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The Generalized Chapman-Enskog (GCE) method for rapid and slow thermo-chemical processes
is employed to formulate a set of continuum breakdown parameters for chemically reacting flows.
These GCE breakdown parameters are derived for one-temperature, two-temperature and three-
temperature models, through classification of the relevant thermo-chemical timescales relative to
fast elastic collisional processes and slow flow processes associated with changes in macroscopic
observables. Continuum breakdown mechanisms owing to multi-component diffusion, thermal dif-
fusion, normal and shear stresses, Fourier-type heat fluxes based on translational, rotational and
vibrational temperatures, bulk viscosity and relaxation pressure are presented for chemically react-
ing flows. The GCE breakdown parameters, derived from rigorous kinetic theory capture the proper
physical mechanism leading to continuum breakdown. These breakdown parameters are then used
to analyze continuum breakdown in a Mach 24 reacting air flow over a sphere, and continuum break-
down was observed in the shock, and close to the sphere surface. The flow field near the sphere
surface was found to be characterized by sharp species concentration gradients due to gas-phase
and surface reactions. Chemical reactions thus lead indirectly to the distortion of the VDF, provid-
ing a new pathway to continuum breakdown which is captured by the GCE species-wise diffusion
breakdown parameter.

∗ Ph.D. candidate, Department of Mechanical Science and Engineering.
† Assistant Professor, Department of Mechanical Science and Engineering; Corresponding author: ksteph@illinois.edu



2

I. INTRODUCTION

Multiscale flows involving mixed regions of continuum and rarefied flow regimes are common in a variety of engi-
neering applications, from microelectromechanical system (MEMS) devices to high-speed atmospheric entry vehicles.
Simulation techniques developed for multiscale flow modeling require an accurate description of rarefaction effects,
which are most suitably captured by kinetic solvers, such as direct methods for the Boltzmann equation or particle
based methods like direct simulation Monte Carlo (DSMC) [1]. While kinetic methods may be employed from contin-
uum to free molecular flow regimes, they are most commonly used for modeling non-equilibrium flows characterized
by Knudsen number Kn > 0.1. Approaching the continuum limit, the flow field may be accurately modeled with con-
tinuum (Euler or Navier-Stokes) solvers, which provide a computationally efficient alternative to the kinetic solvers,
but these solutions become inaccurate outside of the hydrodynamic regime. It is precisely in this regime, however,
that a high-fidelity kinetic solver may be employed. Thus, a combined continuum/kinetic approach is often adopted
as a way to achieve high-fidelity solutions across a broad range of flow regimes, while maintaining computational
efficiency.
Hybrid multiscale methods have been developed and successfully applied to a wide range of flow problems [2–6].

These combined approaches typically involve spatial coupling of computational fluid dynamics (CFD) solvers, based
on Euler or Navier-Stokes continuum descriptions, with kinetic solvers, based on BGK, direct Boltzmann or the
particle-based DSMC method. One of the key components of hybrid solvers is defining the hybrid interface as well
as the interface location. The hybrid interface is a computational boundary in physical space dividing the regions
of continuum and rarefied flow, and facilitates the transfer of flow field information between the continuum/kinetic
solvers. To maximize computational efficiency, it is important to determine where, in physical space, the continuum
solution method begins to break down, and the kinetic solution method should be employed.
The onset of continuum breakdown is characterized by a departure of the underlying velocity distribution function

from its equilibrium, Maxwellian form. CFD solvers based on the Navier-Stokes equations provide accurate solutions
for systems involving small departures from equilibrium, expressed mathematically as a perturbation of the Maxwellian
distribution, or the well-known Chapman-Enskog distribution [7]. Physically, the hydrodynamic quantities of number
density, velocity and temperature are ‘carried’ by the equilibrium Maxwellian distribution, while the perturbation
of the Maxwellian distribution manifests as higher-order fluxes, including heat flux, normal and shear stresses for a
simple gas. The Navier-Stokes equations incorporate these higher-order effects in the governing equations through
the constitutive relationships, which provide closure for the equations and allow for the relation of internal stresses
and heat fluxes to gradients of the macroscopic observables. Provided that the departure from equilibrium is small,
the constitutive relations hold and the Navier-Stokes equations are valid.
When flow field gradients become large or characteristic length scales become comparable to the molecular mean free

path, the underlying velocity distribution function exhibits strong departure from equilibrium, and can no longer be
mathematically expressed as a small perturbation by Chapman-Enskog theory. Under these conditions, the closure of
the Navier-Stokes equations through the constitutive relations is no longer valid, and a kinetic description is necessary.

II. CONTINUUM BREAKDOWN PARAMETERS

Continuum breakdown parameters are dimensionless quantities that are used to characterize the degree of departure
from an equilibrium Maxwellian distribution and to determine when continuum breakdown has occurred. These
quantities are generally compared against a continuum breakdown criterion, which relates the magnitude of the
breakdown parameter for a given physical mechanism (e.g., entropy generation rate, gradients in density, velocity,
temperature, etc.) to a measure of non-equilibrium [8–10]. The breakdown criterion is selected as a threshold below
which macroscopic observables from both continuum and kinetic solutions are in good agreement, generally within 5%
[9, 11–13]. Although a number of different approaches to identify continuum breakdown have been proposed, this work
focuses on continuum breakdown parameters as determined by expressions involving macroscopic quantities obtained
from a CFD (Navier-Stokes) solution. Furthermore, this work adopts the breakdown criteria values established in
previous investigations to facilitate comparisons with the new breakdown parameters and discussions herein.
Bird [8] had proposed a continuum breakdown parameter for steady and unsteady expanding flows. For steady,

expanding flows the parameter takes the form,

P =

√
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∣

∣

(1)

The quantities, ρ and λ are the local density and mean free path respectively, s - the speed ratio - is given by s = uβ,
where u is the local velocity and β is the inverse most probable speed and l represents the distance along a streamline.
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In a later work, Bird [14] put forth the concept of a local Knudsen number based on the length scale of macroscopic
gradients, for assessing the validity of the continuum approximation for a given flow system. This concept was
furthered by Boyd [9, 15] to form the Gradient-Length-Local (GLL) Knudsen number, which is one of the most
widely used parameters for assessing continuum breakdown for compressing/expanding hypersonic flows based on
a Navier-Stokes solution. This parameter is expressed as the ratio of the local mean free path and a length scale
determined by flow gradients:

KnGLL =
λ

Qlocal

∣

∣

∣

∣

dQ

dx

∣

∣

∣

∣

, (2)

where λ is the local mean free path, Q is a macroscopic observable such as density, velocity magnitude or temperature,
whose gradients are calculated with respect to a flow field distance. When Q is set as the velocity magnitude,
Qlocal = max(|v|, a) where a is the local sonic speed [16].
A more rigorous formulation of the continuum breakdown parameters for steady flows may be obtained directly from

the Chapman-Enskog method, involving expansion of the velocity distribution function f(C) in a small parameter,
which provides the governing equations for systems which exhibit small departures from equilibrium. To first order
in the Chapman-Enskog expansion, the distribution function f(C) is expressed as the equilibrium (Maxwellian)
distribution function f (0)(C) plus a perturbation:

f(C) = f (0)(C)
(

1 + φ(1)(C)
)

, (3)

where φ(1)(C) is the first-order Chapman-Enskog perturbation on f (0)(C). Upon substitution of Eq. 3 into the
Boltzmann equation, a general form for the perturbation φ(1)(C) for a simple (single-species, mono-atomic) gas is
obtained [7, 17]:

φ(1)(C) = − 1

n
A(C) · ∇ logT − 1

n
B(C) : ∇v, (4)

where A(C) and B(C) are vector and tensor functions of the thermal velocity, C. These functions appear in the
definitions for the transport coefficients of viscosity, µ and thermal conductivity, ktr as bracket integrals:

µ =
1

10
kBT [B,B], (5)

ktr =
1

3
kB [A,A]. (6)

The solution of the unknown functions A and B is typically approximated through expansion in Sonine polynomials
(an exact solution may be obtained exclusively for the case of Maxwell molecules), and explicit expressions for the
transport coefficients are thus obtained to first order in Sonine polynomials in terms of the Ω-integrals:

µ =
5kBT

8Ω(2,2)
(7)

ktr =
25cv,trkBT

16Ω(2,2)
(8)

Upon substitution into Eq. 4, the expression for φ(1) becomes:

φ(1)(C) =(qxCx + qyCy + qzCz)
(

2

5
C2 − 1

)

−2 (CxCyτxy + CxCzτxz + CyCzτyz) (9)

−
(

C2
xτxx + C2

yτyy + C2
zτzz

)

(10)
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where the quantities τij and qi are dimensionless quantities defined as:

τij =
µ

p

(

∂jvi + ∂ivj −
2

3
∂kvkδij

)

(11)

qi = −2β

p
ktr∂iT (12)

These dimensionless quantities, presented by Garcia and Alder [13], are the Chapman-Enskog continuum breakdown
parameters for a simple (single-species, mono-atomic) gas, and appear as the coefficients of the terms on the right-hand
side of Eq. 9. The perturbation in this case is only a function of thermal velocity normalized by the most probable
thermal speed, Ci = Ci/

√

2kbT/m. Large values for Eq. 11 and Eq. 12 indicate that the departure from equilibrium
may no longer be considered as a small perturbation, and the Navier-Stokes equations are no longer valid.
The use of such breakdown parameters for problems involving high-temperature aerothermodynamics requires the

assessment of continuum breakdown for gas mixtures with excited internal energy states and chemical reactions. De-
schenes et al. [11, 12] presented an extension of the Gradient-Length-Local Knudsen number for continuum breakdown
due to rotational non-equilibrium. Other high-temperature continuum breakdown mechanisms such as vibrational
non-equilibrium and chemical reactions were not considered, owing to the idea that such processes occur over charac-
teristic time scales much greater than the elastic collisional time scale. This effort formally addresses this assumption
using the Generalized Chapman-Enskog method from kinetic theory.
The Generalized Chapman-Enskog (GCE) method introduces a formal approach for deriving the continuum break-

down parameters for problems involving fast and slow high-temperature thermochemical processes [18]. This for-
malism allows for the continuum breakdown parameters to be determined precisely and in a way that is consistent
with the underlying governing equations employed in the CFD solver. The Generalized Chapman-Enkog method was
first employed by Stephani et al. [19] to derive a new set of continuum breakdown parameters for chemically frozen
flows. This formulation recovers the same continuum breakdown parameters by Garcia and Alder [13], but includes
additional breakdown parameters for non-equilibrium characterized by diffusion fluxes and internal (rotational and
vibrational) heat fluxes.
The aim of this work is to present a complete set of Generalized Chapman-Enskog continuum breakdown param-

eters for chemically reacting, steady flows. The method for rapid and slow thermochemical processes outlined by
Nagnibeda and Kustova [18] is applied for one temperature, two-temperature and three-temperature models, and
the corresponding sets of breakdown parameters are presented for each (Section III). The GCE parameters are then
applied to evaluate continuum breakdown in a Mach 24 reacting air flow over a sphere, and the role of chemical
reactions as an indirect mechanism for continuum breakdown is assessed (Section IV). A detailed comparison of the
GCE and GLL breakdown parameter mathematical forms (Section III E) and breakdown mechanisms (Section IVD)
in the reacting flow study is made, and conclusions are presented in Section V.

III. FORMULATION OF GCE BREAKDOWN PARAMETERS

A. Method for Rapid and Slow processes

In high speed, high-temperature flows where non-equilibrium thermal and chemical processes become important,
the relaxation time scales of various collisional processes (elastic and inelastic) can vary substantially. In general,
relaxation times for elastic and inelastic processes relative to the characteristic time of variation of macroscopic
quantities are:

τel . τrot ≪ τvib < τreact ∼ θ (13)

where characteristic times are τel for elastic collisions, τrot and τvib for collisions with rotational and vibrational
exchange, and τreact for reactions (inelastic collisions), and θ is the characteristic time of change in macroscopic
quantities. This effectively divides collisional processes into two groups: rapid processes with time scales much
smaller than θ (τrap ≪ θ) and slow processes with time scales on the order of θ (τsl ∼ θ).
This variability in time scales is introduced in the Generalized Chapman-Enskog analysis through definition of the

small parameter ε = τ/θ. In consideration of rapid and slow processes the kinetic equation can be written as:
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∂f

∂t
+ c · ∇xf =

1

ε
Jrap + Jsl (14)

Using this approach, the collision operator is separated into two parts, J rap weighted by 1/ε = θ/τrap ≫ 1, and J sl

weighted by 1/ε = θ/τsl ∼ O(1). The Generalized Chapman-Enskog method is then used as before to express the
distribution function to first order as:

f = f (0) + εf (1) = f (0) (1 + φGCE) (15)

The aim of this work is to find the GCE breakdown parameters as determined by casting φGCE in terms of known
Navier-Stokes flux quantities. In the following sections, three different approximations are imposed on the relative
time scales introduced in Eq. 13, namely one-temperature, two-temperature and three-temperature assumptions, to
construct the appropriate set of continuum breakdown parameters for use with each of these models employed in a
continuum solver.

B. One-temperature Model

In the one-temperature model, the translational and internal modes are assumed to be in equilibrium with each
other and are represented by a single temperature. The associated characteristic relaxation time scales are expressed
as:

τT−T < τR−R . τV−V < τT−R−V ≪ τreact ∼ θ, (16)

where τT−T , τR−R, τV −V are the characteristic time scales for the energy exchange within each mode, and τT−R−V

is the time scale for the inter-modal energy exchange. In the one-temperature approximation, the energy exchange
between the translational and internal energy modes are rapid processes, while the chemical reactions are on the order
of the gas dynamic time scales and treated as slow processes:

Jrap = JT−T + JR−R + JV −V + JT−R−V ,

Jsl = Jreact.
(17)

Under the one-temperature approximation, the Generalized Chapman-Enskog perturbation φGCE,s for species s is
of the form [18]:

φGCE,s = − 1

n
As · ∇ln(Ttr)−

1

n

∑

t

D
t
s · dt −

1

n
Bs : ∇v − 1

n
Fs∇ · v − 1

n
Gs. (18)

The generalized functions As & D
t
s are vector functions of the reduced peculiar velocity Cs, while Bs is a tensor

function of Cs and Fs & Gs are scalars. The second term on the right side of Eq. 18 contains the term dt, which is
the diffusion driving force for species t defined as:

dt = ∇
(nt

n

)

+

(

nt

n
− ρt

ρ

)

∇ln(p). (19)

The solutions of the unknown generalized functions are obtained as expansions in the Sonine (Sn
ν (x)) andWaldmann-

Trübenbacher (Pn(x)) polynomials with accompanying expansion coefficients (e.g., as,rpq):
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As = −
(

ms

2kbTtr

)1/2

Cs

∑

rpq

as,rpqS(r)
3/2

(

C2
s

)

P(p)(εrot,s)P(q)(εvib,s),

D
t
s =

(

ms

2kbTtr

)1/2

Cs

∑

r

dts,rS(r)
3/2

(

C2
s

)

,

Bs =

(

CsCs −
1

3
C2
s I

)

∑

r

bs,rS(r)
3/2

(

C2
s

)

,

Fs =
∑

rpq

fs,rpqS(r)
1/2

(

C2
s

)

P(p)(εrot,s)P(q)(εvib,s),

Gs = −
∑

rpq

gs,rpqS(r)
1/2

(

C2
s

)

P(p)(εrot,s)P(q)(εvib,s).

(20)

Note that all functions in Eq. 20 are expanded by polynomials in the rapid processes only, which for the single-
temperature approximation include Cs, ǫrot,s, and ǫvib,s. The transport coefficients of thermal conductivity (trans-
lational – ktr,s, rotational – krot,s, and vibrational – kvib,s), viscosity (shear – µs, and bulk – ζs), multicomponent
diffusion (mass – Dst and thermal – DT,s) and relaxation pressure (prel,s) may be expressed in terms of the expansion
coefficients [18]:

ktr,s + krot,s + kvib,s =
kb
3
[As,As] ⇒











ktr,s = 5kb

4
ns

n as,100,

krot,s =
mscv,rot,s

2
ns

n as,010,

kvib,s =
mscv,vib,s

2
ns

n as,001,

DT,s =
1

3n

[

D
t
s,As

]

= − 1

2n
as,000,

Dst =
1

3n

[

D
t
s,D

t
s

]

=
1

2n
dts,0,

µs =
kbTtr

10
[Bs,Bs] =

kbTtr

2

ns

n
bs,0,

ζs = kbTtr [Fs,Fs] = −kbTtr
ns

n
fs,100,

prel,s = kbTtr [Fs,Gs] = kbTtr
ns

n
gs,100.

(21)

New transport mechanisms are considered in this work from that of Stephani et al. [19]. These include the thermal
component of diffusion resulting from temperature gradients, bulk viscosity which arises from inelastic inter-modal
(T-R-V) energy exchange (a rapid process in the single-temperature model) and the relaxation pressure, which is a
result of the existence of rapid and slow inelastic processes. Chemical relaxation is the only slow process considered
in this case. Substituting these transport coefficient expressions (Eq. 21) into Eq. 20, we arrive at the final expression
for the generalized functions:
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As = As,T +As,tr +As,rot +As,vib,

As,T =

(

ms

2kbTtr

)1/2

2nDT,sCs,

As,tr = −
(

ms

2kbTtr

)1/2
4Ktr,s

5kb

n

ns

(

5

2
− C2

s

)

Cs,

As,rot = −
(

ms

2kbTtr

)1/2
2Krot,s

mscv,rot,s

n

ns
(ε̄rot,s − εrot,s)Cs,

As,vib = −
(

ms

2kbTtr

)1/2
2Kvib,s

mscv,vib,s

n

ns
(ε̄vib,s − εvib,s)Cs,

D
t
s =

(

ms

2kbTtr

)1/2

2nDstCs,

Bs =
2µs

kbTtr

n

ns

(

CsCs −
1

3
C2
s I

)

,

Fs = − ζs
kbTtr

n

ns

(

3

2
− C2

s

)

,

Gs =
prel,s
kbTtr

n

ns

(

3

2
− C2

s

)

.

(22)

The perturbation defined in Eq. 18 can now be expressed in terms of the transport coefficients:

φGCE,s =− 1

n

∑

t

(

ms

2kbTtr

)1/2

2nDstCs · dt −
1

n

(

ms

2kbTtr

)1/2

2nDT,sCs · ∇ln(Ttr)

− 1

n

(

ms

2kbTtr

)1/2
4Ktr,s

5kb

n

ns

(

C2
s − 5

2

)

Cs · ∇ln(Ttr)

− 1

n

(

ms

2kbTtr

)1/2
2Krot,s

mscv,rot,s

n

ns
(εrot,s − ε̄rot,s)Cs · ∇ln(Ttr)

− 1

n

(

ms

2kbTtr

)1/2
2Kvib,s

mscv,vib,s

n

ns
(εvib,s − ε̄vib,s)Cs · ∇ln(Ttr)

− 1

n

2µs

kbTtr

n

ns

(

CsCs −
1

3
C2
s I

)

: ∇v

− 1

n

ζs
kbTtr

n

ns

(

C2
s − 3

2

)

∇ · v +
1

n

prel,s
kbTtr

n

ns

(

C2
s − 3

2

)

(23)

The diffusion fluxes in the Navier-Stokes solvers are expressed in terms of the diffusion velocity, which has contri-
butions from mass and thermal diffusion:

Vs = VM,s + VT,s = −
∑

t

Dstdt −DT,s∇ln(Ttr). (24)

Using Eq. 24 and introducing the pressure ps = nskbTtr, density ρs = msns and inverse most probable thermal speed
βs =

√

ms/2kbTtr, the perturbation takes the form:
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φGCE,s = 2βsVM,s · Cs + 2βsVT,s · Cs

− 4βsktr,s
5ps

(

C2
s − 5

2

)

Cs · ∇Ttr

− 2βskrot,s
ρscv,rot,sTtr

(εrot,s − ε̄rot,s)Cs · ∇Ttr

− 2βskvib,s
ρscv,vib,sTtr

(εvib,s − ε̄vib,s)Cs · ∇Ttr

− 2µs

ps
CsCs :

(

1

2

(

∇v +∇T
v
)

− 1

3
∇ · vI

)

− ζs
ps

(

C2
s − 3

2

)

∇ · v +
prel,s
ps

(

C2
s − 3

2

)

.

(25)

Finally, the Generalized Chapman-Enskog perturbation φGCE,s can be cast in terms of flux-based quantities that are
readily available from a CFD solution:

φGCE,s = DM,s · Cs +DT,s · Cs + qtr,s · Cs

(

C2
s − 5

2

)

+ qrot,s · Cs (εrot,s − ε̄rot,s)

+ qvib,s · Cs (εvib,s − ε̄vib,s) + τs : CsCs + Pbulk,s

(

C2
s − 3

2

)

+ Prel,s

(

C2
s − 3

2

)

.

(26)

The coefficients on the right-hand side of Eq. 26 are the Generalized Chapman-Enskog continuum breakdown param-
eters for a reacting gas mixture assuming a single-temperature model:

DM,s =
2βsρsVM,s

ρs
=

2βsD
NS
M,s

ρs
,

DT,s =
2βsρsVT,s

ρs
=

2βsD
NS
T,s

ρs
,

qtr,s = −4βs

5ps
ktr,s∇Ttr =

4βsq
NS
tr,s

5ps
,

qrot,s = − 2βs

ρscv,rot,sTtr
krot,s∇Ttr =

2βsq
NS
rot,s

ρscv,rot,sTtr
,

qvib,s = − 2βs

ρscv,vib,sTtr
kvib,s∇Ttr =

2βsq
NS
vib,s

ρscv,vib,sTtr
,

τs =
2µs

ps

(

1

2

(

∇v +∇T
v
)

− 1

3
∇ · vI

)

=
τNS
s

ps
,

Pbulk,s = − 1

ps
ζs∇ · v =

pNS
bulk,s

ps
,

Prel,s =
pNS
rel,s

ps
.

(27)

The GCE continuum breakdown parameters may be computed directly from the Navier-Stokes flux quantities (indi-
cated on far right-hand side of Eq. 27 by the superscript NS) of mass diffusion, thermal diffusion, Fourier heat fluxes
(translational, rotational and vibrational) based on gradients of a single temperature Ttr, viscous stress, bulk stress
and relaxation pressure due to chemical reactions.

C. Two-temperature Model

In the two-temperature model, the translational and rotational energy modes are assumed to be in equilibrium and
are represented by a single temperature Ttr. The vibrational energy exchange (V-V) is also assumed to be rapid,
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however the energy exchange between translational/rotational and vibrational modes (TR-V) is considered as a slow
process, thus resulting in a separate vibrational temperature Tvib. The associated characteristic relaxation time scales
are expressed as:

τT−T < τR−R . τV −V . τT−R ≪ τTR−V < τreact ∼ θ, (28)

and the rapid and slow collision operators for the kinetic equation corresponding to Eq. 14 are:

Jrap = JT−T + JR−R + JT−R + JV−V ,

Jsl = JTR−V + Jreact.
(29)

For a mixture of gases following the two-temperature model with the simple harmonic oscillator approximation, the
Generalized Chapman-Enskog (GCE) perturbation φGCE,s is of the form [18]:

φGCE,s = − 1

n
As.∇ln(Ttr)−

1

n
A

(v)
s .∇ln(Tvib)−

1

n

∑

t

D
t
s.dt −

1

n
Bs : ∇v − 1

n
Fs∇.v − 1

n
Gs. (30)

Since the TR-V exchanges are considered as slow processes, the perturbation in the two-temperature model has an

additional term A
(v)
s , associated with the gradients in the vibrational temperature. Additionally, only translational

and rotational terms are present in Fs (below), which represents fast inelastic processes in the system. The definitions
of the other functions in φGCE,s are the same as in Eq. 20. The Sonine and Waldmann-Trübenbacher polynomial
expansion of the generalized functions are given by:

As = −
(

ms

2kbTtr

)1/2

Cs

∑

rp

as,rpS(r)
3/2

(

C2
s

)

P(p)(εrot,s),

A
(v)
s = −

(

ms

2kbTtr

)1/2

Cs

∑

q

a(v)s,qP(q)(εvib,s),

D
t
s =

(

ms

2kbTtr

)1/2

Cs

∑

r

dts,rS(r)
3/2

(

C2
s

)

,

Bs =

(

CsCs −
1

3
C2
s I

)

∑

r

bs,rS(r)
3/2

(

C2
s

)

,

Fs =
∑

rp

fs,rpS(r)
1/2

(

C2
s

)

P(p)(εrot,s),

Gs = −
∑

rpq

gs,rpqS(r)
1/2

(

C2
s

)

P(p)(εrot,s)P(q)(εvib,s).

(31)

The transport coefficients are next expressed in terms of the polynomial expansion coefficients [18]:

ktr,s + krot,s =
kb
3
[As,As] ⇒

{

ktr,s = 5kb

4
ns

n as,10,

krot,s =
mscv,rot,s

2
ns

n as,01,

kvib,s =
kb
3

[

A
(v)
s ,A(v)

s

]

=
mscv,vib,s

2

ns

n
a
(v)
s,1 ,

DT,s =
1

3n

[

D
t
s,As

]

= − 1

2n
as,00,

D
(v)
T,s =

1

3n

[

D
t
s,A

(v)
s

]

= − 1

2n
a
(v)
s,0 ,

Dst =
1

3n

[

D
t
s,D

t
s

]

=
1

2n
dts,0,

µs =
kbTtr

10
[Bs,Bs] =

kbTtr

2

ns

n
bs,0,

ζs = kbTtr [Fs,Fs] = −kbTtr
ns

n
fs,10,

prel,s = kbTtr [Fs,Gs] = kbTtr
ns

n
gs,100.

(32)



10

Note that there is an additional thermal diffusion coefficient, arising from the separate vibrational temperature in the
two-temperature model approximation. Using the above definitions, the first-order approximation to the generalized
functions can be represented in terms of the transport coefficients:

As = As,T +As,tr +As,rot,

A
(v)
s = A

(v)
s,T +A

(v)
s,vib,

As,T =

(

ms

2kbTtr

)1/2

2nDT,sCs,

As,tr = −
(

ms

2kbTtr

)1/2
4ktr,s
5kb

n

ns

(

5

2
− C2

s

)

Cs,

As,rot = −
(

ms

2kbTtr

)1/2
2krot,s

mscv,rot,s

n

ns
(ε̄rot,s − εrot)Cs,

A
(v)
s,T =

(

ms

2kbTtr

)1/2

2nD
(v)
T,sCs,

A
(v)
s,vib = −

(

ms

2kbTtr

)1/2
2kvib,s

mscv,vib,s

n

ns
(ε̄vib,s − εvib)Cs,

D
t
s =

(

ms

2kbTtr

)1/2

2nDstCs,

Bs =
2µs

kbTtr

n

ns

(

CsCs −
1

3
C2
s I

)

,

Fs = − ζs
kbTtr

n

ns

(

3

2
− C2

s

)

,

Gs =
prel,s
kbTtr

n

ns

(

3

2
− C2

s

)

.

(33)

The diffusion velocity is again introduced, which for the two-temperature model has an additional thermal diffusion
term:

Vs = VM,s + VT,s + V
(v)
T,s = −

∑

t

Dstdt −DT,s∇ln(Ttr)−D
(v)
T,s∇ln(Tvib). (34)

Expressing the diffusion terms using the diffusion velocity and following a procedure similar to the one-temperature
model, the perturbation becomes:

φGCE,s = 2βsVM,s · Cs + 2βsVT,s · Cs + 2βsV
(v)
T,s · Cs

− 4βsktr,s
5ps

(

C2
s − 5

2

)

Cs · ∇Ttr

− 2βskrot,s
ρscv,rot,sTtr

(εrot,s − ε̄rot,s)Cs · ∇Ttr

− 2βskvib,s
ρscv,vib,sTvib

(εvib,s − ε̄vib,s)Cs · ∇Tvib

− 2µs

ps
CsCs :

(

1

2

(

∇v +∇T
v
)

− 1

3
∇ · vI

)

− ζs
ps

(

C2
s − 3

2

)

∇ · v +
prel,s
ps

(

C2
s − 3

2

)

,

(35)

and the Generalized Chapman-Enskog perturbation φGCE,s for the two-temperature model is expressed in terms of
flux-based quantities as:
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φGCE,s = DM,s · Cs +DT,s · Cs +D
(v)
T,s · Cs + qtr,s · Cs

(

C2
s − 5

2

)

+ qrot,s · Cs (εrot,s − ε̄rot,s)

+ qvib,s · Cs (εvib,s − ε̄vib,s) + τs : CsCs + Pbulk,s

(

C2
s − 3

2

)

+ Prel,s

(

C2
s − 3

2

)

.

(36)

Finally, the GCE continuum breakdown parameters for the case of the two-temperature model are given by:

DM,s =
2βsρsVM,s

ρs
=

2βsD
NS
M,s

ρs
,

D
(v)
T,s =

2βsρsV
(v)
T,s

ρs
=

2βsD
(v),NS
T,s

ρs
,

DT,s =
2βsρsVT,s

ρs
=

2βsD
NS
T,s

ρs
,

qtr,s = −4βs

5ps
ktr,s∇Ttr =

4βsq
NS
tr,s

5ps
,

qrot,s = − 2βs

ρscv,rot,sTtr
krot,s∇Ttr =

2βsq
NS
rot,s

ρscv,rot,sTtr
,

qvib,s = − 2βs

ρscv,vib,sTvib
kvib,s∇Tvib =

2βsq
NS
vib,s

ρscv,vib,sTvib

τs =
2µs

ps

(

1

2

(

∇v +∇T
v
)

− 1

3
∇ · vI

)

=
τNS
s

ps
,

Pbulk,s = − 1

ps
ζs∇ · v =

pNS
bulk,s

ps
,

Prel,s =
pNS
rel,s

ps
.

(37)

D. Three-temperature Model

In the three-temperature model, the energy exchange between T-T, R-R and V-V (intra-modal) are considered as
fast processes, while T-R-V (inter-modal) energy exchange is a slow process. Owing to the fast intra-modal processes,
the resulting translational, rotational and vibrational modes are assumed to follow Boltzmann distributions with
distinct temperatures Ttr, Trot and Tvib, but these temperatures are not necessarily in equilibrium owing to the slow
T-R-V exchange. The corresponding characteristic time scales and fast and slow collision operators are thus:

τT−T < τR−R < τV−V ≪ τT−R−V < τreact ∼ θ. (38)

Jrap = JT−T + JR−R + JV−V ,

Jsl = JT−R−V + Jreact.
(39)

For a mixture of gases following the three-temperature model with a rigid-rotor/harmonic oscillator assumption,
the Generalized Chapman-Enskog (GCE) perturbation φGCE,s is of the form:

φGCE,s = − 1

n
As.∇ln(Ttr)−

1

n
A

(r)
s · ∇ln(Trot)−

1

n
A

(v)
s · ∇ln(Tvib)

− 1

n

∑

t

D
t
s · dt −

1

n
Bs : ∇v − 1

n
Gs.

(40)
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The perturbation in the three-temperature model has two new terms A
(r)
s and A

(v)
s associated with the gradients

in the rotational and vibrational temperatures. Since all inter-modal inelastic energy exchange processes are slow
processes, the Fs term vanishes from Eq. 40. The polynomial expansion of the generalized functions are given by:

As = −
(

ms

2kbTtr

)1/2

Cs

∑

r

as,rS(r)
3/2

(

C2
s

)

,

A
(r)
s = −

(

ms

2kbTtr

)1/2

Cs

∑

p

a(r)s,pP(p)(εrot,s),

A
(v)
s = −

(

ms

2kbTtr

)1/2

Cs

∑

q

a(v)s,qP(q)(εvib,s),

D
t
s =

(

ms

2kbTtr

)1/2

Cs

∑

r

dts,rS(r)
3/2

(

C2
s

)

,

Bs =

(

CsCs −
1

3
C2
s I

)

∑

r

bs,rS(r)
3/2

(

C2
s

)

,

Gs = −
∑

rpq

gs,rpqS(r)
1/2

(

C2
s

)

P(p)(εrot,s)P(q)(εvib,s).

(41)

The transport coefficients are again expressed in terms of the polynomial expansion coefficients:

ktr,s =
kb
3
[As,As] =

5kb
4

ns

n
as,1,

krot,s =
kb
3

[

A
(r)
s ,A(r)

s

]

=
mscv,rot,s

2

ns

n
a
(r)
s,1,

kvib,s =
kb
3

[

A
(v)
s ,A(v)

s

]

=
mscv,vib,s

2

ns

n
a
(v)
s,1 ,

DT,s =
1

3n

[

D
t
s,As

]

= − 1

2n
as,0,

D
(r)
T,s =

1

3n

[

D
t
s,A

(r)
s

]

= − 1

2n
a
(r)
s,0,

D
(v)
T,s =

1

3n

[

D
t
s,A

(v)
s

]

= − 1

2n
a
(v)
s,0 ,

Dst =
1

3n

[

D
t
s,D

t
s

]

=
1

2n
dts,0,

µs =
kbTtr

10
[Bs,Bs] =

kbTtr

2

ns

n
bs,0,

ζs = kbTtr [Fs,Fs] = 0,

prel,s = kbTtr [Fs,Gs] = 0.

(42)

Note that in the three-temperature model, there are two additional thermal diffusion coefficients, arising from the
separate rotational and vibrational temperatures. The bulk viscosity ζ and the relaxation pressure prel are equal to
zero in this case due to the fact that there are no fast inter-modal inelastic processes. The perturbation function is
next expressed in terms of the transport coefficients to obtain:
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As = As,T +As,tr,

A
(r)
s = A

(r)
s,T +A

(r)
s,rot,

A
(v)
s = A

(v)
s,T +A

(v)
s,vib,

As,T =

(

ms

2kbTtr

)1/2

2nDT,sCs,

As,tr = −
(

ms

2kbTtr

)1/2
4ktr,s
5kb

n

ns

(

5

2
− C2

s

)

Cs,

A
(r)
s,T =

(

ms

2kbTtr

)1/2

2nD
(r)
T,sCs,

A
(r)
s,rot = −

(

ms

2kbTtr

)1/2
2krot,s

mscv,rot,s

n

ns
(ε̄rot,s − εrot)Cs,

A
(v)
s,T =

(

ms

2kbTtr

)1/2

2nD
(v)
T,sCs,

A
(v)
s,vib = −

(

ms

2kbTtr

)1/2
2kvib,s

mscv,vib,s

n

ns
(ε̄vib,s − εvib)Cs,

D
t
s =

(

ms

2kbTtr

)1/2

2nDstCs,

Bs =
2µs

kbTtr

n

ns

(

CsCs −
1

3
C2
s I

)

,

Gs =
prel,s
kbTtr

n

ns

(

3

2
− C2

s

)

.

(43)

The diffusion velocity in the three-temperature model has four components owing to the mass diffusion and thermal
diffusion from three temperature gradients:

Vs = VM,s + VT,s + V
(r)
T,s + V

(v)
T,s = −

∑

t

Dstdt −DT,s∇ln(Ttr)−D
(r)
T,s∇ln(Trot)−D

(v)
T,s∇ln(Tvib). (44)

Expressing the diffusion terms using the diffusion velocity, the perturbation can be expressed as:

φGCE,s = 2βsVM,s · Cs + 2βsVT,s · Cs + 2βsV
(r)
T,s · Cs + 2βsV

(v)
T,s · Cs

− 4βsktr,s
5ps

(

C2
s − 5

2

)

Cs · ∇Ttr

− 2βskrot,s
ρscv,rot,sTrot

(εrot,s − ε̄rot,s)Cs · ∇Trot

− 2βskvib,s
ρscv,vib,sTvib

(εvib,s − ε̄vib,s)Cs · ∇Tvib

− 2µs

ps
CsCs :

(

1

2

(

∇v +∇T
v
)

− 1

3
∇ · vI

)

.

(45)

The Generalized Chapman-Enskog perturbation φGCE,s for the three-temperature model is expressed in terms of
flux-based quantities as:

φGCE,s = DM,s · Cs +DT,s · Cs +D
(r)
T,s · Cs +D

(v)
T,s · Cs + qtr,s · Cs

(

C2
s − 5

2

)

+ qrot,s · Cs (εrot,s − ε̄rot,s) + qvib,s · Cs (εvib,s − ε̄vib,s) + τs : CsCs.

(46)
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Thus the GCE continuum breakdown parameters for the three-temperature model are:

DM,s =
2βsρsVM,s

ρs
=

2βsD
NS
M,s

ρs
,

DT,s =
2βsρsVT,s

ρs
=

2βsD
NS
T,s

ρs
,

D
(r)
T,s =

2βsρsV
(r)
T,s

ρs
=

2βsD
(r),NS
T,s

ρs
,

D
(v)
T,s =

2βsρsV
(v)
T,s

ρs
=

2βsD
(v),NS
T,s

ρs
,

qtr,s = −4βs

5ps
ktr,s∇Ttr =

4βsq
NS
tr,s

5ps
,

qrot,s = − 2βs

ρscv,rot,sTrot
krot,s∇Trot =

2βsq
NS
rot,s

ρscv,rot,sTrot
,

qvib,s = − 2βs

ρscv,vib,sTvib
kvib,s∇Tvib =

2βsq
NS
vib,s

ρscv,vib,sTvib
,

τs =
2µs

ps

(

1

2

(

∇v +∇T
v
)

− 1

3
∇ · vI

)

=
τNS
s

ps
.

(47)

E. Comparison with the KnGLL Breakdown Parameters

In this section, an analytical comparison between the GCE and GLL continuum breakdown parameters is made.
The comparison is limited to the translational heat flux and (self) difussion flux for a single species gas. As will
be seen in Section IV, these are the primary mechanisms leading to breakdown in the reacting flow case presented
in this work, but this analysis can be readily extended to facilitate comparison between other breakdown parameter
quantities.

1. Translational heat flux

The GCE and GLL breakdown parameters that predict continuum breakdown associated with large gradients
in translational temperature (i.e., heat flux) are the translational heat flux breakdown parameter (GCE) and the
Gradient-Length-Local (GLL) Knudsen number based on translational temperature (repeated from Eq. 47 and Eq. 2):

qtr,GCE = −4β

5p
ktr∇Ttr (48)

KnT,tr
GLL =

λmfp

T
∇Ttr (49)

Substituting β =
√

m/2kbTtr, p = nkbTtr and expressing both the translational thermal conductivity and mean free
path of a single-species gas in terms of Ω integrals:

ktr =
25cv,trkbTtr

16Ω(2,2)
, (50)

λmfp =
1

nΩ(2,2)

√

2kbTtr

πm
, (51)

the ratio of the breakdown parameters is determined as:
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qtr,GCE

KnT,tr
GLL

=
15

√
π

16
. (52)

This ratio indicates that the GCE and GLL continuum breakdown parameters associated with translational tem-
perature gradients are not equivalent, but are different by a constant factor of 15

√
π/16 (≈ 1.66). This factor is

precisely the normalization constant that originates from the Sonine polynomial integration during the evaluation of
the bracket integral [A,A], i.e., a result from kinetic theory. It should be noted that this ratio becomes significantly
more complex for a gas mixture, as Eq. 50 becomes a system of equations involving mixture composition [7].

2. Self-diffusion flux

The GCE and GLL breakdown parameters that predict continuum breakdown associated with large gradients in
species concentration (i.e., diffusion flux) are the diffusion flux breakdown parameter (GCE) and the Gradient-Length-
Local (GLL) Knudsen number based on species density:

DM,s = 2βVM,s = 2βDssds (53)

Knρs

GLL =
λmfp

ρs
∇ρs (54)

Self-diffusion is presented here to facilitate comparison, as the analysis becomes increasingly more complex for
multi-component diffusion in gas mixtures. For the case of self-diffusion, the diffusion coefficient and the driving force
can be expressed as:

Dss =
3kbTtr

8nmΩ(1,1)
(55)

ds =
∇ρs
ρs

(56)

Substituting these expressions and the definition of λmfp from Eq. 51, the ratio of the breakdown parameters is
obtained as:

DM,s

Knρs

GLL

=
3
√
π

8

Ω(2,2)

Ω(1,1)
(57)

The GCE and GLL diffusion breakdown parameters are also not equivalent, but in this case their ratio is a variable
function of the Ω(1,1) and Ω(2,2) collision integrals. This is due to the fact that diffusion, which appears in the GCE
parameter, is associated with the transport of mass or identity (represented by Ω(1,1)), while the mean free path, which
appears in the GLL parameter, is associated with the transport of momentum or energy (represented by Ω(2,2)). The
factor of 3

√
π/8 appearing on the right-hand side of Eq. 57 is the normalization constant associated with the bracket

integral of
[

D
t
s,D

t
s

]

, again a result from kinetic theory. This suggests that the GLL breakdown parameters, which
are expressed in terms of a Knudsen number based on a length scale determined by flow gradients [9], does not
properly capture the true departure of the distribution function from equilibrium as determined by the Generalized
Chapman-Enskog method (a precursor to the Navier-Stokes equations) and kinetic theory.

IV. ASSESSMENT OF CONTINUUM BREAKDOWN

The GCE breakdown parameters developed in the preceding sections are analyzed for a hypersonic flow past a sphere.
Translational and vibrational heat flux, species diffusion and stress tensor breakdown parameters are evaluated at
each point in the flow field to determine the mechanisms responsible for continuum breakdown at a given location.
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The GCE breakdown parameters are then compared with the corresponding GLL parameters to elucidate: (i) the
spatial variation, if any, in the predicted onset of continuum breakdown, and (ii) the physical mechanisms responsible
for continuum breakdown in either case. Furthermore, the relative strengths of competing mechanisms are assessed
to identify the physical processes which drive the system towards non-equilibrium, and collisional processes that work
to restore equilibrium.

A. Computational Setup

X (m)

Z
 (

m
)

0 0.5 1 1.5
.5

-1

.5

0

.5

1

.5

T, K

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
0

B= MAX(|Di|, | ij|,|qtr,i|,|qvib,i|)

Continuum Breakdown based on B>0.05

 = 90o

 = 0o

 = 67o

FIG. 1. The computational domain: temperature contours (top); GCE continuum breakdown regions based on a threshold of
0.05 (bottom). Black lines indicate flow field profiles extracted for analysis at θ = 0◦, 67◦ and 90◦.

Two-dimensional, reacting air flow past a sphere is simulated using the finite volume, implicit Langley Aerother-
modynamic Upwind Relaxation Algorithm (LAURA) (Fig. 1) [20, 21]. The system is modeled as an 11-species air
mixture with free-stream conditions as shown in Table I. The sphere surface is treated as a fully catalytic wall
with radiative equilibrium wall temperature. A no-slip velocity boundary condition is enforced on the sphere surface.
Chemical reactions are modeled using Park’s finite rate chemistry for the entire flow field. The two-temperature model
is used in which the rotational and translational modes are assumed to be in equilibrium, and translational-vibrational
non-equilibrium is modeled via the Landau-Teller formulation. Species-wise diffusion coefficients are obtained from
the self-consistent effective binary diffusion coefficient (SCEBD) model [22, 23] and mixture viscosity, translational
and internal thermal conductivities are obtained from the Gupta-Yos mixing rule [24].
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TABLE I. Free stream conditions.

Parameter Value
M 24
ρ 1e-4 [kg/m3]
T 276 [K]
u 8000 [m/s]
χ

N2
0.7835

χ
O2

0.2165

B. GCE Continuum Breakdown

(a) (b)

(c)

FIG. 2. Translational and vibrational heat flux breakdown parameters along: (a) θ = 0◦ (stagnation line), (b) θ = 67◦, (c)
θ = 90◦ profiles as indicated in Fig. 1. Note the variation in the range of the wall-normal distance from (a) to (c). The shaded
regions indicate continuum breakdown as specified in Eq. 58.

The focus of this analysis is aimed toward an understanding of the breakdown mechanisms in the shock region
and near the sphere surface. The breakdown parameters for a two-temperature model presented in Section III C are
assessed along profiles at θ = 0◦, 67◦ and 90◦ (Fig. 1), starting from just upstream of the bow shock and extending
to the surface of the sphere. Both the normal and tangential components of the breakdown parameters are computed
at each angular position. The diffusion breakdown parameter is evaluated for each component of the 11-species air



18

mixture according to the SCEBD formulation of species diffusion flux [22]. However, it should be noted that multi-
component diffusion breakdown parameters should be computed if the pairwise diffusion coefficients are available.
The translational and vibrational heat flux and stress tensor breakdown parameters have been calculated for the
mixture as a whole, but these quantities may also be computed per species. The LAURA solver does not include
thermal diffusion, bulk viscosity or relaxation pressure in the governing equations, so these are omitted from the
current analysis. Thus, the continuum breakdown parameters computed for this problem include:

B = MAX(|Ds
i |, |τij |, |qtri |, |qvibi |), (58)

each evaluated in terms of the wall-normal and tangential components. The breakdown criterion ofB = 0.05 is adopted
from the KnGLL criterion for this analysis to facilitate comparison [9]. The continuum breakdown parameters are
plotted in Figs. 2 – 3 as a function of wall-normal distance at each angular position. The shaded regions in each figure
indicate regions of GCE continuum breakdown based on the definition in Eq. 58, which include breakdown within the
shock region and the near-surface region, where gradients and consequently, the fluxes are highest.

1. Heat flux breakdown

The wall normal and tangential components of the translational and vibrational heat flux breakdown parameters
are shown in Fig. 2 along θ = 0◦, 67◦ and 90◦. Following the profiles from left (freestream) to right (sphere wall),
the first shaded region represents the non-continuum region at the shock, and the second indicates the presence of
a non-continuum region near the sphere surface. Along the θ = 90◦ profile, a third ‘post shock’ breakdown region is
observed due to high diffusion fluxes of NO, O2, and will be discussed in the next subsection. Within each of these
regions, at least one of the continuum breakdown parameters have crossed the breakdown threshold of 0.05, indicating
that a kinetic scheme must be employed to accurately describe the flow field.
Along all the three angular positions considered namely, θ = 0◦, 67◦ and 90◦, the heat flux parameters initiate

continuum breakdown at the shock region. Thus, within the shock, the steep gradients in the translational and
vibrational temperatures and the resulting heat fluxes are responsible for perturbing the equilibrium Maxwellian
VDF of the system. The ‘end-of-shock’ breakdown location marks the end of the shaded region around the shock,
after which all breakdown parameters are within the breakdown threshold, and the Navier-Stokes equations may be
used to compute system properties until the start of the next breakdown region is encountered. The ‘end-of-shock’ is
indicated by the species-wise diffusion breakdown parameter along each angular position considered. (Table II).
Along the θ = 0◦ and 67◦ locations, continuum region beyond the ‘end-of-shock’ location extends until ∼4mm and

∼17mm upstream of the sphere surface respectively. Similarly, in case of the θ = 90◦ position, the continuum region
downstream of the ‘post shock region’ (Fig. 2 (c)) terminates when breakdown is observed near the sphere surface.
Along all three angular positions, the near wall breakdown is determined by the species-wise diffusion fluxes, as
discussed in the following sub section. Although the heat flux parameters do not determine the onset of breakdown
near the wall, the normal components of the translational and vibrational heat flux breakdown parameters do cross
the breakdown threshold very close of the sphere surface, along the θ = 67◦ and 90◦ positions. The sharp temperature
gradients that are setup due to the hot gases from the shock layer approaching the relatively cool sphere surface, are
responsible for this effect
Further, Fig. 2 also reveals that with increasing angular positions, the near wall breakdown of the heat flux parameter

occurs further upstream of the sphere surface. Since the heat flux breakdown parameters are normalized by pressure
(Eq. 37), this trend observed in the breakdown location of the heat flux terms is likely due to the decreasing pressure
near the sphere surface with increasing angular position, from the stagnation line (θ = 0◦) to the sphere shoulder
(θ = 90◦).

2. Diffusion breakdown

Fig. 3 shows the GCE diffusion breakdown parameters along θ = 0◦, 67◦ and 90◦. The most prominent diffusion
breakdown parameters are the wall normal components for N2, O2, N, O and NO, while the tangential components
(not shown) are not significant in determining any breakdown location. For similar reasons, the diffusion breakdown
parameters of charged species have not been shown.
The diffusion flux required to compute the species-wise diffusion breakdown parameter has been evaluated using

the SCEBD model of Ramshaw[22]. The diffusion breakdown parameter (Eq. 37) is computed as the species diffusion
flux normalized by the inverse most probable speed of the species and the species density, ρs. In case of a chemically
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(a) (b)

(c)

FIG. 3. Diffusion breakdown parameters along (a) θ = 0◦ (stagnation line), (b) θ = 67◦, (c) θ = 90◦ profiles indicated in Fig. 1.
Note the variation in the range of the wall-normal distance from (a) to (c). The shaded regions indicate continuum breakdown
as specified in Eq. 58.

reacting flow with conditions enabling complete dissociation/recombination, the ρs falls to very low values at certain
locations in the flow field. This leads to mathematical anomalies in the computation of Ds

GCE,i. To overcome this,

the ρs in Eqn. 37 is set to max(ρs, 0.001 ∗ ρtotal) where ρtotal is the total density at the location under consideration.
Following the θ = 0◦ and θ = 67◦ profile from left (free stream) to right (toward the surface), Fig. 3 (a), (b) indicate

that diffusion fluxes have become significant at the start of shock breakdown location. However, at the sphere shoulder
(θ = 90◦), diffusion fluxes become significant only after continuum breakdown has already been initiated by the heat
flux parameters (Fig. 2 (c)). The ‘end-of-shock’ breakdown location along all three angular positions is governed by
the diffusion breakdown parameter. Steep species concentration gradients are observed in the shock. These gradients,
coupled with the rise in pressure that accompanies the shock, contribute to the diffusion driving force (Eq. 19) that is
responsible for distorting the Maxwellian VDF of the system by means of large species diffusion fluxes. Further, the
decreasing peak shock temperatures with increasing angular positions cause reactions to occur until downstream of
the shock. This results in extending the ‘end-of-shock’ breakdown location further downstream of the actual shock.
The ‘post shock’ breakdown region that is observed along θ = 90◦ is likely to develop due to the same reason.
In approaching the sphere surface, it is the species diffusion breakdown parameter (DO2

GCE,n) that determines the
onset of the near wall breakdown region. The movement of hot fluid towards the relatively cold sphere surface creates
temperature gradients that initiate gas phase reactions. Coupled with wall catalycity effects, steep concentration
gradients develop that lead to large diffusion fluxes. Although recombinations of N begin further upstream of the wall
along all three angular positions, the diffusion fluxes of O2 determine the start of the near wall breakdown region.
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Unlike N2, O2 is almost completely dissociated in the shock. Therefore the concentration of O2 in moving towards
the wall is very low. The low concentration along with the rise in diffusion flux of O2 due to chemical reactions in the
wall vicinity, distort the VDF, leading to continuum breakdown.
Fig. 3 also reveals that with increasing angular positions, the near wall breakdown of the species-wise diffusion

parameter occurs at larger distances upstream of the sphere surface. This can be attributed to the decreasing total
density (and hence, species density) as one traverses along the sphere surface from the stagnation line to the sphere
shoulder.

(a) (b)

(c)

FIG. 4. Stress Tensor breakdown parameters along: (a) θ = 0◦ (stagnation line), (b) θ = 67◦, (c) θ = 90◦ profiles indicated
in Fig. 1. Note the variation in the range of the wall-normal distance from (a) to (c). The shaded regions indicate continuum
breakdown as specified in Eq. 58.

3. Stress tensor breakdown

Fig. 4 shows the normal (nn), tangential (tt) and shear (nt) stress breakdown parameters along θ = 0◦, 67◦ and 90◦.
Following the profiles from left to right, it can be seen that continuum breakdown occurs at the shock region before
the stress components become significant. With an increase in the angular position, the value of the stress tensor
components close to the sphere wall begins to increase. The sharp velocity gradients developed due to the slowing of
the fluid in the wall boundary layer are responsible for this rise. However, the stress tensor breakdown parameters do
not determine any of the breakdown locations.
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It is clear from Figs. 2 – 3 that there exist two (three for θ = 90◦) distinct continuum breakdown regions (shock,
post-shock and near the sphere surface) where transition needs to be made from a CFD to a kinetics-based solution
technique. This transition, often referred to as the hybrid interface location introduced in Section I, is determined
by the location where any of the breakdown parameter values has exceeded the breakdown threshold. The physical
mechanisms leading to the onset of continuum breakdown are summarized in Table II for the cases considered above.
The shock (and post-shock) region is bound by two separate hybrid interfaces, one defining ‘start-of-shock’ continuum
breakdown location and the second, defining the ‘end-of-shock’ continuum breakdown location, while the breakdown
near the sphere surface is governed by a single hybrid interface. Multiple breakdown parameters are listed for cases
where multiple mechanisms simultaneously predict continuum breakdown. For the ‘post shock’ breakdown region
developed along θ = 90◦, the interfaces are governed by DO2

n , DNO
n and have not been listed in the table below.

TABLE II. Breakdown Mechanisms: 2-d flow over sphere.

Angle Start-shock region End-of-shock region Wall region

0 qtrn , qvibn , DO
n , DN

n DO2
n DO2

n , DNO
n

67 qtrn , qvibn , DO
n , DNO

n DO2
n DO2

n , DNO
n

90 qtrn DO
n , DNO

n DO2
n

C. Chemical reactions: Indirect Influence on Continuum Breakdown

Table II and Fig. 3 (a) reveal that in the near wall region along the stagnation line, continuum breakdown is
initiated by the diffusion breakdown parameter, DO2

n . This section elucidates the competition between the physical
mechanisms that drive the system towards non-equilibrium, as well as mechanisms that work to restore the system
back to equilibrium.

FIG. 5. Variation in temperature and mole fraction of O2 and O in the flow field along the stagnation line.

Consider, for example, the temperature and mole fractions of O and O2 along the stagnation line leading up to the
sphere surface. Compared to the hot gas (∼7000 K) in the post shock layer, the relatively cool wall temperature of
2200 K is expected to decrease the gas-phase dissociation of O2, partially contributing to the observed decrease in
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the mole fraction of O and increase in mole fraction of O2 near the wall (Fig. 5). Further, the advection and diffusion
processes, coupled with wall catalycity effects result in a high rate of surface recombination. These recombination
reactions form O2, leading to a strong flux of O2 away from the wall, with the wall acting as a source. Thus, advection
and diffusion of O towards the wall produces O2 through gas-surface recombinations, which in turn leads to diffusion
of O2 away from the wall. The final, steady state composition of the gas near the wall depends of the relative balance
between the competing physical mechanisms in this region, namely advection, diffusion and gas-phase and gas-surface
recombination reactions. With this view, the first and second Damköhler numbers DaI and DaII respectively, have
been evaluated as [25]:

DaI =
τadvection
τreact

(59)

DaII =
τdiffusion
τreact

(60)

at two locations along the stagnation line: (i) at the start of the near wall breakdown region (∼4mm upstream of the
sphere surface, Fig. 5) henceforth, referred to as Location a and (ii) at the sphere surface. Thus, DaI compares the
advection and reaction time scales, whereas DaII relates the diffusion and reaction time scales. The ratio of DaI to
DaII therefore serves as an indicator of whether the advection or diffusion process dominates in a chosen region of
the flow field.
Using the general definition of Damköhler numbers as per Eqs. 59 and 60, three sets of Damköhler numbers, DaI

and DaII , (six Damköhler numbers in all) have been evaluated. The first set compares the time scales of: (i) advection
with gas-phase reactions at Location a (DaI,gas) and (ii) diffusion with gas-phase reaction at Location a (DaII,gas).
The second set compares the time scales of: (i) advection with surface reactions at the sphere wall (DaI,surf−w) and
(ii) diffusion with surface reactions at the sphere wall (DaII,surf−w). The third set compares the time scales of: (i)
advection with ‘effective’ surface reactions at Location a (DaI,surf−a) and (ii) diffusion with ‘effective’ surface reactions
at Location a (DaII,surf−a).
The first set of Damköhler numbers which is used to assess the relative strength of the diffusion and advection

process with respect to gas-phase recombinations, is evaluated at Location a as:

DaI,gas =
ẇsld
ρs|V | (61)

DaII,gas =
ẇsld

2

ρsDs
(62)

where ẇs is the species production due to gas-phase dissociation and recombination, and ρs denotes species density.
The quantity ld is the characteristic diffusion length, and is taken to be the distance from the sphere wall to Location

a (∼4mm) for computing all six Damköhler numbers. The quantities |V | and Ds denote the velocity magnitude,
and the diffusion coefficient of the species under consideration at Location a. For all the quantities computed in this
analysis, atomic oxygen, O is the species of interest. The values of DaI,gas and DaII,gas, computed at Location a, as
per Eq. 61 and Eq. 62 are presented in the first row of Table III.
The second set of Damköhler numbers are evaluated at the sphere wall, and provide an assessment of the relative

strengths of advection and diffusion of O with respect to surface recombinations of O. These numbers are formulated
as:

DaI,surf−w =
1

|V |γw
√

kBTw

2πms
(63)

DaII,surf−w =
ld
Ds

γw

√

kBTw

2πms
(64)



23

where Tw and ms are the wall temperature and the particle weight of the atomic species [26]. γw is the surface
catalycity, and for the fully catalytic wall considered in this work, γw = 1. It should be noted that both |V | and Ds

are values of velocity magnitude and species-wise diffusion coefficient respectively, at the sphere wall. The values of
DaI,surf−w and DaII,surf−w, computed at the sphere wall, as per Eq. 63 and Eq. 64 are presented in the second row
of Table III.
The third set of Damköhler numbers are evaluated again at Location a, and provide an assessment of the relative

strength of advection and diffusion of O with respect to an ‘effective’ surface recombinations of O. To translate the
influence of surface reactions occurring at the sphere wall to Location a, Thoemel et al. [26] has suggested the use of
an ‘effective’ wall catalycity, γeffective given by:

γeffective =
Net recombination flux of O at Location a

Total f lux of O at Location a
(65)

Based on this effective wall catalycity, DaI,surf−a and DaII,surf−a can be expressed as:

DaI,surf−a =
1

|V |γeffective
√

kBTa

2πms
(66)

DaII,surf−a =
ld
Ds

γeffective

√

kBTa

2πms
(67)

where Ta, |V |, Ds are values of gas temperature, velocity magnitude and species-wise diffusion coefficient respectively,
at Location a. The values of DaI,surf−a and DaII,surf−a, computed using Eq. 66 and Eq. 67, are presented in the
third row of Table III. Thus, a time scale comparison for each of the competing mechanisms that can influence
continuum breakdown in the vicinity of the sphere wall namely – advection, diffusion, gas phase reactions and surface
recombinations – has been summarized in the form of Damköhler numbers, based on Eq. 61 - 67 in Table III.

TABLE III. Time scale comparison between diffusion, advection, gas-phase and surface chemistry.

Position Reaction considered DaI DaII

Location a (Eqs.61, 62) Gas phase 0.000181 0.000270
Sphere Wall (Eqs.63, 64) Surface ∞ 166.3599
Location a (Eqs.66, 67) ‘Effective’ Surface 0.1354 0.2021

It can be seen from the first row of Table III that the values of DaI and DaII at Location a are very low. This
indicates that gas-phase reactions at the location of breakdown occur on larger time scales compared to that of
advection and diffusion.
The second row of Table III compares the advection and diffusion processes at the wall with the surface recombina-

tion rate. At the wall, advection vanishes due to the no-slip velocity boundary condition and the value of DaI , which
is a ratio of the advection time scale to the surface reaction time scale, tends to ∞. However, the value of DaII –
ratio of the diffusion time scale to the surface reaction time scales at the wall – is O(2), indicating that diffusion is
mainly responsible for the transport of O towards the wall for initiating surface recombinations. Thus, the molecular
flux emerging from the wall is dependent on the rate at which diffusion transports atomic species towards the sphere
surface. This diffusion – surface chemistry coupling is responsible for the steep decrease in atomic O that is observed
close to the sphere wall (Fig. 5).
The DaI and DaII values in the third row of Table III indicate that at Location a, both advection and diffusion

processes occur on time scales comparable to those of the ‘effective’ surface recombinations. Thus, the near wall
region is characterized by chemical non-equilibrium, and the GCE diffusion flux breakdown parameter captures the
continuum breakdown resulting from these competing mechanisms.
The GCE diffusion breakdown parameter represents a ratio of the diffusion velocity to the most probable speed of

the gas. For the case under study, diffusion and thermal motion of the gas occur on comparable speeds and hence,
the diffusion breakdown parameter exceeds the breakdown threshold of 0.05 (Fig. 3 (a)). Thus, chemical reactions
set up steep concentration gradients giving rise to diffusion fluxes, which in this case are strong enough to distort the
equilibrium Maxwellian of the VDF leading to continuum breakdown.
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The above analysis indicates that the Damköhler numbers, by comparing the flow and diffusion time scales with
the reaction time scale provide an estimate of the extent of chemical non-equilibrium for the system. It is found that
continuum breakdown as indicated by the GCE species-wise diffusion breakdown parameter coincides with the regions
of strong chemical non-equilibrium.

D. Comparison with the KnGLL Breakdown Parameters

Figs. 6 and 7 show the GCE and GLL breakdown parameters plotted against wall normal distance along the two
extreme angular positions, namely θ = 0◦ and 90◦. The KnGLL has been evaluated for translational and vibrational
temperature, velocity magnitude and individual species density based on Eq. 2. The chemically reacting nature of
the flow causes species concentrations to fall to very low values at certain locations in the flow field, leading to
mathematical anomalies in the computation of the species-wise KnGLL. To overcome this, the Qlocal in Eqn. 2 is set
to max(ρs, 0.001 ∗ ρtotal) where ρtotal is the total density at the location under consideration, similar to procedure
employed in the computation of the Ds

GCE,i .

(a) (b)

FIG. 6. Comparison of GCE and GLL breakdown parameters along stagnation line θ = 0◦: (a) GCE Breakdown Parameters
(b) GLL Breakdown Parameters. The hatched areas represent the breakdown region indicated by the GCE parameters whereas,
the solid gray fill indicates the breakdown region predicted by the GLL formulation.

The GLL breakdown regions are indicated by solid gray fill and the GCE breakdown regions are denoted by the
hatched lines, for all continuum breakdown zones. The breakdown regions indicate that atleast one of the breakdown
parameters have exceeded a threshold value of B = 0.05. Thus, these shaded areas represent regions in the flow field
where continuum approximation fails to describe the flow system, and a kinetic-based solution methodology needs to
be applied.
Figs. 6 show the GCE and GLL breakdown regions, along θ = 0◦. Both GCE and GLL breakdown parameters

predict the onset of continuum breakdown approaching the shock due to large translational temperature gradients
(qtrGCE,n and KntrGLL,n) at nearly identical locations along the stagnation line, θ = 0◦ (Figs. 6(a), 6(b)). The differences
in the prediction of continuum breakdown in approaching the shock becomes apparent for increasing angle θ, and is
prominent at the θ = 90◦ orientation (Fig. 7). It is observed that the GLL formulation predicts the ‘start-of-shock’
breakdown location downstream of that indicated by the GCE breakdown parameters (Figs. 7(a), 7(b)). This shift
in the ‘start-of-shock’ location arises due to the difference in the coefficients of ∇T in the qtrGCE,n and KntrGLL,n

parameters. As outlined in Section III E, the ratio of qtrGCE,n to KntrGLL,n for a single species system is 15
√
π/16. For

the 11-species air mixture considered in this study, this ratio was found to be around 2. As θ increases, the shock
strength (and the corresponding temperature gradient) decreases, and the disparity between qtrGCE,n and KntrGLL,n in
predicting the onset of breakdown in the shock region is amplified.

It is observed that Knρ,O2

GLL,n predicts start of the near wall breakdown region slightly downstream of that indicated
by the GCE parameter in Figs. 6 and 7. Similarly, along the θ = 90◦ position, the GCE diffusion parameter predicts
a larger ‘post-shock’ breakdown region than the corresponding GLL terms. The GCE formulation considers a non-
dimensionalized form of the species-wise diffusion fluxes to determine continuum breakdown, rather than accounting
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(a) (b)

FIG. 7. Comparison of GCE and GLL breakdown parameters along θ = 90◦: (a) GCE Breakdown Parameters (b) GLL
Breakdown Parameters. The hatched areas represent the breakdown region indicated by the GCE parameters whereas, the
solid gray fill indicates the breakdown region predicted by the GLL formulation.

for only the species-wise density gradients. Further, the representation of diffusion breakdown in the GCE framework
considers the contribution of the species number density gradient and pressure gradients to the diffusion driving force
– which are responsible for diffusion fluxes (Eq. 19). The contribution of this pressure gradient term to the diffusion
driving force (Eq. 19), in turn depends on the abundance and the mass density of the species under consideration
relative to the mixture. Also, the effect of the species-wise diffusion coefficients are also taken into account by the
GCE formulation, but the GLL density gradient parameter does not incorporate this feature. These differences in
the breakdown parameter definitions are the likely reasons for the disparity in the results observed between the GCE
and GLL formulation with regards to species-wise diffusion breakdown.

V. CONCLUSIONS

The Generalized Chapman-Enskog method for rapid and slow processes was used to develop a robust set of contin-
uum breakdown parameters for chemically reacting flows from kinetic theory. These continuum breakdown parameters
are derived for one-temperature, two-temperature and three-temperature models and may readily be applied to analyze
continuum breakdown from a CFD flow field solution. The full set of GCE continuum breakdown parameters includes
breakdown mechanisms predicted by diffusion processes (multi-component and thermal), normal and shear stresses,
Fourier-type heat fluxes based on translation, rotational and vibrational temperatures, bulk viscosity, and relaxation
pressure. These GCE breakdown parameters, derived from rigorous kinetic theory, are able to accurately capture
the proper mechanism leading to the breakdown of all the transport processes, unlike the existing phenomenological
breakdown parameters.

The GCE parameters were then used to analyze continuum breakdown for a Mach 24 reacting flow over a sphere.
Continuum breakdown was observed due to the strong translational, vibrational heat fluxes at the shock location.
Along the stagnation line, the strong species diffusion fluxes due to dissociation/recombination reactions at the shock
were also found to perturb the system’s VDF. The species-wise diffusion breakdown parameter was instrumental in
determining the ‘end-of-shock’ breakdown location. Diffusion-driven processes resulting from gas-phase and surface
chemical reactions were also found to play an important role in determining the location of the near wall breakdown
region. Thus, chemical reactions which are a major source for setting up species concentration gradients, can indirectly
distort the VDF by means of strong diffusion fluxes leading to continuum breakdown.

It is also noted that thermal and velocity-slip models have often been employed in CFD calculations to account
for non-continuum effects near a solid surface. While such slip models may be well-suited for continuum breakdown
in simple gas flows where breakdown due to large velocity gradients (i.e., normal and shear stresses) or temperature
gradients (i.e., heat fluxes) dominate, the breakdown occurring due to species-wise diffusion fluxes, are not likely to
be captured by a slip model.
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