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An asymptotic solution is derived for the motion of inertial particles exposed to Stokes drag in an

unsteady random flow. This solution provides an estimate for the sum of Lyapunov exponents as a

function of the Stokes number and Lagrangian strain- and rotation-rate autocovariance functions.

The sum of exponents in a Lagrangian framework is the rate of contraction of clouds of particles

and in an Eulerian framework, it is the concentration-weighted divergence of the particle velocity

field. Previous literature offers an estimate of the divergence of the particle velocity field, which is

applicable only in the limit of small Stokes number (R-M) (Robinson, Comm. Pure App. Math., vol.

9, 1956, pp. 69-84). In addition to reproducing R-M at this limit, our analysis provides a first-order

correction to R-M. Our analysis is validated by directly computed rate of contraction of clouds of

particles from simulations of particles in homogeneous isotropic turbulence over a broad range of

Stokes numbers. Our analysis and R-M predictions agree well with the direct computations at the

limit of small Stokes numbers. At large Stokes numbers, in contrast to R-M, our model predictions

remain bounded. In spite of an improvement over R-M, our analysis fails to predict the expansion

of high Stokes clouds observed in the direct computations. Consistent with the general trend of

particle segregation versus Stokes number, our analysis shows a maximum rate of contraction at

an intermediate Stokes number of O(1) and minimal rates of contraction at small and large Stokes

numbers.



I. INTRODUCTION

Inertial particles interacting with a spatially varying flow form regions of high concentration. This is known

as particle clustering [1], segregation [2], or preferential concentration [3]. The prevalence of particle-laden

flow in areas of physics and engineering has inspired decades of research with applications ranging from

planet and cloud formation to combustion and pharmaceutical applications [4, 5].

These studies have established that clustering occurs when particles, characterized by their Stokes numbers,

have a response time of order unity. At significantly higher Stokes numbers particles follow a ballistic

trajectory that is independent of the flow. Particles with St ≪ 1 follow the fluid as tracers with a minimal

relative motion that is essential to the formation of clusters. Various approaches have been adopted to

relate clustering to the background flow and Stokes number. Experimental studies [4, 6–9] and numerical

simulations [2, 10–16] have shown that Stokes numbers of order unity based on the Kolmogorov time scale

are associated with the strongest clustering regime.

Under a particular set of conditions, such as low particle Reynolds and Knudsen numbers, high particle-

to-fluid density ratio, absence of body force, negligible finite size effects, negligible particle-particle and

particle-wall interactions, and low mass loading ratio, particle motion is well described in these systems by

the Stokes equation

Ẍi = τ−1
(

ui − Ẋi

)

, (1)

in which X(t) is the position of a particle, t is time, ˙(•) ≡ d(•)/dt, u(X, t) is the fluid velocity, and τ is

the particle relaxation time. Although Eq. (1) seems a simple ordinary differential equation, it exhibits a

nonlinear chaotic behavior due to the dependence of its source term on X [17]. For systems in which the

assumptions associated with Eq. (1) are not completely valid, the Stokes number retains a large influence on

clustering with a trend that is similar to the dynamics predicted by this simplified equation. Therefore, we

consider Eq. (1) as the starting point to investigate the underlying physics of clustering at a more fundamental

level and explicate the role of Stokes number in this process.
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Multiple indices have been introduced in the literature for characterization of particle clustering [18]. Here

we consider two classes of indices and describe their relationship. The first index is defined based on the

rate at which nearby particles separate or approach each other. In other words, provided two particles at an

initial infinitesimal distance ‖r(0)‖, they converge or diverge exponentially as

‖r(t)‖ = ‖r(0)‖eλt. (2)

λ is called the finite-time Lyapunov exponent and converges to the Lyapunov exponent in an ergodic system

as t→ ∞ [19]. Exponents much smaller than zero are indicative of a strong clustering regime. As discussed

in details in the following section, there are three exponents (λ1, λ2, and λ3) in a 3-dimensional flow that

determine the rate of expansion and contraction of a cloud of particles in three orthogonal directions. Hence,

these exponents are directly related to the rate of contraction of a cloud, which as discussed in [20] is

connected to the particle number density and provide a measure of clustering.

The second index for characterization of clustering is based on the statistics of particle concentration field,

which is experimentally measurable and less mathematically abstract. At the limit of small Stokes numbers,

particle concentration field is a fractal [1]. Analytical relationships are established for different order statistics

of a fractal and employed in this context for characterization of clustering [21]. For instance, the scaling

exponent ζ(n) obtained frommn = Dζ , in which m(D) is the average mass of particles inside an infinitesimal

sphere with diameter D, varies depending on the level of clustering. For example, clustering of randomly

distributed particles in 3D toward a 2D manifold reduces ζ from 3n to 2n. For a fractal concentration field,

ζ is directly related to the Lyapunov exponents and as a result to the first index described above [22, 23].

Hence, the Lyapunov exponents provide an estimate for a more experimentally-accessible clustering index

and are of prime importance for characterization of particle clustering.

The divergence of particle velocity field is equal to the sum of the Lyapunov exponents (i.e. λ1 +λ2 +λ3)

and computing it relates both indices described above to the background flow. At the limit of small Stokes

numbers, an expression has been derived by Robinson 1956 [24] and Maxey 1987 [25] for the divergence of

particle velocity field by taking the divergence of Eq. (1) under the assumptions Ẍ ≈ Du/Dt and ∇ ·u = 0.
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This expression, which we consider for benchmarking our analysis and denote it by R-M hereafter, is

∇ · Ẋ ≈ −τ∇ · (u · ∇u) = τ(‖Ω‖2 − ‖S‖2) ≡ τQ, (3)

in which Ω and S are the fluid rotation- and strain-rate tensors, respectively, and overline denotes averaging

in time over trajectory of a particle. Note that the difference between the norm of these two tensors (here

defined as Q) corresponds to the second invariant of the velocity gradient tensor and half of the Q-criterion,

which is a scalar function employed for identification of vortices in turbulent flows [26, 27]. The R-M

expression explains that the most hospitable zone for clustering are those with high strain and low rotation

rate that are conducive to the highest rate of contraction. Although this relation provides information about

both indices through the sum of Lyapunov exponents, it is linearly proportional to τ and fails to predict the

non-monotonic behavior of Eq. (1) versus the Stokes number.

The primary objective of this study is finding a correction to R-M that not only reproduces it at the limit

of small Stokes number (the regime that Eq. (3) applies to), but also applies to a wider range of Stokes

numbers. With this motivation in mind, in what follows, an asymptotic solution is derived from Eq. (1) that

quantifies the sum of Lyapunov exponents associated with inertial particle pairs. This solution expresses the

sum of exponents as a function of Stokes number and background flow statistics, hence can be related to

both indices described above.

In what follows, we consider a general representation of flow with oscillatory modes of strain and rotation

acting simultaneously over all possible frequencies. We derive an eigenvalue problem with its eigenvalues and

eigenvectors representing magnitude and directions of contractions, respectively. We show the dependence of

this eigenvalue problem on the Stokes number, explaining how a particle may filter or resonate with different

frequencies. We perform a detailed analysis of the Lagrangian autocovariance functions, which are the input

to our analysis, and benchmark their response with a set of canonical flows. Finally, we present a validation

of our analysis through a quantitative comparison against direct numerical simulation (DNS) of particle

laden homogeneous isotropic turbulent (HIT) flow.
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FIG. 1. Schematic of a cloud of particles, Ωt, defined as an infinitesimal 3D manifold occupied by a collection of

particles. This cloud, which undergoes deformation characterized by Ξ, may expand or contract toward a central

point ξ.

II. ANALYTICAL DERIVATION

As the starting point, we consider a volume occupied by a collection of nearby particles, which we call a

cloud. This cloud is initially denoted by Ω0 and evolves over time with Ξ : Ω0 → Ωt (Fig. 1). By taking

function Ξ to satisfy Eq. (1), Ωt = {X(t) | X(t) = Ξ(X(0), t),X(0) ∈ Ω0}. By following Ωt, the problem

is formulated on a reference frame that moves with the cloud.

Denoting the central point of the cloud by ξ, relative motion of a particle located atX ∈ Ωt to the central

point is r(t) =X(t)− ξ(t) (Fig. 1). Substituting this relation in Eq. (1) gives

τ(ξ̈i + r̈i) + ξ̇i + ṙi = ui(ξ + r, t). (4)

By bounding the size of the cloud to be much less than the Kolmogorov length scale η, we ensure that the

size of the cloud is always less than the inertial length and as a result particles within the cloud experience

a smooth linear velocity field. Hence, from the Taylor series expansion

ui(ξ + r, t) = ui(ξ, t) + ui,j(ξ, t)rj +O
(

‖r‖2
)

, (5)

in which (•),i ≡ ∂(•)/∂xi. Neglecting the higher order terms in Eq. (5) and using τ ξ̈i + ξ̇i = ui(ξ, t) to
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simplify Eq. (4) leads to

τ r̈i + ṙi = ui,j(ξ, t)rj , (6)

which is an exact linearized form of Eq. (1), provided ‖r‖ is sufficiently small. Here, we have derived Eq. (6)

from Eq. (1) in several steps to build physical intuition. This equation can also be obtained by taking the

derivative of Eq. (1) with respect to X(0) as shown in [16].

Next, we express fluid velocity in a continuous Lagrangian Fourier space that follows the cloud:

ui(ξ, t) =
∑

ω

ũi(ω)e
îωt, (7)

in which ω = (−∞,∞). Since finding r for an individual cloud is of interest, dependence of ũ on ξ is dropped

from Eq. (7). From Eqs. (7) and (6)

τ r̈i + ṙi =
∑

ω

ũi,j(ω)rje
îωt. (8)

These three ordinary differential equations relate particle motion to the harmonics of the velocity gradient

tensor sampled along the trajectory of the cloud. One significance of this relation is that the fluid velocity

gradient is characterized by the Kolmogorov scale, and thus explains our earlier use of Kolmogorov units.

The appearance of the velocity gradient tensor in Eq. (8) does not imply that it only captures a subset of

existing scales of the flow. ui,j is a general function of time and accounts for the full turbulent spectrum,

including the longer time scales of the inertial range. Additionally, due to the turbulence intermittency ũi,j

can not be represented as a unique set of harmonic functions. However, as shown later in this section, it is

still possible to derive a generic solution for the rate of contraction that converges statistically with sufficient

sampling.

Denoting the volume of the cloud Ωt by V (Ωt), the finite-time rate of contraction Ct is defined such that

V (Ωt) = V (Ω0) exp(Ctt). (9)

Based on Eq. (9), we define a time-independent rate of contraction as

C ≡ lim
t→∞

Ct. (10)
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With these definitions the cloud might rotate or even expand in a particular direction, but it contracts as

long as the number density within the cloud increases. To quantify C, we search for an asymptotic solution

to Eq. (8) with a form of

ri = eλt
∑

ω

Ai(ω)e
îωt, (11)

in which λ and Ai are the free eigenvalues and eigenfunctions to be determined. Considering the upper

bound on ‖r‖, λ at t → ∞ is the Lyapunov exponent associated with particle pairs at ξ and ξ + r. The

form of the solution in Eq. (11) allows for oscillation over all possible frequencies, ω, as well as contraction

or expansion characterized by λ. Specifically, we seek contractions and expansions that persist over time

scales longer than particle relaxation time and thus regimes with

|λτ | ≪ 1, (12)

is of particular interest.

Next, we expand our formulation at |ω| < |λ| and |ω| > |λ| and simplify it using Eq. (12) to obtain a

3×3 eigenvalue problem. For the sake of brevity, we use short hand notations Am ≡ A(ωm) and ũm−n ≡

ũ(ωm − ωn). Substitute Eq. (11) in (8) yields

∑

ωm

(

τ (̂iωm + λ)2 + îωm + λ
)

Am
i e

îωmt =
∑

ωl

∑

ωn

ũli,jA
n
j e

î(ωl+ωn)t. (13)

Since summations are calculated over infinite intervals, we take ωl = ωm − ωn to simplify Eq. (13) to

∑

ωm

(

τ (̂iωm + λ)2 + îωm + λ
)

Am
i e

îωmt =
∑

ωm

∑

ωn

ũm−n
i,j An

j e
îωmt, (14)

which must hold at any t. This is achieved by ensuring

(

τ (̂iωm + λ)2 + îωm + λ
)

Am
i =

∑

ωn

ũm−n
i,j An

j , (15)

is satisfied for any ωm. In the following, we enforce this condition separately for small and large ωm.

Approximating Eq. (15) for |ωm| < |λ| yields

(τλ + 1)λAm
i ≈

∑

ωn

ũm−n
i,j An

j , (16)
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and for |ωm| > |λ|

(

−τ(ωm)2 + îωm
)

Am
i ≈

∑

ωn

ũm−n
i,j An

j . (17)

Note that ωn inside the summation in Eqs. (16) and (17) is not limited to small or large frequencies and

covers the full spectrum of ũi,j . Rearranging Eq. (17) gives

An
k = −

∑

ωl

τ + î/ωn

1 + (τωn)2
ũn−l
k,j A

l
j , (18)

for |ωn| > |λ|. The first term in Eq. (16) can be neglected since |τλ| ≪ 1 (see Eq. (12)). Therefore,

substituting Eq. (18) in (16) yields

λAm
i = −

∑

|ωn|>|λ|

∑

ωl

τ + î/ωn

1 + (τωn)2
ũm−n
i,k ũn−l

k,j A
l
j +

∑

|ωn|<|λ|

∑

ωl

1

λ
ũm−n
i,k ũn−l

k,j A
l
j , (19)

for |ωm| < |λ|. Since the aim of this analysis is obtaining ensemble-averaged quantities over long time

periods, we neglect the terms with l 6= m in Eq. (19) (ũm−n
i,k and ũn−l

i,k are uncorrelated for l 6= m). Hence

λAm
i = −

∑

|ωn|>|λ|

τ + î/ωn

1 + (τωn)2
ũm−n
i,k ũn−m

k,j Am
j +

∑

|ωn|<|λ|

1

λ
ũm−n
i,k ũn−m

k,j Am
j , (20)

for |ωm| < |λ|. The velocity gradients in Eq. (20) are a function of |ωn − ωm|. Since in the first summation

|ωn| > |λ| and |ωm| < |λ|, we neglect ωm in this summation. Additionally, the second summation is

summed over a short range compared to the physical infinity, viz. of order τ−1
η . Hence, we neglect this term

in comparison with the first summation, which is summed over a much wider range of frequencies. Our

numerical results show |τηλ| ≪ 1. As a result Eq. (20) reduces to

λAm
i = −

∑

|ωn|>|λ|

τ + î/ωn

1 + (τωn)2
ũ−n
i,k ũ

n
k,jA

m
j , (21)

for |ωm| < |λ|. In Eq. (21), the term with î/ωn is an odd function of ωn and is canceled. Additionally,

taking ω = ωn yields

λAm
i = −





∑

|ω|>|λ|

τ

1 + (τω)2
ũ∗i,kũk,j



Am
j , (22)

for |ωm| < |λ|, in which ũ∗ is the complex conjugate of ũ and is equal to ũ(−ω), since u ∈ R
3.
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The summation in Eq. (22) includes only |ω| > |λ| and hence its computation requires a prior knowledge

of λ. To remove this dependence, we extend the summation to all frequencies by including |ω| < |λ| in this

summation. This change in summation bounds is in accordance with our earlier assumption in which the

contribution of |ω| < |λ| is negligible compared to |ω| > |λ|. The contribution of these small frequencies is of

the same order as the second summation in Eq. (20) that was neglected earlier. Therefore, this approximation

remains within the leading order of accuracy of this analysis. Including |ω| < |λ| in Eq. (22) leads to

λAm
i = −

[

∑

ω

τ

1 + (τω)2
ũ∗i,kũk,j

]

Am
j , (23)

for |ωm| < |λ|. Note that the expression inside the bracket is not a function of ωm, indicating that λ is the

same at small frequencies. Therefore, Eq. (23) can be written as

ψA0 = λA0, (24)

in which A0 is the displacement vector associated with the low frequency oscillations, i.e. |ωm| < |λ|, and

ψij ≡ −
∑

ω

τ

1 + (τω)2
ũ∗i,kũk,j . (25)

The three eigenvectors of ψ represent the principal directions at which the cloud experiences pure contraction

or expansion. The eigenvalues associated with each direction represent the rate of contraction (real(λ) < 0)

or expansion (real(λ) > 0). Numerical investigation shows that generally one of the eigenvalues has a positive

and one has a negative real part, hence most clouds expand and contract at the same time, which is consistent

with previous reports [13]. The imaginary part of each eigenvalue accounts for the mean rotation.

While the instantaneous rate of expansion or contraction of a cloud is subject to oscillations due to the

turbulence intermittency, the long term change of V (Ωt) is solely controlled by λ and can be computed from

the product of contraction or expansion factors in the principal directions as

V (Ωt) = V (Ω0) exp(Λiit) | t→ ∞. (26)

In this relation, Λ is the eigenvalue matrix of ψ, hence Λii is the sum of three Lyapunov exponents λ’s.

Considering our earlier definition of clustering index, Eq. (26) provides Λii as the measure of contraction
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rate for a single cloud of particles. Given that the trace is invariant, Λii can be directly computed from ψii.

Hence from Eqs. (10) and (26)

C ≈ Λii = ψii = −
∑

ω

τ

1 + (τω)2
ũ∗i,j ũj,i. (27)

Using the convolution theorem and ũ∗i,jũj,i = S̃∗
ij S̃ij − Ω̃∗

ijΩ̃ij , Eq. (27) can be expressed in terms of a

continuous integral as

C(τ) =
ˆ ∞

−∞

τ ρ̃Q(ω)

1 + (τω)2
dω, (28)

in which ρ̃Q represents the Fourier transform of the autocovariance function ρQ defined as

ρQ(t) ≡ ρΩ − ρS ≡ Ωij(t′)Ωij(t′ + t)− Sij(t′)Sij(t′ + t), (29)

with overlines denoting Lagrangian averaging over t′. Defining















ρI(t)

ρII(t)

ρIII(t)















≡















u1,1(t′)u1,1(t′ + t)

u1,2(t′)u1,2(t′ + t)

u1,2(t′)u2,1(t′ + t)















, (30)

for homogeneous and isotropic turbulence, it can be shown















ρΩ(t)

ρS(t)

ρQ(t)















= 3















ρII − ρIII

ρI + ρII + ρIII

−ρI − 2ρIII















. (31)

We will analyze the behavior of these functions in the next section for HIT flow. Since these autocovariance

functions are computed along the trajectory of a cloud, they are different from the Eulerian quantities and

thus dependent on τ .

Interestingly in the limit of St = τ/τη ≪ 1, in which τη is the Kolmogorov time scale of the flow, Eq. (28)

reduces to

C = τ

ˆ ∞

−∞

ρ̃Qdω = τρQ(0) = τ(‖Ω‖2 − ‖S‖2) = τQ, (32)
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which is identical to R-M expression in Eq. (3). Note that R-M is validated in the limit of St < O(1),

showing its close connection with particle clustering [28, 29]. Here using an entirely different approach, we

derived a more general expression that targets a wider range of Stokes numbers. Among all flow parameters,

this relation only depends on the second invariant of the velocity gradient tensor, confirming the dominant

role of viscous scales on producing fluctuation in the particle concentration field [30].

Equation (28) is the most important result of this analysis, which at the first glance predicts maximum

rate of contraction C at intermediate τ when ρ̃Q < 0. Additionally, neglecting the dependence of ρ̃Q on τ ,

it predicts the decay of C for τ → 0 or τ → ∞ proportional and inversely proportional to τ , respectively.

Furthermore, the fact that the product of τ and ω appeared in the denominator of Eq. (28) explains the

unresponsiveness of larger particles to the fast oscillations of small flow features.

III. DIRECT NUMERICAL SIMULATIONS

In this section, we describe the direct numerical simulations that were performed to quantify and verify

the analytical results of Section II. In particular, we discuss two aspects of these simulations that are critical

for a correct assessment of those results. These aspects, although generic and not specific to present analysis,

are essential for reproduction of the reported results, and thus, are discussed for the sake of completeness.

We consider a triply periodic homogeneous isotropic turbulence as the background flow. To simplify

collecting statistics over extended periods, we generate a stationary turbulence by continuously injecting

energy into the flow via a linear forcing term that is proportional to the velocity [31]. Hence, the momentum

equation is modified as

ρ
Du

Dt
= ∇ · T +Au, (33)

in which T is the stress tensor and A is the linear forcing term. The difficulty of this formulation is that

the rate of energy supply and dissipation will not be stationary variables for a constant A. As a result,

implementation of Eq. (33) with a constant A produces a time-dependent τη with fluctuations persisting
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FIG. 2. The dynamic adjustment of the linear forcing coefficient At based on the measured τ t
η using Eq. (34).

over long periods. These fluctuations have a slow dynamics with an integral time scale that is in the order of

hundreds of τη. Since τη is directly related to the Stokes number of particles, a correct estimate of St relies

on computing τη such that conditions are statistically converged. However, the long integral time scale of τη

inhibits its accurate computation through a reasonable period of ensemble-averaging.

To prevent variation of global turbulence statistics several remedies have been explored [32]. Here, we

developed a method that dynamically changes the linear forcing term A at each time step using

At = A

(

1 + tanh

(

k(
τ tη
τη

− 1)

))

, (34)

in which A is a baseline estimate that is computed from the target Kolmogorov time scale τη, A
t is dynam-

ically changed forcing term that is implemented in the right-hand-side of Eq. (33), τ tη is the instantaneously

measured Kolmogorov time scale throughout the simulation, and k is a dimensionless control gain. This

method is specifically designed to prevent variation of τη throughout the simulation. As shown in Fig. 2,

depending on the deviation of τ tη from the target value, At is increased or decreased with a slope of kA/τη.

For a given box size L and fluid kinematic viscosity ν, we choose A = ν1/3L−2/3τ
−2/3
η . This choice produces

Reλ ≈
√
15/(3Aτη).
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FIG. 3. Deviation of the instantaneous Kolmogorov time scale τ t
η from the target τη in percent over the entire

simulation history for controlled At with k = 100 (solid line) and uncontrolled At with k = 0 (dashed line).

Implementation of Eq. (34) limits the relative error in controlled τ tη to a value that scales as k−1. As

shown in Fig. 3, which is obtained from a simulation at Reλ = 26, controlling At reduces
√

(τ tη/τη − 1)2

from 10% to less than 0.2%. The simulation reported in the following sections is performed at Reλ = 100

with k = 100. In this simulation, the maximum deviation of τ tη from the target Kolmogorov time scale is

0.3%.

The second aspect of these simulations that requires close attention is the interpolation scheme for comput-

ing quantities at the location of particles from the Eulerian grid. To accurately compute the compressibility

of particle velocity field, it is essential to have an interpolation scheme that translates the incompressibility

condition that is imposed on the Eulerian field to the Lagrangian field. In the other word, ui,i(X(t); t)

evaluated at the location of particles must be zero for incompressible flows. An interpolation scheme with an

improper design will not satisfy this condition. The second issue that may arise in this context is a disconti-

nuity in the interpolated velocity gradients along the trajectory of a particle as it crosses over Eulerian cell

boundaries (Fig. 4). For example, this issue becomes apparent in the case of constructing velocity gradients

from the interpolated velocities through finite-differencing. Note that increasing the order of interpolation
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FIG. 4. The Lagrangian velocity gradients as a function of time for an arbitrary particle interpolated from an Eulerian

velocity field. As a particle crosses a cell boundary, a jump is observed in the velocity gradients due to the finite-

support of the interpolation scheme (dashed lines). This issue, originally caused by performing interpolation and

then differentiation, is resolved by first creating a spatially-consistent C0 continuous field for the velocity gradient

and then performing the Lagrangian interpolation (solid lines).

scheme (for a finite interpolation stencil) does not resolve this problem.

To prevent these two issues, we compute the velocity gradient on the Eulerian grid prior to the Eulerian-

to-Lagrangian interpolation. More specifically, for a staggered uniform grid and a second order central

differencing, ui,i is computed on the cell center based on the velocities on the faces of the cell. For ui,j and

i 6= j, gradients are computed on the cell faces from the adjacent cells velocities (e.g. cell I + 1 is computed

based on the cells I and I + 2). This Eulerian representation of ui,j is then fed into a trilinear interpolation

scheme that respects the location of Eulerian quantities on the grid while computing ui,j at the location of

particles. The combination of these two steps produces a C0 continuous velocity gradient as a function of

time that automatically satisfies the incompressibility condition (Fig. 4).
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FIG. 5. The ensemble-averaged Lagrangian autocovariance functions (a) 〈ρI〉, (b) 〈ρII〉, and (c) 〈ρIII〉 defined in

Eq. (30) at different Stokes numbers.

IV. ANALYSIS OF THE LAGRANGIAN AUTOCOVARIANCE FUNCTIONS

In this section, the autocovariance functions, defined in Eqs. (30) and (31), are computed for a HIT

flow. DNS of a triply periodic incompressible flow at Reλ=100 was performed using a 2563 numerical grid.

Turbulence was maintained using a time varying linear forcing term (Eq. (34)). Equation (1) was solved

for particles with St = 2p, p ∈ {−4, . . . , 4}. At each Stokes number, 105 randomly seeded particles were

simulated for several large eddy turnover time to allow development of clusters. Starting from this time-

evolved distribution, the velocity gradient tensor was recorded at the position of each particle for 200τη

with 0.1τη intervals. The scheme described in Section III was employed for proper interpolation of the

velocity gradients from the Eulerian grid to the location of particles. Having ui,j as a function of time, the

autocovariance functions were computed based on Eq. (30) at each St. For ensemble-averaging, denoted by

〈•〉 hereafter, this process is repeated for all particles (105 samples at each St). The number of particles

and integration period are verified to be sufficient for achieving statistical convergence. The results of these

calculations are shown in Fig. 5.

To analyze the trends observed in Fig. 5, we investigate the behavior of each autocovariance function on
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FIG. 6. The schematic of four canonical flows and their effect on various autocovariance functions.

a set of canonical flows. For this purpose, we consider a flow through a corner, a shear flow, a forced vortex,

and a free vortex (Fig. 6). The simple form of velocity gradient in these flows allows analytical computation

of their corresponding autocovariance functions. Employing these analytical forms to explain the behavior of

the autocovariance functions in the HIT flow is by no means conclusive and solely conducted for a qualitative

understanding of the observed trends. A more conclusive study would require assessment of the likelihood

of exposure of particles to different flow features, which must incorporate the dependence on St, as well as

a more comprehensive range of canonical flows that may occur in a 3-dimensional flow [33].

We first consider flow through a corner or toward a stagnation point, in which u ≡ [x1, x2,−2x3]A. In

this case, ui,j is zero for i 6= j, A for i = j = 1 or 2, and −2A for i = j = 3. As a result, this canonical flow

only contributes to ρI. Although the trajectory of particles varies with the Stokes number, the gradients are

uniform in the entire domain, producing ρI = 2A2 that is independent of St. The independence is relatively
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consistent with Fig. 5-(a), in which ρI(t) remains unchanged as St is increased from 1/16 to 16. For t→ ∞,

ui,j(t
′) becomes uncorrelated with ui,j(t + t′) and hence all functions decay to zero. ρI, however, has the

fastest decay rate (shortest integral time scale) among the three functions, indicating that particles travel

relatively fast through straining regions of the flow.

Next, we consider a pure shear flow with u ≡ [x2, 0, 0]γ. In this case, only u1,2 is nonzero, producing

ρII = γ2/6 and ρI = ρIII = 0. The particle trajectories in this flow are straight lines in x1 direction and

independent of St. However, ρII(t) in Fig. 5-(b) varies as St changes. Apart from the shear flow, ρII is affected

by the forced and free vortex flows as well (Fig. 6). As discussed next, the contribution of a forced vortex

to ρII is St dependent. Attributing the dependence of ρII on St to the forced vortex, the remaining portion

of ρII may be attributed to the contribution of regions that are analogous to the shear flow. Comparing the

scales of the plots in Fig. 5, the St-independent portion of ρII is notable, suggesting significant exposure of

particles to shear in HIT.

The third canonical flow is a forced vortex with u ≡ [−x2, x1, 0]ω. For this flow, ρI = 0, ρIII = −ω2/3,

and ρII = ω2/3. The trajectory of particles in this flow scales as r ∝ exp(ct), in which r is the distance

from the vortex core and c(τ, ω) is the solution to (τc + 1)2 = τc + τω. As a result, the residence time of

particles in the core of a forced vortex depends on St. This dependence and also ρII = −ρIII may explain the

trend of these two autocovariance functions versus St at t ≪ τη (reproduced in Fig. 7). As St is increased

monotonically, ρII(0) = u1,2u1,2 is decreased and increased while ρIII(t = 0) = u1,2u2,1 is increased and

decreased with a similar amplitude. u1,2u1,2, which is ∝ ω2 in a forced vortex, is minimized at St = O(1),

confirming the notion that particles in strong clustering regimes of St are repelled from the vortices.

Lastly, we consider a free vortex with u = [−x2, x1, 0]Γ/(2πr2) in which r2 = x21 + x22 + x23 is the dis-

tance from the center of the vortex. In this flow u1,2 = u2,1 = c cos(2ct) and u1,1 = c sin(2ct), in which

c = Γ/(2πr2), producing nonzero ρI, ρII, and ρIII. Computing the exact value of the autocovariance func-

tions requires finding r(t), a nonlinear function that depends on the dimensionless parameter Γτ/r(t = 0).

However, r is almost constant for t≪ τ and r ∝ t1/4 for t≫ τ . Neglecting the dependence of r on t, it can
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FIG. 7. The ensemble-averaged velocity gradients u1,1u1,1 (dashed-triangles), u1,2u1,2 (dashed-squares), u1,2u2,1

(dashed-circles), rotation-rate (solid-dots), strain-rate (solid-stars), and Q-criterion (solid-plus) as a function of St.

Note Q = −ui,juj,i = ‖Ω‖2 − ‖S‖2 is 2 times the traditional definition of Q-criterion [26], here defined for inertial

particles in a Lagrangian framework. Each point in this plot corresponds to an autocorrelation function at zero-time

separation, which is the intercept of individual curves in Figs. 5 and 8.

be shown ρI/2 = ρII = ρIII = c2/6 cos(2ct). This relationship provides an explanation for the decrease and

increase of ρIII in time for St ≤ 1 (Fig. 5-(c)). Based on this relationship, ρIII(0) − min
t
(ρIII(t)) ∝ c2 and

argmin
t

(ρIII(t)) ∝ c−1. This relation is consistent with the variation of ρIII for t < 5τη and St ≤ 1 in which a

larger change in amplitude is associated with a shorter time at which the minimum of ρIII occurs (Fig. 5-(c)).

As oppose to ρIII, ρI and ρII are apparently unaffected by the free vortices and follow a monotonic trend.

An explanation for this behavior is the influence of other canonical flows with larger relative contributions

on the latter two functions. To obtain a scale for the relative magnitude of these contributions, note the

larger amplitude of ρI and ρII in comparison with ρIII (Fig. 5).

The calculated autocovariance functions can be combined to obtain strain- and rotation-rate autocovari-

ance functions according to Eq. (31) (Figs. 7 and 8). The effect of aforementioned canonical flows on these
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FIG. 8. The ensemble-averaged Lagrangian (a) strain-rate and (b) rotation-rate autocovariance functions and (c)

their difference versus time at different Stokes numbers.

functions can also be examined by summing their corresponding contribution on ρI, ρII, and ρIII (Fig. 6). In

Fig. 8-(b), ρS is relatively independent of St despite the fact that ρII and ρIII vary significantly as St changes.

This independence shows that the variation of ρII and ρIII versus St are opposite, a behavior that specifically

holds in a forced vortex as was shown earlier. These opposite variations, on the other hand, are amplified in

ρΩ, producing a marked dependence on St (Fig. 8-(a)). Among those considered, ρΩ is interestingly the only

function that is not sensitive to a free vortex (Fig. 6). ρQ captures the effect of all the considered canonical

flows but the shear flow. Having ρQ = 0 for a shear flow is an expected outcome because C, which is a

function of ρ̃Q, must be zero in a pure shear flow (no particle clustering is expected in a pure shear flow).

At the limit of very large Stokes numbers, particles are not responsive to the velocity fluctuations and

follow a trajectory that is uncorrelated with the flow. As a result, the Lagrangian statistics at this limit

converge to the Eulerian statistics, which are by definition obtained from a fixed location in space that is

uncorrelated with the flow. Additionally, the Eulerian strain- and rotation-rate autocovariance functions are

equal on a periodic domain. Therefore, the Lagrangian strain- and rotation-rate autocovariance functions,

i.e. ρS and ρΩ, converge to the same value at the limit of large St (Fig. 8). This lead to ρQ → 0 at the

limit of large St. Moreover, since ρS is relatively independent of the Stokes number, one may conclude that
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the trajectory of inertial particles is poorly correlated with the flow strain-rate field. This is not the case,

however, with the flow rotation-rate field as ρΩ varies significantly versus St (Fig. 8-(a)). ρQ for St ≤ O(1)

undergoes an increasing-decreasing trend in time, which is a consequence of the similar behavior in ρIII.

Attributing this trend to the flow regions that behave similar to a free vortex, one can explain the change in

the amplitude and phase of this oscillation as a function of St by using the expression derived above along

with an estimate of the residence time of particles in a free vortex.

Some of the results of this section, specifically those included in Fig. 7, are discussed in more details in

[29, 34]. From Fig. 7, the extremum of τ2ηQ is approximately −0.2, which is consistent with the previously

reported 0.2 for the maximum of τ2η (‖S‖2 − ‖Ω‖2) = −τ2ηQ [34]. The agreement between the two studies

indicates that Q is fairly insensitive to Reynolds number, as the two studies consider simulations at Reλ

= 100 and 60.5. Based on the discrete set of investigated Stokes numbers in these two studies, the Stokes

number at which the extremum of Q occurs is 0.5 (present) and 0.64 ([34]). A precise assessment of the

location of the extremum would require a more refined parameter space.

Taking the Fourier transformation of ρQ in Fig. 8-(c), ρ̃Q is computed and shown in Fig. 9. A biased

sampling of strain- and rotation-rate-rich regions of the flow by inertial particles produces a non-zero ρ̃Q.

This figure also confirms that particles with St < 1 tend to follow slow vortical features (ρ̃Q > 0 at τηω ≪ 1

and St < 1), while particles with St ≫ 1 experience strain- and rotation-rates equally (τη ρ̃
Q → 0 as St

→ ∞). Most notably ρ̃Q is negative across all frequencies for St ≥ O(1). Computed ρ̃Q is employed in the

next section to evaluate and validate present analysis.

V. NUMERICAL VALIDATION

The objective of this section is to compute the rate of contraction from the analysis that was proposed in

Section II and validate it using a direct approach. Hence, we first describe a direct method that provides

an accurate estimate of the actual rate of contraction. Additionally, we compute the rate of contraction

using present (Eq. (28)) and R-M (Eq. (3)) expressions. Finally, we compare the prediction of these two
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FIG. 9. The Fourier transformation of the autocovariance of the second invariant of the velocity gradient tensor,

〈ρ̃Q〉, computed along the trajectory of particles with different Stokes number. Note τη〈ρ̃Q(τηω ≪ 1)〉 ∝ 1/St as St

→ ∞. Error bars (not shown) are of O(10−4).

formulations to the direct computations in terms of C statistics.

A numerical procedure is devised for direct computation of the contraction rate from the DNS. The

direct calculation of C sets a baseline, allowing to validate our analysis in a HIT flow. Visually, the direct

calculation of C involves constructing a cloud by seeding particles randomly distributed on a spherical shell

with an infinitesimal diameter. In practice, as clarified below, a cloud can be represented by computing the

Lagrangian velocity gradient along trajectory of a single particle. Computing the exponential rate of change

of volume of the cloud over time provides a direct estimate of the rate of contraction. Therefore, an ensemble

of clouds provides an estimate for 〈C〉.

Individual particles in the cloud experience an infinitesimally different fluid velocity and as a result follow

an infinitesimally different path. This differential change leads to the deformation of the cloud over time.

Due to the linear spatial variation of the velocities within the cloud, the deformation is linear and can be

represented by a 3 × 3 tensor in 3-dimensions. Applying the deformation tensor to a spherical cloud of
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FIG. 10. Deformation of three arbitrary spherical clouds in a HIT flow (particles are not shown). These clouds are

constructed using a set of inertial particles initially seeded on a spherical shell. From top to bottom: St = 16−1, 1,

and 16. While the cloud with St = 16−1 deforms significantly, its volume remains within 30% of the initial volume.

St = 1 cloud contracts with a two-fold decrease in volume. St = 16 cloud remains almost spherical with a 30% change

in volume at t = 8τη.

particles produces an ellipsoid (Fig. 10). The dimensions and directions of the axis of this ellipsoid are

directly related to the eigenvalues and eigenvectors of the deformation tensor, respectively. For visualization

purposes, the deformation of three arbitrary clouds at St = {1/16, 1, 16} that undergoes a linear deformation

is shown in Fig. 10.

In practice, we compute the time evolution of the deformation tensor from direct integration of Eq. (6)

along the trajectory of a single particle. The deformation tensor is formed based on the relative position

of three virtual particles to a reference particle. Since r represents the relative position, three columns

of the deformation tensor are formed using r associated with the three virtual non-overlapping particles.

The time evolution of the deformation tensor is governed by the motion of these particles and thus by

Eq. (6). Integrating this equation requires ui,j(X(t); t) along the trajectory of the cloud, which is extracted

from Section IV in which the Lagrangian autocovariance functions were computed using the same velocity

gradients. Provided that the volume of an infinitesimal cloud is equal to the determinant of its corresponding
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deformation tensor, the time history of the volume of the cloud is calculated, allowing us to compute the

finite-time rate of contraction Ct based on Eq. (9) (Fig. 11).

Obtaining an accurate estimate of C, defined in Eq. (10), requires integrating Eq. (6) till t≫ τη. However,

due to the exponential rate of contraction or expansion, the system of equations becomes very stiff at a

longer time, producing a nearly singular deformation tensor. Having a stiff system prevents an accurate

computation of C by limiting t. To circumvent this issue, we integrate an equivalent system of equations

for the normalized rate of change of volume, computed as the ratio of the rate of change of volume by the

volume, that remains well-conditioned regardless of the integration period. With this change of variables,

Ct is computed for the entire sampling period of ui,j , i.e. 200τη. Additionally, the initial condition on the

deformation tensor, which is an identity matrix in our computations, effects Ct at t = 200τη. To reduce

this effect, we repeat the integration for ten cycles, using the solution at the end of each cycle as the initial

condition for the next. Hence, integration is continued for 2000τη and C is set to Ct at t = 2000τη. This

procedure ensures reported C is minimally influenced by the initial condition and is time-independent. By
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FIG. 12. The PDF of the rate of contraction τηCt for different Stokes numbers computed by the direct integration of

Eq. (6) (solid), using present analysis or Eq. (28) (solid-dotted), and using R-M or Eq. (3) (dashed). Note that the

spread of these PDF varies depending on the sampling period t, which is 200τη in this case.

repeating these computations for all the available particles (105 samples that corresponds to 105 clouds at

each St), the PDF of C is constructed and shown in Fig. 12.

The results of the direct computation of C, described above, along with the theoretically predicted C are

shown in Fig. 12. The numerical procedure for computing PDFs of the theoretically computed C starts from

the same data set as the direct computation. ρQ is computed from Eq. (29) for every individual particle,

representing a cloud or a sample, using the time history of ui,j along the particle trajectory. Q = ρQ(0) and

ρ̃Q is then computed and substituted in Eqs. (3) and (28), respectively, to obtain one sample point of the

corresponding PDFs in Fig. 12. Note the linearity of Eqs. (3) and (28) with respect to Q and ρ̃Q allows one
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to directly compute the mean of these PDFs from the results of Section IV.

Taking the direct calculation of C as the reference, present analysis offers an improvement over R-M. As

we discussed in the derivation of Eq. (32) and now confirmed by this figure, the prediction of present analysis

converges to that of R-M at the limit of small St. Additionally, the PDF of both analyses collapses with that

of the direct calculations, confirming the accuracy of both formulas in the limit of small St. The accuracy

of R-M at this limit has also been shown previously by comparing it against the exact solution of Eq. (6)

in straining and vortical flows [34]. In general, the prediction of present analysis is closer to R-M than the

reference values. While both analyses are erroneous at large St, the error of present analysis is smaller than

that of R-M. For a closer comparison, the mean of these PDFs is plotted in Fig. 13.

The analytically computed 〈C〉 can be compared to the direct computations at two limits of St < 1 and

St > 1. For St < 1, 〈C〉 < 0 and contraction dominates expansion. The rate of contraction increase as St

increases, explaining the stronger clustering of particles with St = O(1). τηmin
St≤1

〈C〉 ≈ −1/8, which occurs

at St = 1/2 on the discrete set of investigated St. In the regime of St ≪ 1, 〈C〉 follows a power-law with

−τη〈C〉 ∝ Stα, in which α ≈ 1.7 (inset of Fig. 13). This power-law behavior is well established in the

literature for the low Stokes numbers. For a synthetic flow generated from random Fourier modes, α has

been reported to be 2 [16]. This minor difference can be ascribed to the use of a synthetic flow as oppose to

HIT in the previous study. The slope of 1.7 in our computation is a result of lim
St→0

− τ2ηQ ∝ St0.7 (Fig. 7).

For St > 1, 〈C〉 increases and becomes positive, indicating the dominance of expansion over contraction

[1, 16]. At a Stokes number between 1 and 2, the mean rate of expansion and contraction become equal.

Although 〈C〉 = 0 at this St, individual clouds still experience a significant change in volume over time and

particles form distinct clusters (see panels (c) and (d) in Fig. 13). Neither of two analyses captures the

positive value of 〈C〉 at large St. However, present analysis remains bounded by predicting an extremum for

〈C〉 at St = O(1) as oppose to the prediction of R-M that grows linearly within the investigated range of

St. For St ≫ 1, present analysis predicts 〈C〉 ∝ St−1, which is a result of 〈ρ̃Q(τηω ≪ 1)〉 ∝ St−1 (Fig. 9).

The error in the predictions of present analysis can be primarily attributed to the assumption |λτ | ≪ 1 in
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FIG. 13. The theoretically predicted ensemble-averaged rate of contraction 〈C〉 using present analysis that is Eq. (28)

(solid-dot) and R-M that is Eq. (3) (dashed) at different St. The reference quantities (solid-circle) are obtained from

the direct computation of 〈C〉. Inset: log2(−C) versus log2(St) for St ≤ 1. Lines with a slope of 1 and 2 are shown

for reference. To visualize clustering, particles are shown in a slab of size 300η × 300η × 10η for St = 16−1, (a); 4−1,

(b); 1, (c); 4, (d); 16, (e).

Eq. (12), which is not satisfied well at larger St (|λτ | > 0.1 for St ≥ 4). The effect of this assumption on

the accuracy of the predictions can be observed even at St= 1/4. Considering St = 1/4 case in Fig. 12, the

largest deviation from the reference values occurs on the left tail, where |Ct| and consequently |λτ | is the

largest. The location of this discrepancy underscores the importance of |λτ | ≪ 1 assumption in the validity

of present analysis. This assumption must be relaxed in the future studies to improve predictions at large
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St. Despite this discrepancy, Eq. (28) captures the non-monotonic behavior of 〈C〉 with a maximum rate of

contraction 40% larger than that of the direct computations.

As confirmed by the patterns observed in panels (a) and (e) of Fig. 13, particles in the regimes at which

C < 0 and C > 0 behave differently. In mathematical terms, the volume of the region occupied by particles

would increase or decrease in time depending on the sign of C. In physical terms, this change of volume has

been described as mixing (C > 0) and demixing (C < 0) [16]. For particles that undergo demixing, ridges

with high particle concentration is formed from a distribution that is initially homogeneous (Fig. 13-(c)). In

a reversed time frame this behavior is the same as injecting a dye in the ridges and observing its diffusion

to a homogeneous mixture as time passes. On the other hand, particles with high St undergo mixing with

C > 0. For an observer who is unable to discern fine scale features of the flow, particle mixing at this limit

is similar to mixing of a dye in a turbulent flow as they both appear to lead to a homogenized mixture.

However, in the absence of molecular diffusion, there is an important difference between the two processes.

While C > 0 for large St particles, C = 0 for a dye. When a drop of dye is injected into a turbulent flow

with no molecular diffusion, the interface deforms to a very complex and twisted geometry. Nevertheless, the

interface remains sharp, and the volume occupied by the dye remains constant in time. This is not the case,

however, with the large St particles. If a set of large St particles are introduced into a small enclosed region

of a turbulent flow, the volume associated with that region will increase exponentially as the time progresses.

In this case, an initially sharp interface will diffuse over time due to the non-uniqueness of particle velocities

at a given point in space.

It is important to note that the above description is given for the average behavior of the particles. The

clouds of particles with large St experience Ct < 0 intermittently as they travel through different regions of

the flow. The opposite is also true for small St particles. The PDF of Ct crosses zero at all Stokes numbers,

although not observed clearly in Fig. 12 due to the long sampling period that has reduced the spread of

PDFs. Intermittent demixing of large St particles is also confirmed by Fig. 13-(e) that shows regions of

higher concentration that are significantly diffused.
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FIG. 14. Standardized PDF of the finite-time rate of contraction Ct obtained from the direct integration of Eq. (6)

at different St. The solid line is a Gaussian distribution, shown as a reference.

The PDFs of Ct appears to be Gaussian in Fig. 12. To closely examine this observation, all the PDFs

obtained from the direct computations are shifted by their mean, normalized by their standard deviation,

and plotted in Fig. 14. The standardized PDFs at large St match well with the parabolic function that

represents a Gaussian distribution. For the Stokes numbers close to 1/4, a negative skewness is observed,

showing higher incidents of strong contraction events as compared to strong expansion events (Fig. 14). At

the smallest St, the right tail of the PDF is approximately linear, indicative of biased exposure of neutral

particles to strong expansion events in HIT. With slight variations, this observation is compatible with the

corresponding results obtained from HIT and synthetic flows [16, 20, 35].

The second order statistics of Ct, defined as

Ct
rms =

√

〈(Ct − 〈Ct〉)2〉, (35)

is a function that depends on the sampling period t. For t larger than the integral time scale of C, Ct
rms scales as

t−1/2 [20]. Thus,
√
τηtCt

rms is computed as a time-independent quantity and plotted in Fig. 15. This quantity
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is directly related to the compression diffusion coefficient D(∞), defined in [20], via
√
τηtCt

rms =
√

2τηD(∞)

and is mainly governed by the turbulence intermittency. Considering the directly computed quantities in

Figs. 13 and 15, extremum of Crms and 〈C〉 occurs at the same St. The prediction accuracy of the two

analyses in terms of Crms is analogous to 〈C〉. Both models agree well with the direct computations at the

limit of small St and deviate from it as St increases. The error associated with present analysis, however,

is slightly smaller than R-M at large St. The prediction of R-M scales as
√
τηtCt

rms(St) ∝ St, while present

analysis produces slightly smaller values for St ≥ 1.

The non-monotonic prediction of 〈C(St)〉 by our analysis is in agreement with previous investigations that

have characterized clustering via other indices, yet consistently finding maximum clustering at St = O(1)

[3, 10, 14, 28]. The outcome of this study may have implications in developing two-particle models for

large-eddy simulation of particle-laden turbulent flows [36] and equilibrium Eulerian method for affordable

computation of the particle velocity field [29, 34]. Additionally, one may directly relate the contraction rate
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of clouds of particles C to

dL = 3− (λ1 + λ2 + λ3)/λ3 = 3− C/λ3, (36)

which is the Lyapunov dimension introduced by Kaplan and York [37]. In this equation, which is valid for

a 3-dimensional flow, exponents follow a descending order such that λ3 < λ2 < λ1. Since in 3-dimensions

λ3 < 0 [35], dL is smaller than the number of spatial dimensions for C < 0. At this limit in which particle

clusters are fractals, dL represents the dimension of the space that contains a homogeneous distribution of

particles. By estimating λ3, one may employ the result of this analysis to estimate dL. As we discussed in

Section I, this dimension can also be related to the particle concentration field statistics through ζ.

VI. CONCLUSIONS

In summary, we derived an asymptotic solution (Eq. (28)) for the rate of contraction of the cloud of inertial

particles, defined as the summation of the Lyapunov exponents in three principal directions, in regimes

relevant to particle-laden turbulent flows. The analytical model that we derived predicts a maximum rate of

contraction at St = O(1) and diminishing rates of contraction as St→ 0 or∞. No adjustable parameters were

employed in our model to predict this non-monotonic variation versus the Stokes number. The developed

model reproduces R-M, which is a previously established result [25, 29], at small St and offers a first order

correction to it at large St. Similar to R-M, our analysis accounts for the background flow through ρ̃Q, which

is the Fourier transformation of the autocovariance of the second invariant of velocity gradient tensor. We

showed ρ̃Q, which is computed along the trajectory of particles, varies significantly versus the Stokes number.

The Lagrangian autocovariance functions, which are closely related to ρ̃Q, were computed at different St

for a HIT flow and were analyzed by a set of canonical flows with established behavior. From these results,

the first and second order statistics of the rate of contraction was computed using our analysis and a direct

numerical approach. Comparing our analysis and the direct computations showed a good agreement between

the two at the limit of small St. For higher St, despite the fact that the predictions of our analysis are not
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in full agreement with the direct computations, it still offers an improvement over R-M. The inaccuracy of

present analysis is primarily attributed to the assumption |λτ | ≪ 1, which breaks down at this regime of

St. Further studies are required to address this discrepancy by analytically characterizing the behavior of

particles with St ≥ O(1) in turbulent flows. The developed analysis reveals the contribution of different time

scales in turbulence to the clustering phenomenon via ρ̃Q(ω). Lifting the underlying assumptions of present

analysis, namely those associated with the contribution of small frequencies in Eqs. (21) and (23) and the

slow contraction rate in Eq. (12), warrants future studies. Additionally, the extension of present formulation

to compressible and anisotropic turbulent flows remains as a subject of future studies.
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