturbance. Recent

work by Boettcher and Ehrhard [50] extend this stability analysis by notably considering
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FIG. 1. Definition sketch of the collapsing hole in (a) two-dimensional side view and (b) three-

dimensional top view.

general time-dependent base states, from which a critical spreading length from the onset of

instability can be inferred. For the hole geometry considered here centrifugal forces retard

the collapse dynamics.

We begin by deriving the hydrodynamic field equations that govern the collapse of a

fluid cavity. Lubrication theory is utilized to derive an evolution equation for the interface

shape. We focus on the quasi-static spreading regime in which the interface shape is static

and evolves implicitly through the time-dependent contact-line radius. We report power law

forms for the collapse time when i) gravitational or ii) surface tension forces dominate the

dynamics. Centrifugal forces that develop in a rotating geometry slow the collapse process

and lead to complex dynamics characterized by stalled spreading behavior that separates

the large and small hole asymptotic regimes. The role of initial volume is illustrated and

compared against experiment. For completeness, the total collapse time is mapped over

a large parameter space that depends upon the initial hole size. Lastly, we offer some

concluding remarks.

II. MATHEMATICAL FORMULATION

Consider a liquid film wetting the bottom of a solid bucket that is rotating at a constant

angular velocity ω about the vertical axis in axisymmetric cylindrical coordinates (r, z), as

shown in figure 1. This incompressible Newtonian fluid has density ρ and dynamic viscosity

µ. The liquid and gas phases are separated by an interface z = h (r, t) (∂D) that is defined on
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the domain D between the lateral support (r = R) and the three-phase moving contact-line

r = a(t).

A. Field equations

The fluid motion is described by the velocity u = (v, w) and pressure p fields, which

satisfy the continuity and Navier-Stokes equations,

∇ · u = 0,

ρ

(
∂u

∂t
+ u ·∇u

)
= µ∇2u−∇p− ρgẑ + ρω2rr̂.

(1)

Here g is the magnitude of the gravitational acceleration, r̂ = (1, 0) the radial unit vector

and ẑ = (0, 1) the vertical unit vector.

B. Boundary conditions

The fluid is bounded from below by a rigid substrate z = 0, where the no-penetration

and Navier-slip conditions are enforced, respectively;

w = 0, v = β′∂v

∂z
. (2)

Here the slip coefficient β′ is a small number that is introduced to relieve the shear-stress

singularity at the contact-line [51]. For reference, alternative methods introduce a precursor

layer with disjoining pressure to handle this singularity Popescu et al. [52]. The free surface

z = h (r, t) (liquid/gas interface) bounds the fluid from above and one applies the kinematic

condition, balance of normal and shear stresses;

ht + vhr = w, n̂ ·T · n̂ = −σκ, t̂ ·T · n̂ = 0. (3)

Here T is the stress tensor and σ is the liquid-gas surface tension, while subscripts on the

free surface shape h(r, t) denote partial differentiation with respect to the variables r and t.
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The normal n̂ and tangent t̂ unit vectors are defined with respect to the free surface h(r, t),

n̂ = (−hr, 1) /
√
1 + h2

r, t̂ = (1, hr) /
√

1 + h2
r, (4)

while the curvature κ of that surface is given by

κ = −(rhrr + hr + h3
r)

r (1 + h2
r)

3/2
. (5)

We assume neutral wetting conditions on the lateral support (r = R),

hr

∣∣
r=R

= 0, v
∣∣
r=R

= 0. (6)

Note that it is straightforward to generalize to other wetting conditions cot θw = hr(R),

which only affects the surface structure close to the edge, and hence is expected to have

little effect on the dynamics.

The contact-line r = a (t) is located at the intersection of the solid substrate and free

surface (cf. figure 1). Here

h(a(t), t) = 0, (7)

and the contact-angle θ(t) is defined by the geometric relationship,

∂h

∂r
(a(t), t) = tan θ(t). (8)

At the contact-line, kinematics requires the fluid velocity to equal the contact-line velocity

uCL ≡ v(a(t), t) = da/dt, which is modeled using a constitutive relationship that relates the

contact-line speed to the contact-angle [cf. 33, 36, 42, 53],

da

dt
= Λ (θA − θ) , (9)

where Λ > 0 is an empirical constant and θA ≥ 0 is the advancing (static) contact-angle.

Note that for θ > θA the fluid displaces gas, da/dt < 0, in the standard way. It is straight-

forward to introduce a spreading exponent m in Eq. (9). In Appendix B, we show the result

with m = 3, known as the Cox-Voinov law [34, 35]. However the prediciton with m = 3

does not agree with experimental data, so we choose to proceed with the Greenspan model
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m = 1, eqn. (9).

Finally, we enforce conservation of fluid volume V0,

2π

∫ R

a(t)

rh(r, t)dr = V0. (10)

C. Lubrication approximation

The following dimensionless variables are introduced,

r̃ =
r

R
, z̃ =

z

Rθ0
, t̃ =

Λθ0
R

t, w̃ =
w

Λθ20
, ṽ =

v

Λθ0
,

p̃ =
Rθ0
µΛ

p, V =
V0

R3θ0
.

(11)

Here the size of the lateral support R is used to scale the spatial variables (r, z), θ0 is the

initial contact-angle, the contact-line speed Λθ0 sets the velocity scale and a viscous pressure

scale is used.

The scalings (11) are applied to the governing equations (1)–(10) which can then be

expanded in terms of the initial contact-angle θ0, taken to be a small parameter. The

leading order expansion (lubrication approximation) gives a reduced set of field equations,

1

r
(rv)r + wz = 0, −pr + vzz + Ω2r = 0, −Cpz −G2 = 0, (12)

where subscripts denote differentiation and the tildes have been dropped for simplicity.

Dimensionless constants are given by

C =
µΛ

σθ20
, G2 =

ρgR2

σ
, Ω2 =

ρω2R3

σθ0
. (13)

which are the mobility capillary number C, Bond number G2, and centrifugal number Ω2.

The boundary conditions on the substrate z = 0 are given by

w = 0, v = βvz, (14)

with dimensionless slip number β = β′/(Rθ0). The reduced free surface boundary conditions
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on z = h(r, t) are written as

ht + vhr = w, −Cp = hrr +
1

r
hr. (15)

The dynamic contact-line condition is given by

da

dt
= (θA − θ) , (16)

and the volume conservation constraint by

2π

∫ 1

a(t)

rh(r, t)dr = V. (17)

D. Derivation of evolution equation

We begin by constructing a solution to the governing equations (12)–(15) that depends

implicitly on the free surface shape h. The pressure is computed from the vertical component

of the Navier-Stokes equation (12) and normal stress balance on the free surface (15),

Cp = G2 (h− z)−
(
hrr +

1

r
hr

)
. (18)

The radial velocity field is calculated from the radial component of the Navier-Stokes equa-

tions (12), Navier-slip condition (14) and tangential stress balance (15),

v =
(
pr − Ω2r

)(1

2
z2 − (z + β)h

)
. (19)

We then use the reduced continuity equation (12) and no-penetration condition (14) to

compute the vertical velocity

w = −
(
prr +

1

r
pr − 2Ω2

)(
1

6
z3 − h

(
1

2
z2 + βz

))
. (20)

Finally, we apply the fields defined in (18)–(20) to the depth-averaged continuity equation

ht + (1/r) (rq)r = 0, with q the net radial flux, to generate the evolution equation,

9



Cht +
1

r

(
r

((
hrr +

1

r
hr −G2h

)
r

+ Ω2r

)(
1

3
h3 + βh2

))
r

= 0. (21)

The motion of the fluid interface is governed by the evolution equation (21), the dimen-

sionless form of the contact-line conditions (7)–(9) and conservation of volume constraint

(10). Once the free surface shape h is known, pressure p and velocity (v, w) fields are then

computed from (18)–(20).

E. Quasi-static spreading (C → 0)

In this paper, we focus on the quasi-static limit C → 0 proposed by Greenspan [33] that

has been utilized by a number of authors [e.g. 40, 54, 55]. The approximation is justified by

noting that typical spreading rates can be on the order of microns per second, which is much

slower than the velocity scale obtained by balancing viscosity with surface tension. Quasi-

static spreading describes a static droplet shape that is parameterized by the contact-line

radius a, which evolves according to the unsteady dynamic contact-line condition (16). More

precisely, the free surface shape evolves implicitly through the time-dependent contact-line

radius. The leading order problem consists of a steady droplet shape with no contact-line

motion, therefore we may set the slip number β = 0, consistent with the C → 0 limit.

The steady evolution equation (21) is integrated to yield an equation governing the steady

droplet shape, (
hrr +

1

r
hr −G2h

)
r

+ Ω2r = 0, r ∈ [a, 1]. (22)

where the integration constant is set to zero to enforce the no-flux condition on the bounding

surface (6). The dynamic contact-line condition,

da

dt
= (θA − hr(a)) , (23)

then governs the rate of spreading.

III. RESULTS

In this section we describe the dynamics of hole collapse by reporting interface shapes

and the time-evolution of the contact-line radius (equivalently, hole size). Each hole we
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consider here eventually closes; i.e. there are no equilibria with finite hole size. Hence, one

important metric is the time required for the hole to completely collapse tc into a film. We

compute tc by integrating (23) with initial conditions a(0) = a0 until a(tc) = 0,

∫ tc

0

dt =

∫ 0

a0

da

θA − hr(a)
. (24)

Herein, we consider the case of completely-wetting substrate θA = 0 although it would be

straightforward to consider the more general case θA ̸= 0. We begin with the capillary-

dominated regime as a base case and then focus on how gravitational G and centrifugal Ω2

forces affect the collapse dynamics.

A. Capillary-dominated collapse

The solution of the steady evolution equation (21) when surface tension forces dominate

the collapse dynamics, G = 0,Ω2 = 0, is given by

h(r) =

(
2V

π

)
r2 − a2 + 2 ln(a/r)

a4 − 4a2 + 3 + 4 ln(a)
. (25)

Figure 2(a) plots the corresponding interface shapes as they depend upon the contact-line

radius a to show the evolution during the collapse process. The collapse time is obtained

from (24,25) to yield

tc =
π

48V

(
4π2 + 3a20

(
a20 − 6

)
+ 24 (ln(a0) ln(1 + a0) + Li2(−a0)− Li2(1− a0))

)
, (26)

where Li2 is the dilogarithm function. Figure 2(b) plots the initial radius a0 against the

collapse time tc. In the asymptotic small hole limit a0 → 0, the capillary-dominant collapse

time (26) takes the functional form

tc ∼
π

8V

(
4 ln(a−1

0 )− 1
)
a20, as a0 → 0 (27)

with a lower bound given by a0 ∼ t0.5c . Note that while the Cox-Voinov law (see Appendix

B) may be regarded as more physically based than the Greenspan relation used here (23),
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FIG. 2. Capillary-dominated collapse (G = 0,Ω2 = 0, V = 1): (a) Equilibrium interface shapes,

as they depend upon the contact-line radius a. (b) Initial contact-line radius a0 against collapse

time tc (Eq. (26)) exhibits power law behavior a0 ∼ t0.55c as a0 → 0. (c) Dimensional contact-line

radius a0[mm] against collapse time tc[s] with µ = 10 mPa·s, σ = 0.02 N/m, R = 6.5 cm and

V0 = 38.49 cm3 with fitted parameter Λ = 0.319 mm/s. Symbols in sub-figure (c) are experimental

data points from Dijksman et al. [16, Fig. 2b].

the prediction is for an exponent near 0.25 rather than the 0.55 observed in experiment and

derived through the Greenspan relation.

Unlike droplet spreading [38, 39], the asymptotic form (27) does not admit a specific

power law because of the logarithmic term. However, as shown in Figure 2(b), the collapse

dynamics follow the power law a0 ∼ t0.55c over a range of a0. This particular exponent has

recently been reported in experiments on hole collapse by Dijksman et al. [16, Fig. 2b].

Figure 2(c) shows that our prediction for the collapse time (26) compares favorably to these

experiments over a range that encompasses the logarithmic correction and is not defined by

a single exponent. By fitting our theoretical prediction to the experimental data, we can

obtain an estimate for the empirical constant Λ = 0.319 mm/s in Eq. (9).

For the special case a0 = 1, where the film initially completely wets the bucket sidewall,

the collapse time from (26) is given by

tc =
π

48V

(
2π2 − 15

)
. (28)

Note that (28) is an upper bound on the total collapse time.
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FIG. 3. Gravity-dominated collapse (G ̸= 0,Ω2 = 0, V = 1): (a) Interface shapes for fixed contact-

line radius a = 0.4 show that gravitational forces G tend to flatten the film while increasing the

contact-angle, which leads to a decrease in (b) collapse time tc, as it depends upon G and initial

contact-line radius a0. (c) Initial contact-line radius a0 against collapse time tc appears bounded

by power law behavior a0 ∼ t0.55c for capillary-dominated (G = 0) and a0 ∼ t0.762c for gravity-

dominated (large G) limits as a0 → 0.

B. Gravity-dominated collapse

When gravitational forces G ̸= 0 are included in the model with Ω2 = 0, the solution of

(22) is given by

h(r) =

(
GV

π

)
I1(G) (I0(Gr)− I0(Ga)) + (K0(Gr)−K0(Ga))

I1(G) ((a2 − 1)K0(Ga) + 2aK1(Ga)) + ((a2 − 1) I0(Ga)− 2aI1(Ga))
, (29)

where In, Kn are the modified Bessel functions of order n and we have defined I1(G) ≡

I1(G)/K1(G). Note this solution has been obtained by Moriarty and Schwartz [18] and used

by López et al. [20]. Gravity tends to flatten the interface and increase the contact-angle,

as shown in Figure 3(a). This promotes hole collapse, as readily seen by examining the

contact-line law (16) which reveals the mechanism behind the enhanced spreading rate; an

increase in contact-angle leads to increased contact-line speed (equivalently, spreading rate).

We plot the collapse time tc, computed from (24), against Bond number G and initial

contact-line radius a0 in Figure 3(b). For large holes, the collapse time depends strongly

upon G. In contrast, for small holes, the collapse time appears to be independent of G

consistent with the relative increase in importance of surface tension forces at small scales.

In Figure 3(c), we plot initial contact-line radius a0 against collapse time tc to show the

large G limit appears to approach the power law behavior a ∼ t0.762c , whose exponent is
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identical to that reported by Diez et al. [13] for converging viscous gravity currents. This is

a limiting case (large G) of our model. For large gravity, one might expect the quasi-static

approximation to break down so that the model of Diez et al. [13] would be more suitable.

When combined with our prediction for the asymptotic behavior for G = 0, we see that our

model has wide applicability from the capillary- to gravity-dominant limits.

Finally, we explicitly show the capillary-dominated collapse time (26) is inversely propor-

tional to the volume V . Since both capillary (25) and gravity-dominated (29) solutions are

linear in V , the collapse time when gravitational effects are included should also be inversely

proportional to V . We can connect our results to experiment by choosing to scale length

with the film height h̄, instead of the lateral support radius R, which results in tc ≈ h̄−3

consistent with experimental observations Dijksman et al. [16, Fig. 5b]. These comparisons

further demonstrate the validity of our model.

C. Rotational effects

An initially flat thin film in a rotating geometry can be made to dewet the substrate

at the axis-of-rotation (r = 0), thereby creating a hole, provided Ω2 ≥ Ω2
c ≡ 48V/π (see

Appendix A). This occurs, of course, because centrifugal forces tend to drive fluid to the

edge of the rotating bucket. We are interested in how centrifugal forces affect the collapse

dynamics of a pre-nucleated hole with radius a0 > 0. For simplicity, we focus on a hole in a

rotating geometry with G = 0 and Ω2 < Ω2
c . In this case, the solution of (21) is given by

h(r) = C1
2 ln (a/r)− (a2 − r2)

a4 − 4a2 + 3 + ln(a)
+

Ω2

32

(
a4 − r4 − 4 ln (a/r)

)
(30)

with

C1 =
96V + πΩ2 (7− 6a2 − 3a4 + 2a6 + 12 ln(a))

48π
. (31)

Figures 4(a, b) plot typical solutions. In Figure 4(a), we show that increasing the rotation

rate Ω2 tends to i) move fluid towards the edge of the bucket (r = 1) and ii) decrease the

contact angle, for fixed contact-line radius a. Hence, we expect centrifugal forces to slow the

collapse rate with mechanism consistent with the contact-line law (16). Figure 4(b) plots

the evolution of the fluid interface during the collapse process for Ω2 = 10 showing that the

contact-angle decreases as the contact-line radius a decreases.
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FIG. 4. Centrifugal effects (Ω2 ̸= 0, G = 0, V = 1): Interface shapes for (a) fixed contact-line

radius a and varying centrifugal number Ω2 and (b) fixed Ω2 = 10 and varying a. (c) Evolution of

the contact-line radius a against time t, computed from Eq. (23) for initial condition a0 = 0.99, as

it depends upon Ω2.

In situations where the fluid hole is rotating with Ω2 < Ω2
c , centrifugal forces can slow

down the collapse process by decreasing the contact-angle and therefore the contact-line

speed according to (16). Figure 4(c) plots the evolution of the contact-line radius a against

time, as it depends upon Ω2. For increasing Ω2, the spreading dynamics become more com-

plex as witnessed by the pronounced plateau, characterized by stalled spreading behavior,

that separates the large a and small a regions. In the plateau region, the contact-angle

approaches zero leading to slow collapse dynamics for a finite period of time until surface

tension forces become dominant and control the dynamics according to the asymptotics pre-

viously discussed, Eq. (27). Note the size of the plateau and the range of the small a region

both increase with Ω2. This implies that the rotation rate could be used as an effective

mechanism to control the collapse dynamics in practice.

As we have shown, centrifugal forces can dramatically slow down the spreading speed of

a fluid hole through the mechanics of the contact-line speed law (23). Figure 5(a) plots the

collapse time tc against centrifugal number Ω2 and initial contact-line radius a0, showing

that centrifugal forces are more effective at increasing the total collapse time for large initial

holes. In contrast, the total collapse time is insensitive to centrifugal forces Ω2 for small

initial holes, because surface tension forces dominate the collapse dynamics in this limit, as

shown in Figure 5(b). This observation was also true for gravitational forces and appears to

be universal.
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FIG. 6. Collapse time tc[s] against volume V0[ml] for (a) fixed θw = π/2, varying θA and (b)

fixed θA = 0.001, varying θw. Symbols correspond to experimental data with pre-spin rotation

rates ω = 1 − 1.7 rps (blue �: 1.0 rps, yellow ⋆ 1.2 rps, green • 1.5 rps, cyan ▽ 1.7 rps) and

µ = 1000 mPa·s, σ = 0.02 N/m, R = 6.5 cm. The best fit to the 1.0 rps (blue �) data set is shown

with thick line-type and corresponds to Λ = 0.105mm/s, θw = π/2 and θA = 0.001.

D. Experimental comparison: volume effects

We can test our model further by comparing with experiments whose protocol is described

in detail in Dijksman et al. [16]. Note that the experimental apparatus consists of a silicon

base and steel sidewalls which makes it necessary to distinguish wetting conditions on these

two surfaces. In our experiments an initial thin film is spun into a fluid hole; we fix the

volume V and create a different a0(V,Ω) by choosing different pre-collapse Ω. Note the
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collapse proceeds once rotation stops so that Ω = 0 throughout the experiment. This allows

us to also check the predictions for tc(a0). Our experimental collapse preparations creates

a nonlinear relation for a0(V,Ω), which also depends on θA and θw (wall contact-angle).

In fact, the latter dependency is quite strong, as the volume integral for h(r) is weighted

proportionally to the radius. Nevertheless, we can extract tc(a0(V,Ω)) for a range of volumes

and preparatory rotation rates Ω. We perform these experiments by imaging the collapse

process from above with a simple digital camera [16, Figs. 2a,b]. The volumes explored are

25 to 100ml; the range for ω is 1-1.7 rps. We create initial conditions by pre-spinning the

container for 60-100 seconds for all experiments. Unfortunately the applied experimental

procedure does not allow us to directly measure a0(V,Ω), but we can plot the observed tc

against a family of curves computed for a reasonable range of θA and θw (Figure 6). The

fit parameter Λ allows for a vertical scaling of the curves. Despite the relative freedom in

choosing θA, θw and Λ, we conclude that also the independent tc data are consistent with

our model. The best fit for the ω = 1.0 rps data set is shown in thick line-type in Figure 6

and corresponds to Λ = 0.105mm/s, θw = π/2 and θA = 0.001. At large V0, there are some

significant deviations; we attribute these to ‘waiting time’ effects that are not captured by

our model [56, 57].

IV. CONCLUDING REMARKS

We have studied the collapse dynamics of a nucleated hole in a thin film on a completely-

wetting substrate. Our focus is the mesocopic regime, as we develop a model that encom-

passes both surface tension driven flows and viscous gravity currents. The model predicts a

power law exponent for the time-dependent hole radius that agrees with experiment in both

the capillary [16] and gravity [13] limits. Furthermore, our predictions compare favorably

to these experiments over a range of volumes. We also show that centrifugal forces from

the rotating geometry can lead to complex spreading dynamics, characterized by stalled

spreading behavior that separates the large and small hole limits. We believe our model

can help bridge the gap between the well-studied nanoscopic and macroscopic regimes to

the less well-understood mesoscopic regime relevant to industrial coating processes, such

as immersion lithography. For example, in coating processes fluid holes can be viewed as

defects which naturally disappear on the time scale predicted by our analysis.
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Our model is concerned with holes on completely-wetting substrates that must be nu-

cleated by external means. That is, each hole we consider will always collapse. However,

it is possible to have a finite-sized equilibrium hole on a partially-wetting substrate. This

reflects the competition between capillarity, which drives collapse, and surface chemistry

(wetting effects) that resists this motion. Can other driving forces lead to finite-size holes

on a completely wetting substrate? Possible forces could include centrifugal forces, which

tend to slow hole collapse, or Marangoni (thermocapillary) forces from applied thermal

fields [41, 58]. Lastly, a spreading contact-line is susceptible to fingering instabilities that

are outside the scope of this paper. We plan to extend our results into these directions.
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Appendix A: Dewetting film

For a film without a contact-line, we replace (6,7) with the following boundary conditions,

h′(0) = h′(1) = v(1) = 0, (A1)

and solve the equilibrium equation (22) to yield

h(r) =
V

π
− Ω2

96

(
2− 6r2 + 3r4

)
. (A2)

The film dewets the substrate h = 0 along the axis-of-rotation r = 0 at a critical centrifugal

number Ω2
c = 48V/π.
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Appendix B: Collapse time for spreading exponent m = 3 (Cox-Voinov law)

It straightforward to extend the analysis to the case when the spreading exponent m = 3

(Cox-Voinov law) in eq. (23). The collapse time tc =
∫ 0

a0
(−hr(a))

−3da is then given by

tc =

a40π
3

(
−360 + 500a20 − 135a40 + 12a60 + 120 (−15 + 2a20) ln a0 +

960(−3+3a20−2 ln a0)(ln a0)2

(−1+a20)
2

)
7680V 3

.

(B1)

The asymptotic small hole limit a0 → 0 is then

tc ∼ −a40π
3 (3 + 15 ln a0 + 24(ln a0)

2 + 16(ln a0)
3)

64V 3
(B2)

with lower bound a0 ∼ t0.25c .
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