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Abstract

The boundary layer structure of the velocity and temperature fields in turbulent Rayleigh-Bénard flows in

closed cylindrical cells of unit aspect ratio is revisited from a transitional and turbulent viscous boundary layer

perspective. When the Rayleigh number is large enough, the dynamics at the bottom and top plates can be

separated into an impact region of downwelling plumes, an ejection region of upwelling plumes and an interior

region away from the side walls. The latter is dominated by the shear of the large-scale circulation (LSC) roll

which fills the whole cell and continuously varies its orientation. The working fluid is liquid mercury or gallium

at a Prandtl number Pr = 0.021 for Rayleigh numbers 3 × 105 ≤ Ra ≤ 4 × 108. The generated turbulent

momentum transfer corresponds to macroscopic flow Reynolds numbers with 1.8 × 103 ≤ Re ≤ 4.6 × 104.

In highly resolved spectral element direct numerical simulations, we present the mean profiles of velocity,

Reynolds shear stress and temperature in inner viscous units and compare our findings with convection

experiments and channel flow data. The complex three-dimensional and time-dependent structure of the

LSC in the cell is compensated by a plane-by-plane symmetry transformation which aligns the horizontal

velocity components and all its derivatives with the instantaneous orientation of the LSC. As a consequence,

the torsion of the LSC is removed and a streamwise direction in the shear flow can be defined. It is shown

that the viscous boundary layers for the largest Rayleigh numbers are highly transitional and obey properties

that are directly comparable to transitional channel flows at friction Reynolds numbers Reτ . 102. The

transitional character of the viscous boundary layer is also underlined by the strong enhancement of the

fluctuations of the wall stress components with increasing Rayleigh number. An extrapolation of our analysis

data suggests that the friction Reynolds number Reτ in the velocity boundary layer can reach values of 200

for Ra & 1011. Thus the viscous boundary layer in a liquid metal flow would become turbulent at a much

lower Rayleigh number than for turbulent convection in gases and gas mixtures.

PACS numbers: 47.27.N-, 47.55.pb
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I. INTRODUCTION

A better understanding of the local and global mechanisms of turbulent transport of heat and

momentum across a fluid layer that is heated from below and cooled from above remains a central

subject of numerical, theoretical and experimental studies in the field of turbulent convection [1–3].

This setup which is known as the classical Rayleigh-Bénard convection (RBC) case is one ingredient of

numerous astro- and geophysical turbulent flows as well as technological applications. A more precise

quantification of global turbulent transport would immediately improve predictions on structure for-

mation and dynamics. The key to deeper insights lies in the boundary layers of the temperature and

velocity fields at the top and bottom plates – understanding their transformations with an increase

of the temperature difference that is quantified by the Rayleigh number Ra. These boundary layers

form a bottleneck that limits the transport in fully turbulent convection. The bottleneck is widened

when the boundary layers start to fluctuate locally and to become eventually fully turbulent.

The range of such a transition to boundary layer turbulence would, however, depend strongly on

the Prandtl number Pr of the convecting fluid which relates viscous to thermal diffusion [4–6]. While

the thicknesses of the both boundary layers are about the same for Pr ∼ 1, they differ significantly

in the limits of very small and very large Prandtl number. Their dynamics are then more loosely

coupled since one of the layers is well embedded in the dissipation-dominated and spatially smooth

sublayer of the other field. For liquid metal convection at Pr ≪ 1 the thermal boundary layer is

much thicker than the viscous boundary layer, such that the latter is well embedded in the diffusive

sublayer where temperature decreases to a good approximation linearly with respect to wall distance

[7, 8]. This opens the possibility to disentangle their dynamics and to compare the statistics of the

viscous boundary layer to standard turbulent wall-bounded flows without temperature differences.

The limit of very low Prandtl number convection is interesting for a further reason. In ref. [9] it was

shown recently that the highly diffusive temperature field and the resulting coarse plumes drive the

fluid turbulence more vigorously than the more filamented plumes at larger Prandtl and comparable

Rayleigh number. Additional studies in [10] found that the same holds for the boundary layer of the

velocity field. The level of the local fluctuations and the turbulent drag are enhanced in line with a

significantly increased global momentum transfer which is measured by the Reynolds number Re. In

this way, a low-Prandtl-number convection flow at a given Rayleigh number will obey a much more

vigorous fluid turbulence than a convection flow in air or water and thus provide an appropriate setup

to investigate the transitional character of the (velocity) boundary layer in detail.

In the present work, we study the boundary layer dynamics by means of high-resolution direct

numerical simulations (DNS) which can access all details of the fluctuating turbulent fields in the
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RBC flow. The setup that is chosen agrees with one of the most common laboratory experiments:

a closed cylindrical cell with an aspect ratio of one. Compared to a cubical or rectangular cell, this

setup sustains one statistically homogeneous coordinate in the system, the azimuthal one, and has

thus the highest symmetry.

The perspective that is taken here is to analyse our simulation data as for a viscous boundary layer

in a pressure-driven channel flow with a uni-directional mean flow [11]. The high-Rayleigh-number

convection in the closed cylindrical cell builds up a large-scale circulation (LSC) which changes its

orientation in the course of the dynamical evolution [2, 12]. For a better comparison to a channel

flow, streamwise and spanwise directions will be obtained in the convection case by a plane-by-plane

rotation of the velocity field into the horizontal direction of the LSC. This symmetry transformation

removes the torsion in the large-scale circulation. In low-Prandtl-number convection this circulation

roll turns out to perform a very coherent motion since it is driven by coarse thermal plumes. Mean

profiles of the streamwise velocity, the temperature and the Reynolds stresses are analysed in inner wall

units. Therefore, we have to adapt definitions of the friction velocity and the friction temperature to

the present setup. Furthermore, the statistics of the wall-normal derivatives of the horizontal velocity

components is compared to those of the channel flow. The main motivation of the present work is to

better quantify the transitional character of the boundary layers in the RBC flow.

The outline of the manuscript is as follows. In the next section, the equations of motion and

some details on the numerics are given. Section III analyses the large-scale flow and presents the

symmetry transformations. Section IV lists our results for the mean profiles of temperature, Reynolds

shear stress and streamwise velocity. Additionally, we derive skin friction Reynolds numbers for the

individual runs of our data record. Section V summarizes our findings for the derivatives at the wall.

Finally all results are summarized.

II. SIMULATION MODEL AND PARAMETERS

We solve the three-dimensional equations of motion in the Boussinesq approximation. The equa-

tions are made dimensionless by using the height of the cell H̃ , the free-fall velocity Ũf = (g̃α̃∆T̃ H̃)1/2

and the imposed temperature difference ∆T̃ . Times are measured in free-fall time units T̃f = H̃/Ũf .

(Quantities with a physical dimension are given with a tilde.) The equations contain the three control

parameters: the Rayleigh number Ra, the Prandtl number Pr and the aspect ratio Γ = 2r̃o/H̃ with
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FIG. 1: Boundary layer structure in a turbulent convection flow at Pr = 0.021 and Ra = 108. Two snapshots

are shown at t = 35.1 (upper row) and 37.1 (lower row). (a,d) Temperature T at z = 0.0024 which corresponds

with 0.09δT . (b,e) Magnitude of skin friction |s| in logarithmic units (see equation (9)) at z = 0. (c,f) Pressure

p at z = 0.0024. The view of the bottom plate is from below.

the cell radius r̃o (see figure 2). The set of dimensionless equations is given by

∇ · u = 0 , (1)

∂u

∂t
+ (u ·∇)u = −∇p +

√

Pr

Ra
∇

2
u+ Tez , (2)

∂T

∂t
+ (u ·∇)T =

1√
RaPr

∇
2T , (3)

where

Ra =
g̃α̃∆T̃ H̃3

ν̃κ̃
, P r =

ν̃

κ̃
. (4)

The variable g̃ stands for the acceleration due to gravity, α̃ is the thermal expansion coefficient, ν̃

is the kinematic viscosity, and κ̃ is thermal diffusivity. We use an aspect ratio of Γ = 1 here. No-

slip boundary conditions for the fluid (u = 0) are applied at the walls. The side walls are thermally
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insulated (∂T/∂n = 0) and the top and bottom plates are held at constant dimensionless temperatures

T = 0 and 1, respectively. In response to the input parameters Ra, Pr and Γ, turbulent heat and

momentum fluxes are established. The turbulent heat transport is determined by the Nusselt number

which is defined as

Nu =
Q̃H̃

κ̃∆T̃
with Q̃ = 〈ũzT̃ 〉A,t − κ̃

〈

∂T̃

∂z̃

〉

A,t

, (5)

with an area-time average 〈·〉A,t. Note thatQ is a constant in each horizontal cross section A. Equation

(5) can be rewritten as

Nu = 1 +
√
RaPr〈uzT 〉V,t , (6)

with a volume-time average 〈·〉V,t. The turbulent momentum transport is expressed by the (large-scale)

Reynolds number which is defined as

Re = urms,V

√

Ra

Pr
with urms,V =

√

〈u2
i 〉V,t . (7)

The equations are numerically solved by the Nek5000 spectral element method package which has

been adapted to our problem. The code employs second-order time-stepping, using a backward differ-

ence formula. The whole set of equations is transformed into a weak formulation and discretized with

a particular choice of spectral basis functions [13, 14]. For further numerical details and comprehensive

tests of the sufficient spectral resolution, we refer to detailed investigations in [15].

The cylindrical cell is resolved by up to 6.27 million spectral elements and the spectral expansion

of all turbulent fields is done with Lagrangian interpolation polynomials up to order 13 in each spatial

direction which results in a 143 collocation grid on each spectral element. The simulation run at the

largest Rayleigh number was conducted on 524,288 MPI tasks of the Blue Gene/Q system Mira at

Argonne National Laboratory. The time advancement of 6 free-fall times took about 50 million core

hours.

We focus on five data sets (see Table I) for Rayleigh-Bénard convection in liquid mercury at

Pr = 0.021 which are denoted by RBC1 to RBC5 and cover more than three orders of magnitude

in terms of the Rayleigh number, 3 × 105 ≤ Ra ≤ 4 × 108. For a large fraction of the paper we

study in detail a sequence of snapshots for RBC4 over a time span of 6.7Tf which are separated by

approximately 0.12Tf from each other.

An additional DNS for a pressure gradient driven channel flow (CF) is used for comparison. It

is based on a finite difference method with uniform grid spacing in the horizontal directions with

periodic boundaries and with a non-uniform grid in z-direction that corresponds with the Chebyshev

collocation points [16]. The channel has the extensions Lx : Ly : Lz = 4π : 2π : 2.

6



FIG. 2: Boundary layer structure in a turbulent convection flow for RBC 2 (left) and RBC4 (right). Stream-

lines of the skin friction field at the bottom plate (see equation 9). Impact, shear and ejection sections are

indicated. The block arrows in all three sections indicate the temporal variations. The interior plate section

for data points with r ≤ ri is highlighted and will be used for most of the analysis. The view on the bottom

plate is from below as in figure 1.

Results for Ra = 1 × 108 and Pr=0.021 (RBC4) are shown in Figure 1. Temperature, magnitude

of the skin friction field (see Section III for definition), and pressure are shown for horizontal slices

through the bottom boundary layer, for two different instants in time. One sees that the temperature

is very diffuse. One also sees the overall large-scale direction of the flow, which changes with time

from approximately 0.7 radians in the top plot to 6 radians in the bottom plot. Finally the pressure

shown in Figure 1(c,f) has a fairly steep favorable gradient near the impact region, but then becomes

fairly flat and then rises slightly in the ejection region.

III. SYMMETRY-BREAKING LARGE-SCALE FLOW

It is known that the large-scale circulation (LSC) in a closed cylindrical convection cell has a

complex three-dimensional structure [12, 17–19]. For aspect ratio Γ = 1, the wind, which is averaged

over 6-30 free-fall times Tf , takes the form of a single flow roll with a preferred orientation – a

configuration that clearly breaks azimuthal symmetry. This roll is additionally twisted and changes

orientation slowly in time. It is thus expected that statistical homogeneity in the azimuthal direction

can be re-established for a very long time interval only. First estimates in [20] suggest times t & 104Tf
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or even larger. Statistical sampling can typically be done in DNS over shorter time intervals only,

particularly for simulation runs at the highest Rayleigh numbers.

Figure 2 displays instantaneous snapshots of the streamlines of the two-dimensional skin friction

vector field at the bottom plate for convection in mercury at Ra = 106 (left) and 108 (right). The skin

friction field can be considered as a blueprint of the near-wall viscous boundary layer dynamics and

has been studied in wall-bounded shear flow [21, 22] as well as in Rayleigh-Bénard convection [23].

At the bottom plate (z = 0), the velocity gradient tensor Ãij takes the following form

Â
∣

∣

∣

z=0
=











0 0 ∂ũx/∂z̃

0 0 ∂ũy/∂z̃

0 0 0











. (8)

Both components form a two-dimensional wall shear stress vector field and a related skin friction field.

They are defined as

τ̃w = ρ̃0ν̃
∂ũ(2)

∂z̃

∣

∣

∣

∣

∣

z̃=0

, and s̃ =
τ̃w

ρ̃0ν̃
. (9)

The superscript denotes the two horizontal (or tangential) x– and y–components. Particularly for the

higher Rayleigh number, one can clearly divide the near–plate boundary layer into three main regions,

the impact region where the cold LSC flow masses hit the bottom plate, the shear region where the

LSC sweeps across the interior section of the plate, and the ejection region where the heated fluid rises

up towards the cold top plate again. This separation into three distinct regions requires a sufficiently

large Rayleigh number. We will return to this point in Section V when discussing the derivatives at

the plates at z = 0 and 1. On the basis of the critical points of the skin friction field the inner region

can be clearly distinguished from the impact and ejection regions. Also visible is the broken azimuthal

symmetry of the flow.

We define two different area–time averages, one across the whole plate A with r ≤ ro = 0.5 which

will be denoted by 〈f〉A,t (as already mentioned in section II) and one across an interior section of

the plate which is indicated in figure 2 for points with r ≤ ri. If not stated otherwise, ri = 0.3 is

taken. The latter will be denoted as 〈f〉b,t. As seen in figure 2, the average with respect to the interior

plate section excludes impact and ejection region and brings us closest to the conditions in a canonical

boundary layer with a unidirectional mean flow, at least for the higher Rayleigh number. Therefore,

most of the statistical analysis is restricted to this inner region in the following.

The local orientation angle is also calculated in each plane at fixed height z > 0 by

〈φ(z, t)〉b = arctan

[〈uy(z, t)〉b
〈ux(z, t)〉b

]

. (10)
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FIG. 3: Local orientation angle 〈φ(z)〉b (see equation (10)) as a function of z/H for consecutive snapshots for

RBC3 (left) and RBC5 (right). The color bar coding is for snapshot number and each snapshot is output at

regular spaced intervals of time, 0.14Tf for RBC3 and 0.08Tf for RBC5. Note that the angle is not defined

at the plates due to no-slip boundary conditions.

As indicated by the filled arrows in the right panel of figure 2, impact and ejection regions will slowly

move azimuthally. We investigate this further in figure 3, where we show instantaneous profiles of

〈φ(z)〉b for two different Rayleigh numbers. One sees that the orientation angle twists as z increases

from the angle at z ≃ 0 , to eventually match the orientation angle at z ≃ 1 (which is different from

the angle at z ≃ 0 by about π radians). If we focus on the right panel of figure 3, one sees that

sometimes this twist is clockwise (as for the first 15 snapshots), other times it is counterclockwise (as

for snapshots 30-60) and sometimes the twist changes direction (as seen in snapshots 20-30 and the

last three as well). Of course, near the center of the container the horizontal velocity is significantly

reduced compared to near the top and bottom plates, but we still see a steady twist in 〈φ(z)〉b for

most of the time, even in the center of the container. A similar behavior is seen for the left panel of

figure 3, although the behavior occurs more rapidly in these Tf time units.

One also sees that the local orientation angle for fixed z oscillates with time. The angle 〈φ〉b is

plotted near the bottom (z ≃ 0) and top (z ≃ 1) of the container in the left panel of figure 4 for the

two representative cases, RBC3 and RBC5 as a function of the time t/Tf . For both Rayleigh numbers

we see the angle switches or oscillates, with the angle at the bottom plate out of phase with the angle

at the top plate. We measure the frequency of these oscillations ω and plot this versus Ra in the

right panel of figure 4. This oscillation frequency is measured in units of radians per (dimensionless)

diffusive time units td. One can convert from free-fall time units T̃f to diffusive time units t̃d by
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FIG. 4: Left panel: Local orientation angle 〈φ〉b (see equation (10)) as a function of time as measured in

free-fall time units Tf for z ≃ 0 (bottom plate) and z ≃ 1 (top plate) for RBC3 (magenta = bottom and

orange = top ) and RBC5 (blue =bottom and grey = top). Right panel: Oscillation frequency ω of the local

orientation angle 〈φ〉b as a function of Ra. The line is a fit to the data and gives (0.08 ± 0.05)Ra0.42±0.02.

The frequency ω is in radians per diffusive time units t̃d = H̃2/κ̃.

t̃d =
√
RaPr T̃f . The oscillation frequency increases with Ra which is in agreement with previous

results for Pr ≈ 0.021, 5× 105 < Ra < 5× 109 [24] as well as for Pr = 6, 7× 107 < Ra < 3× 109 [25]

and Pr = 19.4, 8 × 108 < Ra < 3 × 1011 [26], all at Γ = 1. The exponent of the fit of ω versus Ra

is 0.42 ± 0.02 which agrees remarkably well with the exponent of 0.424 of [24]. The experiments of

[25] and [26] measured an exponent of 0.36 which is a bit lower. Also the magnitude of the oscillation

frequencies that we measured for Pr = 0.021 are lower than those measured for Pr = 6 by a factor of

30, indicating that lower Prandtl number stabilizes the oscillations of the LSC for a given Ra.

How can the mean velocity profile be determined under such circumstances? The definitions which

are applied in the theory of classical turbulent boundary layers after a Reynolds decomposition use

streamwise and spanwise directions. In contrast to a canonical boundary layer or a wall-bounded

flow, a proper mean flow determination in RBC has to be adjusted to these permanently changing

conditions. One has to determine a mean horizontal wind orientation for each plane at a given height

z and for each time instant.

A planar rotation R̂3(z, t) by 〈φ(z, t)〉b defines a new coordinate frame that is aligned in each plane

z and at each time t with the mean wind direction above the interior section b with r ≤ ri or the full
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plate. New coordinates and velocity components are then given by











x‖

y‖

z‖











=











cos〈φ〉b sin〈φ〉b 0

− sin〈φ〉b cos〈φ〉b 0

0 0 1





















x

y

z











and











U‖

V‖

W‖











=











cos〈φ〉b sin〈φ〉b 0

− sin〈φ〉b cos〈φ〉b 0

0 0 1





















ux

uy

uz











.

(11)

The rotated velocity components define the new streamwise (U‖), spanwise (V‖) and wall-normal com-

ponents, respectively. The area–time averages of the streamwise component 〈U‖(z)〉A,t and 〈U‖(z)〉b,t
are shown in figure 5. We verified that the spanwise mean, 〈V‖(z)〉A,t and 〈V‖(z)〉b,t are now indeed

zero across the whole height. As expected, the restriction to the plate interior leads to an increase

of the amplitude of the mean streamwise velocity which is visible by a comparison of the left and

right panels of figure 5. Furthermore, the maxima of the mean profile for the plate interior (left panel

of figure 5) are always closer to the wall which indicates a smaller local boundary thickness in the

interior. This is in agreement with [10, 27]. Note that the profiles for Ra = 4× 108 in both panels of

figure 5 do not quite follow the trends as for the rest of the Rayleigh numbers. This is because this

simulation could not be run for as long, and hence fewer statistics were gathered.

To summarize this section, this planar rotation has brought the complex large scale flow closest

to a standard boundary layer case. We have removed the torsional degrees of freedom from the flow.

A similar (not the same) idea was investigated for a plane Poiseuille flow with periodic boundary

conditions in the streamwise and spanwise directions by Kreilos et al. [28].

IV. MEAN PROFILES IN THE BOUNDARY LAYER

A. Mean streamwise velocity

As a next step, we now study how the mean streamwise velocity compares to a turbulent boundary

layer. The dimensionless friction velocity is given by

uτ =

(

Pr

Ra

)1/4
〈





〈

∂ux

∂z

〉2

b

+

〈

∂uy

∂z

〉2

b





1/4 ∣
∣

∣

∣

∣

z=0

〉

t

. (12)

The rotation (11) is not defined at z = 0 since both velocity components are exactly zero in (10).

Thus one is left with the original wall-normal derivatives at the plate. And a similar equation is used

for the top plate except the gradients are evaluated at z = 1. Note that (12) is similar to the equation

(3.8) in [27]. The viscous length scale of a turbulent boundary layer is given by z̃τ = ν̃/ũτ . The
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FIG. 5: Vertical profiles of 〈U‖(z)〉. Left: Profiles averaged over the interior region. Right: Profiles averaged

over the whole plate. The corresponding boundary layer thicknesses δT = 1/(2Nu) are indicated by horizontal

lines with the same color. In all cases the profiles taken from the top and bottom plate are included in the

time average.

dimensionless length is then given by

zτ =

√

Pr

Ra
u−1
τ . (13)

Figure 6 (left) shows the logarithmic velocity profile, 〈U+
‖ (z)〉b,t = 〈〈U‖(z, t)〉b/uτ (t)〉t versus z+ =

〈z/zτ (t)〉t. Specifically, the bulk-averaged instantaneous logarithmic velocity profiles are scaled with

each individual uτ(t), zτ (t) and then time-averaged. This provides a more dynamic estimate of the

profiles, similar to what was done in [29]. We also indicate the linear scaling in the viscous sublayer

which is well resolved in our DNS and a logarithmic law of the wall for a canonical turbulent velocity

boundary layer with the standard von Kármán constant κ = 0.4 and offset coefficient B = 5.5.

It is seen that the profiles do approach the logarithmic law as Ra increases, but they are not

yet turbulent enough to reach the canonical log law. Finally for comparison, a profile is plotted

which is obtained in a channel flow simulation at the same friction Reynolds number as the run with

the highest Rayleigh number (see table I). Interestingly the channel flow comparison plot shows an

overshoot which is typical in channel flow for Reynolds numbers that are too low to be turbulent in

the sense that they follow the logarithmic law [30, 31]. However, this is not true for the RBC case,

where the profiles are consistently below the log law.

To obtain a sense of the uncertainly in calculating these profiles, the same time-averaged profile is
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FIG. 6: Left: Semi-logarithmic plot of the vertical profiles of 〈U+
‖ (z)〉b,t versus z+. The linear law in the

viscous buffer layer and the logarithmic law of the wall are also indicated. The von Kármán constant is

κ = 0.4 and the offset is B = 5.5. For comparison, we also plot a profile which is obtained in a channel

flow simulation at the same friction Reynolds number as the run with the highest Rayleigh number. Right:

Velocity profiles for RBC5. The grey line is the same as in the left panel. The instantanous profiles for all

75 snapshots (in orange) are also plotted here, to give a sense of the range of variation of such profiles with

time. In all RBC cases the profiles taken from the top and bottom plate are included.

plotted for RBC5 as the green curve in the right panel of figure 6 along with all 75 instantaneous profiles

in orange. One does see these curves instantaneously approaching even closer to the logarithmic law,

revealing the transitional nature of these boundary layer profiles.

The friction Reynolds number is defined here as Reτ = ũτ δ̃∗/ν̃. In our scaled units this translates

to

Reτ = uτδ∗

√

Ra

Pr
. (14)

The relevant length scale used here is the z position of the maximum of the time-averaged profile and

is denoted as δ∗ and scaled in units of H . Note that we use the time-averaged profile instead of the

maximum of each instantaneous profile, since there is too much variability in local profiles for the

instantaneous method to always provide a well-defined δ∗(t). We do still use our local uτ (t) which

enables us to estimate the error bars associated with 〈Reτ (t)〉t.
In table I both Reynolds numbers are listed for all simulation runs. The magnitudes of Reτ

consistently take values for which a turbulent boundary layer is not yet established in a canonical

channel flow which are Reτ . 200 [30, 32]. In figure 7 we plot the friction Reynolds number versus

Rayleigh number and detect for the range of Rayleigh number an approximate growth as a power
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Run Ra Pr urms Re Reτ 2ri/zτ

RBC1 3× 105 0.021 0.483 ± 0.009 1830 ± 30 18±1 220 ± 12

RBC2 106 0.021 0.439 ± 0.006 3030 ± 40 24± 2 300 ± 30

RBC3 107 0.021 0.387 ± 0.005 8450 ± 100 35±4 650 ± 80

RBC4 108 0.021 0.332 ± 0.004 22900 ± 300 48 ± 4 1700 ± 130

RBC5 4× 108 0.021 0.334 ± 0.004 46000 ± 600 76 ± 5 2800 ± 190

CF – – 1.054 1145 78 989

TABLE I: Parameters of the five different spectral element simulations RBC1 to RBC5 and the channel flow

simulation CF. The root mean square velocity is obtained as a space-time average over the whole cell volume.

The large-scale Reynolds number is defined by (7) and friction Reynolds number by (14). Finally, the ratio

2ri/zτ is given to list the maximum extension of the boundary layer section for ri = 0.3. Note that the

Reynolds number Re for CF is given by 1145 and that the friction Reynolds number is based on the channel

half width, Reτ = uτLz/(2ν).

law. The inset of the figure displays the ratio of δ∗, the distance from the wall at which the maximum

streamwise velocity in the interior section is found, to δT , the thermal boundary layer thickness.

This distance is steadily increasing towards one which can be interpreted as a growth of the velocity

bursts. Finally using the fit in figure 7 we estimate that the Rayleigh number at which Reτ = 200 is

Ra = (1± 5)× 1011 for Pr = 0.021.

B. Reynolds stresses

The Reynolds shear stress, which couples the fluctuations of the streamwise velocity fluctuation

to the wall-normal ones and is responsible for the momentum transfer from the wall into the bulk of

the wall bounded flow, plays a central role for the production of turbulent kinetic energy. Figure 8

displays the Reynolds shear stresses in the present system in inner units. The components are given

by

T+
UW (z) = −〈U ′

‖W
′
‖〉b,t/u2

τ , (15)

T+
VW (z) = −〈V ′

‖W
′
‖〉b,t/u2

τ , (16)
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with the Reynolds decomposition

U ′
‖(x‖, y‖, z, t) = U‖(x‖, y‖, z, t)− 〈U‖(z)〉b,t , (17)

V ′
‖(x‖, y‖, z, t) = V‖(x‖, y‖, z, t) , (18)

W ′
‖(x‖, y‖, z, t) = uz(x‖, y‖, z, t)− 〈uz(z)〉b,t . (19)
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Again, the rotation has been applied and the fluctuations of all three velocity components in the

rotated frame have been determined subsequently. The magnitude and the extension from the wall

into the bulk of the positive amplitudes of T+
UW are comparable with the data of Elsnab et al. [31].

In addition, the T+
UW profile for RBC5 is comparable with the channel flow run at the same Reτ .

The maximum of the CF stress profile is shifted by ∆z+ = 10 away from the wall, the zero is almost

identical. The mid panel confirms that all profiles start with a cubic z-dependence from the wall. This

is a consequence of the Taylor expansion in combination with the incompressibility. For example, at

z = 0 follows

U ′
‖(x‖, y‖, z, t) ≃ sx(x‖, y‖, t)z + . . . , (20)

V ′
‖(x‖, y‖, z, t) ≃ sy(x‖, y‖, t)z + . . . , (21)

W ′
‖(x‖, y‖, z, t) ≃ −1

2

(

∂sx
∂x

+
∂sy
∂y

)

z2 + . . . . (22)

The leading order expansion coefficients are the components of the skin friction field as well as its

divergence. The vertical shift is determined by the magnitude of the shear at the plate, which is

larger for all convection runs in comparison to CF (see also Section V). The other Reynolds stress

contribution T+
VW is indefinite for the time intervals that were accessible to gather statistics (see right

panel of figure 8). It can be expected that this stress becomes exactly zero in the very long time limit.

In Figure 9 we show the variability in the instantaneous Reynolds stress profiles T+
UW for RBC4

and RBC5 and at the top and bottom plate. The variability, particularly for RBC5 is more extreme.

Note that these profiles were plotted after the system reached a statistically steady state, and some

of the largest deviations from the average occur late in the simulation time.

C. Mean temperature

While the turbulent momentum transfer is significantly enhanced at low Prandtl numbers which

becomes visible by the large Reynolds numbers, the turbulent heat transfer is strongly reduced due to

the large thermal diffusivity. In this subsection, we will plot the mean temperature profiles in inner

wall units which requires an additional quantity besides the friction velocity. The friction temperature,

following [33, 34], is defined by T̃τ = −κ̃ũ−1
τ 〈∂T̃ /∂z̃|z̃=0〉b,t. In dimensionless notation this results in

Tτ = −
〈

u−1
τ (t)√
RaPr

〈

∂T

∂z

〉

b

∣

∣

∣

∣

∣

z=0

〉

t

, (23)
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FIG. 9: Variability of the Reynolds shear stresses −T+
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time. The data in the upper row display instantaneous profiles from 57 snapshots in orange obtained from

RBC4, the ones in the lower row from 75 snapshots from RBC5. The corresponding average is the gray line.

The two panels to the right compare the averages the top and bottom plates as well as the total average

profiles.

where again, this quantity is evaluated at the upper plate (z = 1) when the boundary layer at the

upper plate is analyzed. The dimensionless temperature profile

〈θ(z)〉b,t =



























1− 〈T̃ (z)〉b,t
∆T̃

: z ∈ [0, 1/2]]

〈T̃ (z)〉b,t
∆T̃

: z ∈ [1/2, 1]

(24)

is rescaled with the dimensionless friction temperature Tτ . Figure 10 (left) shows 〈θ+(z)〉b,t =

〈〈θ(z, t)〉b/Tτ (t)〉t versus z+ = 〈z/zτ (t)〉t. The right panel of figure 10 shows the range of varia-

tion in the instantaneous profiles for RBC4. Although there is a linear range in the profiles it is

not related to the temperature profiles in a turbulent boundary layer. Following Kader and Yaglom

[33, 34] the logarithmic temperature profiles should follow

〈θ+(z)〉 = α ln z+ + β(Pr) with α ≈ 2.12 , β(Pr) = (3.8Pr1/3 − 1)2 − 1 + 2.12 lnPr . (25)

Equation (25) has been obtained by an interpolation of a comprehensive data record of turbulence

experiments in pipes, channels and boundary layers which span a range of Prandtl numbers from 100
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FIG. 10: Left: Semi-logarithmic plot of the mean temperature profiles. We display 〈θ+(z)〉 =
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bottom plate are included in the time average. Rayleigh numbers are indicated in the figure for each data

set. Also indicated is logarithmic law (25) as a dashed line. Right: Temperature profiles for RBC5. The gray

curve is the same as in the left. The instantanenous profiles are also plotted here in orange, to give a sense

of the range of variation of such profiles with time.

to 0.022. It can be seen that the present data do not match with the Yaglom-Kader parametrization.

This could be again related to the fact that the boundary layer is not yet fully turbulent.

There is a region which is logarithmic for each temperature profile and we can fit a line to those

data and find a slope. In all cases we obtain a value less than the logarithmic profile value of α ≈ 2.12

of the Yaglom-Kader parametrization. But, the slope is increasing as Ra increases. This is true both

instantaneously (finding the slopes of the orange curves in figure 10 (right)) and also on average. We

provide a table which compares our instantaneous and average slopes to those of Kadar and Yaglom

as well as the work done by Ahlers et. al. [35, 36]. Although our slopes are far from the Yaglom-Kader

results, they are close to the results by Ahlers and co-workers, when scaled to be consistent with their

units. This is noteworthy since their Rayleigh numbers were much higher (1011 − 1012) and this was

for Pr = 0.8 and aspect ratio Γ = 1. However, as noted in Wei and Ahlers [36], who performed

experiments for Pr = 12, α decreased as Prandtl number increased, so the trend here for our 〈αf〉Tτ

values to be larger than those of Ahlers for our smaller Prandtl number is consistent.

A second rescaling was suggested by Chung et al. [8] for convection at low Prandtl numbers. Fol-

lowing the original idea by Kraichnan [4] the authors developed a three-layer model consisting of a

conduction layer, transition layer and a convection layer with corresponding characterisitic scales of
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length, velocity and temperature, respectively. Similar to the inner viscous units, we can take inner

conductive units as follows. One defines a characteristic velocity scale ũc = (κ̃2g̃α̃Q̃/ν̃)1/4, a charac-

teristic length scale z̃c = κ̃/ũc, and a characteristic temperature scale T̃c = Q̃/ũc. In dimensionless

notation this results in

zc =
1

(NuRa)1/4
and Tc =

(

Nu3

Ra

)1/4

. (26)

In figure 11 we replot 〈θ∗(z)〉 = 〈T (z)〉/Tc versus z∗ = z/zc. We compare the mean temperature

profiles obtained for the whole plate and the interior section. For all three Rayleigh numbers, it is

observed that the temperature profiles follows a -1/3 scaling with respect to z∗ = z/zc in a short range

for z∗ > 1, but only for the interior averaged profiles. Such a scaling has been predicted by Priestley

[37] on the basis of dimensional analysis and has been detected for Pr & 1 [8, 38]. Here, we confirm

the scaling for low-Prandtl-number convection.

V. VELOCITY AND TEMPERATURE DERIVATIVES AT THE PLATES

It has been noted in the last section that the boundary layer structure is in some respects similar

to the near-wall dynamics in planar wall-bounded shear flows, in particular for the simulations at the

largest Rayleigh numbers. Therefore, the statistics at the wall will be studied in this last section, and

in particular the velocity derivatives. In figure 12 the derivatives at the bottom plate, ∂T/∂z, ∂ux/∂z,

as well as ∂uy/∂z are found at each time step at four different locations (see caption of figure 12) all

in the interior section b for runs RBC1 and RBC4. The data are displayed in the same ranges over

a time segment of a few free fall time units. One can clearly see that all derivatives are much larger

and show more significant fluctuations for RBC4 than for RBC1. The time series indicate that the

character of both boundary layers is already strongly transitional for the largest accessible Rayleigh

numbers.

In order to compare the velocity derivative statistics with the one in the turbulent channel with

its unidirectional mean flow we proceed as follows. Similar to the rotation (11) we can apply a

transformation at the plates when treating the two non-vanishing velocity derivatives of the velocity

gradient tensor as a two-dimensional vector field. Therefore the definition (10) is adapted to

〈γ(t)〉b = arctan

[〈∂uy/∂z(z = 0, t)〉b
〈∂ux/∂z(z = 0, t)〉b

]

, (27)

and the original plane-by-plane transformation R̂3(z, t) is changed to the rotation R̂2(z = 0)





∂zux(t)|z=0

∂zuy(t)|z=0





‖

=





cos〈γ(t)〉b sin〈γ(t)〉b
− sin〈γ(t)〉b cos〈γ(t)〉b









∂zux(t)|z=0

∂zuy(t)|z=0



 . (28)
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FIG. 12: Time series of derivatives at the plate z = 0 which are taken for a time interval of 3.3 Tf in

both runs. The vertical temperature derivative ∂T/∂z and the two components of the skin friction field

are shown. Left: RBC1. The time series are taken at four history points in the interior section b which

are approximately situated at (x1, y1) = (0.12,−0.04), (x2, y2) = (−0.04, 0.12), (x3, y3) = (−0.12,−0.04),

and (x4, y4) = (0.04,−0.12). Right: RBC4. The four history points are (x1, y1) = (0.06, 0.03), (x2, y2) =

(−0.03, 0.06), (x3, y3) = (−0.06,−0.03), and (x4, y4) = (0.03,−0.06). The amplitudes of both data records

are directly comparable in each panel.
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Ra 〈αf 〉 max αf min αf Y/K 〈αf 〉Tτ ABH

3× 105 0.33 ± 0.01 0.36 0.28 2.12 0.22 ± 0.01 0.14 ± 0.02

1× 106 0.35 ± 0.03 0.41 0.25 2.12 0.21 ± 0.02 0.12 ± 0.02

1× 107 0.40 ± 0.05 0.52 0.28 2.12 0.20 ± 0.03 0.09 ± 0.01

1× 108 0.48 ± 0.05 0.59 0.38 2.12 0.20 ± 0.03 0.07 ± 0.01

4× 108 0.50 ± 0.04 0.58 0.38 2.12 0.18 ± 0.01 0.06 ± 0.01

TABLE II: Slopes found by fitting a log law to the region of each instantaneous profile which follows a log

law. This was done for each profile for our data set, and for the top and bottom plate. The value 〈αf 〉

is the average for each data set and the error (found by standard deviation) and the max and min values

are also listed. For comparison, α = 2.12 by Yaglom-Kader (Y/K) is given. Finally the data from Ahlers,

Bodenschatz and He [35] (ABH) for Pr = 0.8 is also listed, where we used their fits (either equation 4.6 or

4.7 in [35]) then multiplied our 〈αf 〉 by Tτ to convert to their units.

The same transformation R̂2(z = 1) follows for the top plate at z = 1 with a corresponding angle.

In figure 13, PDFs of (∂ux/∂z)‖ and (∂uy/∂z)‖ are shown for RBC2, RBC3, RBC4, and RBC5 along

with CF, the channel flow run at a comparable Rayleigh number, each of which is scaled by its

respective root mean square (rms) value. Note the symmetry for (∂uy/∂z)‖, for all runs, further

supporting that our transformation to a streamwise and spanwise direction makes the present data

better comparable to a channel setup. Conversely the pdfs for (∂ux/∂z)‖ are asymmetric, indicating a

net shear flow for U‖. The pdfs become wider as the Rayleigh number increases, indicating an increase

of the intermittent fluctuations of the derivatives for increasing Ra. Their shape agrees remarkably

well with the findings of Lenaers et al. [22] (see e.g. their figure 2). The increasingly wider tails for

the present data underlines an increasingly transitional character of the viscous boundary layer.

While the PDF of the streamwise velocity derivative of CF contains a small negative tail only, the

distributions of both components of the skin friction field for RBC have large tails for both negative

and positive values. Thus it is expected that a significant number of critical points exists, i.e., points at

(x, y, z = 0) and (x, y, z = 1) at which s = 0. The following pairs of complex eigenvalues λk = ak+ ibk

are possible: saddle points with λ1 = a1 < 0 and λ2 = a2 > 0; unstable nodes with λ1 = a1 > 0 and

λ2 = a2 > 0 as well as stable nodes with λ1 = a1 < 0 and λ2 = a2 < 0. Also possible are unstable foci

with λ1,2 = a± ib or stable foci with λ1,2 = −a± ib both of which with a > 0 [21, 23].

The dynamics in the boundary layer of a turbulent convection flow can be quantified by computing

these critical points of the skin friction field at the bottom or top plate as in [23]. For example,
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FIG. 13: Probability density functions of the vertical derivatives of the horizontal velocity components taken

at z = 0 and 1 for RBC2, RBC3, RBC4, and RBC5 in the interior plate sections. For comparison, we add

the vertical derivative of the streamwise velocity component of the channel flow (CF) to both panels of the

figure.

saddle points or stable foci can be associated with plume emission and unstable nodes or foci can

be associated with plumes hitting the plate. Figure 14 shows that this mainly occurs near the outer

region of the plate. If we confine ourselves to be inside the region defined by the yellow circle in figure

14, there are fewer critical points and the region is thus more similar to the near-wall region in a

wall–bounded shear flow [21, 22]. This holds in particular if one combines all three panels of figure

14.

VI. SUMMARY AND CONCLUSIONS

The structure of the boundary layers in a high-Reynolds number turbulent Rayleigh-Bénard flow

has been studied from the perspective of transitional wall-bounded flows, such as a channel flow.

Since the momentum transfer response (and thus the large-scale Reynolds number) is very large in

liquid metal convection flows at very low Prandtl numbers compared to air or water, the viscous

boundary layer fluctuates particularly strongly which is quantified by Reynolds shear stress profiles

and the statistics of derivatives at the walls. Our analysis is based on a series of three-dimensional
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FIG. 14: Location of critical points for the skin friction field at the bottom plate z = 0 for run RBC4 for

57 snapshots spanning 6.7 free-fall times. The left panel shows the location of the saddle points, the middle

panel shows the location of the stable nodes (red) and foci (blue) and the right panel shows the unstable

nodes (orange) and foci (green). The yellow circle is the inner radius r = ri. The view onto the plate is from

above

.

direct numerical simulation runs for Pr = 0.021. The high spectral resolution allowed us to study the

derivative statistics and to determine friction velocities and temperatures.

The torsion and the varying orientation of the large-scale circulation in the closed cylindrical cell

is (partly) removed by a symmetry transformation that is applied for each grid plane between bottom

and top separately. It is then shown that the mean streamwise velocity approaches the standard

logarithmic law of the wall from below. This is in contrast to a transient low-Reynolds number

channel which would approach a logarithmic scaling from above caused by the parabolic laminar flow

profile at very small Reynolds numbers.

When the sidewall effects are excluded, the temperature profiles come close to a power law scaling

similar to Chung et al. [8]. Although we could also fit a logarithmic law to the profiles, the slope

differs significantly from what is expected for a turbulent boundary layer [33, 34]. It remains to be

seen if this scaling changes when the Prandtl number is even further decreased and/or the Rayleigh

number is further increased.

The Reynolds shear stress component T+
UW , which is obtained at the same Reτ for runs RBC5 and

CF, obeys qualitatively the same shape although the maxima are shifted by 10 wall units with respect

to each other. Together with the profiles which have been obtained for T+
VW , this demonstrates that

the transformation (11) can identify a streamwise direction and thus effectively remove a significant

23



part of the complex three-dimensional mean flow structure.

How can the structure of the boundary layer be described on average? We go back to figure 1

at the beginning and replot in figure 15 the time-averaged slice cuts of temperature, skin friction

magnitude and kinematic pressure taken at the same heights as in figure 1. The solid line in all three

panels indicates the mean orientation of the flow in the vicinity of the plate. It is obtained again by

averaging over the interior plate section. The following picture arises:

• The plume impact region at the bottom plate is on average colder than the rest of the plate

region. Temperature increases along the mean streamwise direction. The hotter plate region is

where the LSC rises up towards the top plate – the plume ejection region.

• The skin friction field magnitude shows the biggest spatial variability in the impact and ejection

regions. This is also where most of the critical points, s = 0, are observed. As shown in figure

14, the majority of these points are found outside the interior plate section. The skin friction

magnitude is largest in the interior section where the LSC sweeps across the plates and generates

strong shear.

• The interior plate section is well approximated by a favorable pressure gradient boundary layer.

A local pressure maximum is clearly associated with the plume impact. Pressure increases again

slightly further downstream at the opposite edge of the interior region. This might be connected

with the increase of temperature in the vicinity of the side wall.

• With increasing Rayleigh number, it is found that the wall stress (or skin friction) field compo-

nents fluctuate increasingly stronger which also underlines the increasingly transitional character

of the viscous boundary layer.

This is a general and coarse-grained picture which is mostly related to the viscous boundary layer

dynamics. Our DNS record allows to extrapolate the existing data in order to predict when a friction

Reynolds number Reτ ∼ 200 is obtained that results in a turbulent channel flow as discussed in the

landmark paper by Kim, Moin and Moser [32]. Our present low-Pr data suggest turbulence inside

the viscous boundary layer for Ra & 1011. This value would be consistent with the experiments by

Glazier et al. [39] that went up to Rayleigh numbers of Ra ∼ 1011. However, their cell for the highest

Ra had an aspect ratio Γ = 1/2 which reduces the downstream evolution length 2ri/zτ at a given

Rayleigh number (see table I) and thus the scale over which the boundary layer can become turbulent.

As a next step, it would be interesting to study the near-wall structure formation to more detail.

These investigations are already in progress and will be reported elsewhere. Another interesting

direction is to lower the Prandtl number even further, e.g. to values Pr < 10−2 which are typical for
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FIG. 15: Time-averaged boundary layer structure at the bottom plate of the turbulent convection flow RBC4

at Pr = 0.021 and Ra = 108. (a) Temperature T at z = 0.0024 which corresponds with 0.09δT . (b) Magnitude

of skin friction |s| in logarithmic units at z = 0. (c) Pressure p at z = 0.0024. The view on the bottom plate

is from below. All time averages are taken over 6.72 Tf . The dotted horizontal and vertical lines are a guide

to the eye. The dotted circle indicates the interior plate section with r ≤ ri. The solid thick line indicates

the time-averaged mean flow orientation (upper left to lower right) which is taken over the interior section.

liquid sodium [10]. Numerical simulations at larger Rayleigh numbers in sodium at Pr = 0.005 are

also currently underway and will be discussed in the near future.
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