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We investigate electroconvection and its impact on ion transport in a model sys-

tem comprised of an ion-selective membrane, an aqueous electrolyte, and an external

electric field applied normal to the membrane. We developed a direct numerical sim-

ulation (DNS) code to solve the governing Poisson-Nernst-Planck and Navier-Stokes

equations in three dimensions using a specialized parallel numerical algorithm and

sufficient resolution to capture the high frequency and high wavenumber physics.

For the first time, we show a comprehensive statistical analysis of the transport

phenomena in the highly chaotic regime. Qualitative and quantitative comparisons

of 2D and 3D simulations include: prediction of the mean concentration fields, as

well as the spectra of concentration, charge density, and velocity signals. Our anal-

yses reveal significant quantitative difference between 2D and 3D electroconvection.

Furthermore, we show that high-intensity yet short-lived current density hot spots

appear randomly on the membrane surface, contributing significantly to the mean

current density. By examining cross correlations between current density on the

membrane and other field quantities we explore the physical mechanisms leading to

current hot spots. We also present analysis of transport fluxes in the context of

ensemble-averaged equations. Our analysis reveals that in the highly chaotic regime

the mixing layer (ML), which spans the majority of the domain extent, is governed

by advective fluctuations. Furthermore, we show that in the ML the electromigra-

tion fluxes cancel out for positive and negative ions, indicating that transport of

total salt within the ML can be represented via the electroneutral approximation.

Lastly, we present an assessment of the importance of different length scales in en-

hancing transport by computing the cross-covariance of concentration and velocity

fluctuations in the wavenumber space. Our analysis indicates that in the majority of
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the domain the large scales contribute most significantly to transport, while effects

of small scales become more appreciable in regions very near the membrane.

I. INTRODUCTION

Ion-selective materials play an essential role in separation and purification processes. For

example, in electrodialysis ion-selective membranes are used to purify brackish water. This

process can be incorporated into hybrid reverse osmosis systems[1]. Other industries that

use electrodialysis include chemical[2], pharmaceutical[3], and food production[4]. Novel

applications use ion-selective membranes in redox flow batteries[5, 6] and microfluidics[7]

such as biomedical lab-on-a-chip devices, micropumps, and analytical sensors[8, 9].

The aforementioned devices use externally applied electric fields to drive ion transport

in aqueous electrolytes. A model setup for a membrane-electrolyte system shown in Fig-

ure 1(a), consists of an ion-selective membrane in contact with an electrolyte and a potential

difference applied across the domain. When an ion-selective membrane and an electrolyte

come into contact, the highly charged membrane surface attracts counterions from the bulk,

forming an electric double layer (EDL) adjacent to the membrane surface, see Figure 1(c).

The external electric field drives counterions from the bulk fluid to the membrane, and drives

coions away from the membrane to the bulk. These effects cause the well-established concen-

tration polarization (CP) phenomenon[10] to deplete both coions and counterions near the

membrane surface. The depletion of ions near the interface limits the ability of the system

to sustain large electric current. Due to this effect, the measured current versus voltage

plots typically saturate at a limiting current, Ilim, controlled by diffusion (Figure 2).

For applied voltages much larger than the thermal voltage, VT , the salt depletion leads

to very small concentrations near the membrane and thus singularly large local EDL thick-

nesses. In this regime, the transition from the EDL to the electroneutral diffusion layer

(DL) in the bulk is reconciled via an intermediate layer called the extended space charge

region (ESC) which is neither electroneutral nor in Boltzmann-equilibrium. The ESC can

be predicted by one-dimensional theories, and allows for a small amount of overlimiting

current (OLC). Experimental measurements however, typically reveal OLC values signif-

icantly larger than those predicted by the one-dimensional ESC models[11]. Rubinstein

and Zaltzman used linear stability analysis of similar systems and showed that beyond a
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threshold voltage, the one-dimensional solution to the ESC is unstable, resulting in a hy-

drodynamic instability referred to as the electroconvective instability (ECI). Based on their

analysis, Rubinstein and Zaltzman hypothesized that flow vortices induced by this instabil-

ity can enhance ion transport via convection and result in OLC. This analysis was confirmed

by experimental observation of induced vortices, called electroconvective vortices, near an

ion-selective membrane[12].
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Figure 1. (a) 3D schematic of an electrodialysis device with alternating anion-selective and cation-

selective surfaces. (b) An instantaneous snapshot of the chaotic concentration field from our 3D

DNS. (c) Schematic of a model system focusing on the physics adjacent to the cation-selective

surface. As a result of induced convection, a mixing layer (ML), with an almost flat average

concentration profile develops in a large part of the domain.

Recent experimental observations[13–16] revealed that when the applied field exceeds a

threshold of O(1)V in aqueous systems, the ion transport generates highly unsteady fields

of fluorescent signals representing ion concentration. Direct numerical simulations (DNS)

were the first to report quantification of electroconvective flow under unsteady conditions

and confirm the presence of chaotic vortices over a range of spatio-temporal scales with

broadband spectra[17]. These effects were later quantified for systems similar to the model

setup in Figure 1(c), but with additional complexities including imposed inflow[18], in-

duced charge electro-osmosis (ICEO) in which surface conduction over an inert electrode
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provides ion-selectivity[19], and patterned surfaces[20]. Most recently, de Valença et al.[21]

used micro-PIV to quantify chaotic flow fields associated with electroconvection under high

voltage. The flow patterns observed in these measurements are consistent with numerical re-

production of PIV performed on DNS using earlier computational methodologies[20]. Until

recently, OLC was attributed to sources such as water splitting[22, 23], surface conduction

in micropores[24], normal flow into the selective surface[25], and current-induced membrane

discharge[26]. Very recently the consensus is that electroconvection plays the dominant role

in enhancing mass transport[17, 21] which contributes significantly to OLC. In recent years

electroconvection has received considerable attention for its potential to alleviate transport

limitation by diffusion.
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Figure 2. Schematic of the characteristic current-voltage curve for membrane-electrolyte systems.

Experiments with membrane-electrolyte systems exhibit a characteristic current-voltage

response with three regimes (Figure 2): the underlimiting regime where the current obeys

a linear response[27], the limiting regime where the current plateaus due to concentration

polarization[28], and the overlimiting regime where the unexpectedly large increase in current

is an ongoing research area[29]. The underlimiting and limiting regimes are well-predicted

by one-dimensional models[10] for a stagnant fluid. In the overlimiting regime, however, one-

dimensional models significantly underpredict the current density since they fail to capture

the effects of electroconvection[11]. Additional 1D models have used experimental current-

voltage curves to fit 1D model parameters for improved prediction at overlimiting currents
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[30]. However, 1D models are not sufficient for capturing the physics of overlimiting currents.

Here we briefly describe the instability mechanism leading to electroconvection. The key

ingredients of this instability are concentration gradients due to concentration polarization

and ESC counter charge near the membrane, which can lead to a positive feedback mecha-

nism that amplifies hydrodynamic perturbations. Figure 3 shows a clockwise hypothetical

vortex near a cation-selective membrane. The corresponding perturbation to the salt con-

centration field is shown by tracking an iso-contour of concentration. Due to its low Ohmic

resistance, the high concentration zone is expected to have a more uniform potential, and

thus a smaller electric field. This means that the imposed downward electric field in the

depleted zone will be higher than that in the concentrated zone. Next, we examine the

circulation of the electric field around a test loop indicated by the black square in Figure 3.

According to the Maxwell-Faraday equation,

∮
E · dl = 0

the circulation of the electric field must be zero. Therefore, a tangential field is induced from

right to left near the cation-selective surface to satisfy zero circulation. This tangential field

acts on the positively charged ESC layer, producing a body force that induces the clockwise

vortex (dashed circle) in the figure. Therefore, the concentration gradients and charge in

the ESC create a positive feedback mechanism that amplifies the initial perturbation.
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Figure 3. Schematic illustrates the mechanism of the instability. Tangential perturbations lead to

an electric field that drive a vortex, amplifying the initial perturbation.

Early models investigating electroconvection have assumed that the concentration bound-

ary layer structure, composed of the EDL and ESC, remains quasi-steady. This assumption

has allowed derivation of an asymptotic model that treats the EDL and ESC as an effective
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slip boundary condition to an electroneutral bulk over which the transport model should

be solved[31]. These models predict steady electroconvective vortices scaled by the domain

size. However, recent DNS[17] has revealed that the ESC is highly unsteady, leading to

complex vortex structures and an irregular boundary between the ESC and electroneutral

bulk. Capturing these detailed dynamics is possible through direct solution to the Poisson-

Nernst-Planck and Navier-Stokes (PNP+NS) equations resolving the ESC and EDL struc-

tures without relying on any asymptotic approximation.

Aside from first principle calculations which are prohibitively expensive, no theory ex-

ists that can accurately predict the current-voltage curve in the OLC regime. Advanced

understanding of electroconvection is crucial for the development of models and theories

predicting the current-voltage relationship in the overlimiting regime.

In a recent publication[17] we presented 2D simulations of electroconvection via direct

solution of the coupled PNP+NS equations that demonstrated transition to chaos reveal-

ing the complex structure of the concentration field in various layers. We presented the

ensemble-averaged transport equations and quantified the unclosed flux terms associated

with correlations of concentration fluctuations with fluctuations of velocity and electric field.

In the current study, we present for the first time analysis of highly chaotic electrocon-

vective flows from 3D simulation data. These simulations require very fine resolution, about

an order of magnitude higher than those in a previous study[32] that focused on electro-

convection close to transitional regimes. In contrast to this previous study that reported

a diminishing difference in the I-V curve between 2D and 3D fields electroconvection, here

we demonstrate that while 2D and 3D fields show qualitatively similar features, the current

density of 3D electroconvection is measurably higher than in 2D electroconvection in the

high voltage limit.

We also provide a comprehensive statistical analysis of current density on the membrane

surface that is subject to chaotic electroconvection. A histogram of current density on the

membrane and the temporal spectrum of point-wise current density reveal that significant

current is sustained via intermittent “hot spots” of very high current density. Unlike the

transitional regime, the instantaneous pattern of the current density does not follow a com-

bination of regular shapes (e.g., hexagons, quadrangles, and triangles) and shows highly

irregular patterns. We present joint probability density functions revealing correlation of

surface current density with local flow conditions adjacent to the membrane.
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Furthermore, we present a detailed comparison between 2D and 3D electroconvection in

the highly chaotic regime by investigating a wide range of statistical quantities, including

the mean fields and fluxes, and concentration spectra at various distances away from the

membrane. We also investigate structures responsible for mixing and show instantaneous

snapshots of the mushroom-like plumes of ion-depleted fluid. Large vortices are mainly

responsible for bringing ion-rich fluid to the membrane surface and pulling depleted fluid

away. Close to the membrane surface, the presence of many small vortices results in a wide

range of scales contributing to transport. We present the first quantification of effects of

different scales on transport by analyzing the cross-covariance of velocity and concentration

fluctuations in the wavenumber space.

The results presented in this study improve understanding of electroconvection on multi-

ple fronts. The analysis of ensemble-averaged fluxes provide guidelines for the development

of reduced-order models by highlighting the simplifications that can be made in each asymp-

totic layer in electroconvective flows. The presented correlation analyses provide guideline

for control of electroconvection, by quantifying the importance of various scales and revealing

potential mechanisms leading to current hotspots.

II. MODEL PROBLEM AND GOVERNING EQUATIONS

Realistic electrodialysis systems contain multiple stacks of alternating cation-selective and

anion-selective membranes. In this study, we focus on a canonical setting and analyze the

transport and dynamical behavior adjacent to a single cation-selective surface. As shown in

Figure 1(c), we consider a three-dimensional domain in which an aqueous symmetric binary

electrolyte interacts with a cation-selective surface. In this model the bottom boundary

represents the cation-selective surface, and we approximate the top boundary as a stationary

reservoir that provides anion and cation species at a specified fixed concentration, cres. We

consider an external electric field normal to the membrane surface at a sufficiently large

voltage ensuring a highly chaotic electroconvective regime.

In this model we assume a symmetric binary electrolyte with the species ionic valence

z = z+ = −z− and the diffusion coefficient D = D+ = D−. The governing equations are

nondimensionalized by the following characteristic scales

tdiff =
L2

D
, vdiff =

D

L
, p0 =

µD

L2
, VT =

kBT

ze
, j0 =

Dcres
L

(1)
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Table I. Dimensional Parameters and Reference Scales

Input Description Reference Scales Description

L membrane-to-reservoir distance VT thermal voltage

D diffusion constant cres reservoir concentration

∆φ applied voltage p0 pressure scale

µ dynamic viscosity tdiff diffusion time

ε electrical permittivity vdiff diffusion velocity

z ionic valence

e elementary charge

kB Boltzmann constant

T temperature

ρ fluid density

We note that the choice of nondimensionalization does not ensure field variables of O(1).

Table 1 summarizes the dimensional parameters and dimensional scales used to nondimen-

sionalize the governing equations.

The continuum approach is justified as the separation of length scales quantified by the

Knudsen number is Kn � 1. In this case, the Knudsen number is defined as the ratio

of the molecular diameter of water (on the order of 1 Å) to the smallest eddy size (50-

500nm for systems with salinity in the range 1-100mM). Validity of continuum approach

for the representation of the EDLs has been investigated[33, 34] and is well justified for the

concentrations and boundary conditions considered here.

With the given choice of reference scales, the dimensionless mass conservation for the

anions and cations is expressed by

∂c±

∂t
= −∇ · j ± (2)

where c± represents the concentration of ionic species and j ±, the ionic mass flux vector,

is given by the Nernst-Planck equation to describe transport of the ionic species due to

advection, diffusion, and electromigration.

j ± = c±v −∇c± ∓ c±∇φ (3)
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We consider the incompressible formulation of the Navier-Stokes equations and neglect

the nonlinear inertial term which is small compared to the viscous term at Reynolds num-

bers much less than 1. We retain the unsteady term and note that the Schmidt number

Sc = µ/(ρmD) is O(103) in aqueous systems. The dimensionless form of the Navier-Stokes

equations are

1

Sc

∂v

∂t
= −∇p+∇2v − κ

2ε2
(c+ − c−)∇φ (4)

∇ · v = 0 (5)

where v, p, and φ represent the velocity vector, pressure, and electric potential fields respec-

tively. Aside from Sc, two other dimensionless parameters include the electrohydrodynamic

coupling constant κ,

κ =
ε

µD

(
kBT

ze

)2

(6)

and ε is the dimensionless EDL size defined by,

ε =
λD
L
, λD =

√
εkBT

2(ze)2cres
(7)

Finally, the relation between electric potential and the charge density is described by the

dimensionless form of Gauss’ Law,

−2ε2∇2φ = c+ − c−. (8)

An interesting observation is that here, unlike common turbulent flows, the nonlinearities

responsible for chaos are due to electrostatic forces and coupling with ion transport, rather

than fluid inertia.

The boundary conditions which uniquely define the system are a cation-selective surface

at y = 0 with no slip and no penetration for the fluid, grounded electric potential, a no flux

condition for anions, and a fixed cation concentration c+0 ,

v = 0, φ = 0, j−y = 0, c+ = c+0 (9)

The reservoir condition at y = 1 is given by no slip and no penetration for the fluid, an

applied potential ∆φ, and fixed cation and anion concentrations,

v = 0, φ = ∆φ, c+ = c− = 1 (10)
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The domain is periodic in the surface-tangential x and z directions with a domain length of

2π which is sufficiently larger than the correlation length scale in the transverse direction[17]

in the range of voltages studied. The domain size in these directions should be much larger

than the transverse correlation length to justify physical representation of infinite domain

via periodic boundary treatments. In a recent publication, Davidson et al.[20] demonstrated

that for systems under transitional voltage (∼ 40VT ) satisfying this constraint requires sim-

ulation domains with very high aspect ratio on the order of O(100). Prior investigations

[32] in the transitional voltage range, used much smaller domain size and are likely to be

contaminated by artificial effects of imposing periodic boundary treatments. The present

investigation however, is in the highly chaotic high voltage limit; investigations of the cor-

relation length[17], as well as sensitivity of mean transport to the domain size[20] indicate

that an aspect ratio of 2π is appropriate for the conditions considered here.

The initial condition is a quiescent flow field and a uniform concentration profile where

c+ = c− = 1. At t = 0, the concentration field is subject to a random perturbation of less

than 1%. Our simulation captures the full evolution of the physics from the initial transient

to the statistically stationary state.

Key dimensionless parameters controlling the flow are summarized in Table II. The

critical parameter for the onset of flow instability is the dimensionless applied electric field,

∆φ. We consider a system at 120 thermal volts which is well into the chaotic regime. We set

the value of κ = 0.5 which is a typical value for aqueous solutions. Furthermore, we consider

a dimensionless EDL size, ε = 10−3 which is small enough to allow the separation of scales

between the EDL size and outer domain, but also large enough to keep the computational

cost at a reasonable level. A recent investigation[35] indicated that mean transport rate is

only weakly sensitive to ε.

III. NUMERICAL PARAMETERS AND COMPUTATIONAL METHODS

The system described by Equations (2)-(5) is a stiff nonlinear system. To obtain an

accurate solution, the numerical procedure resolves length scales spanning three orders of

magnitude from the extremely thin EDL to the largest scale vortices spanning the distance

between the membrane and the reservoir. We use a non-uniform mesh in the y-direction,

concentrating mesh points near the membrane with ∆ymin = 0.37λD (note that due to
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Table II. Dimensionless Parameters

Parameter Description Value

∆φ Applied voltage 120

κ Electrohydrodynamic coupling constant 0.5

ε EDL size 10−3

a Aspect ratio, Lx/L = Lz/L 2π

c+0 Cation concentration on ion-selective surface 2

Sc Schmidt number 1,000

concentration polarization depletion the local EDL size is much thicker than the nominal

λD). The largest mesh spacing is ∆ymax = 14.6λD at the reservoir. Due to statistical

homogeneity in the tangential directions, uniform mesh spacing is used in the periodic x

and z directions with ∆x = ∆z = 6.5λD. We use 165,888,000 mesh points in the 3D volume

and adopt a staggered mesh where concentration, electric potential, and pressure are stored

on cell centers while velocities, fluxes, and electric field components are stored on cell edges.

A second order time advancement scheme with a time step ∆t = 10−6 is used for the evo-

lution of the concentration and momentum equations. All terms in the governing equations

are handled explicitly except for the surface normal electromigration and surface normal

diffusion terms. These terms rapidly balance each other near the membrane surface, re-

sulting in formation of the EDL in a quasi-steady manner. The time scale of the chaotic

eddies is much larger than the time scale of formation of EDL and thus an appropriate time

stepping scheme must use an in-between time step scale that fully resolves the unsteady

dynamics while implicitly treating the quasi-steady EDL formation time. Further details on

the computational algorithm are described in Karatay et al.[36].

IV. INSTANTANEOUS RESULTS

Instantaneous snapshots from the 3D DNS show highly chaotic multiscale vortices that

separate and coalesce while interacting in a highly irregular manner (see video in supple-

mentary material). This hydrodynamic behavior leads to concentration depletion plumes

shown in Figure 4. Small scale vortices tend to stay close to the membrane surface and are

highly active. The resulting fluid motion provides a mixing mechanism for ionic species that
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Figure 4. Instantaneous isosurface of total concentration c = c+ + c− = 0.1.

would otherwise be transported by only electromigration and diffusion.

Figure 5(a) and (b) show instantaneous snapshots from the 2D and 3D simulations that

demonstrate many qualitative similarities and exhibit the same range of length scales. Con-

sistent with the 2D simulations, in 3D the chaotic vortices also cause the ESC region to

become unsteady and induced vortices disrupt the structure of the ESC. Outside the ESC

charge density tends to appear in alternating positive and negative ribbons. We explain

how these charge density ribbons are induced through the principles of charge conservation

and Gauss’ Law. An examination of the data reveals that the charge density ribbons coex-

ist with thin structures (fingers) of depleted concentration as shown in Figure 5(c). When

a depletion zone emerges from the ESC, local conductivity gradients occur. To conserve

charge the incident electric field adjusts itself in an inversely proportional relationship with

the conductivity. Local gradients in the magnitude of the electric field are shown in Figure

5(d).

Next, we consider Gauss Law, equation (8), to determine the expected sign of the induced

charge that appears at the interface of the thin depletion fingers. As the electric field passes

from a zone of high concentration to low concentration (into a depletion finger), positive

charge density will appear. Similarly, as the electric field passes out of a depletion finger

(low concentration to high concentration) a zone of negative charge density will appear.

This qualitative description corresponds to our observation of paired red/blue ribbons where

positive charge is observed on top and negative charge is observed in the bottom of each

depletion finger. Charge density ribbons are then advected throughout the domain as the

chaotic vortices advect depletion zones.

In regions far away from the ESC, the charge in the ribbons is much smaller than the

local concentration and thus the fluid follows a quasi-electroneutral behavior. Ribbons tend
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Figure 5. Instantaneous snapshots of charge density ρ = c+ − c− with velocity streamlines su-

perimposed from (a) 2D DNS and (b) 3D DNS. The black rectangle highlights a subdomain of

the charge density field for further inspection. (c)A thin depletion finger shows sharp gradients in

concentration. (d) The magnitude of the induced surface normal electric field. (e) Charge density

ribbons.

to align horizontally and normal to the imposed electric field, an observation that can be

explained through the primary effects of the electrostatic body force on the induced charge

density ribbons. Given the vertical direction of the incident field and the sign of the induced

positive and negative charge density from top to bottom, each depletion zone induces a force

that squeezes the fluid vertically. By continuity the ribbons and depletion fingers must then

stretch horizontally. In regions near the ESC however, these effects are overwhelmed by the

strong vortices and by non-electroneutral effects, therefore charge density does not align in

a particular orientation.

The qualitative similarities between the 2D and 3D simulations of electroconvection are

in contrast to common hydrodynamic instabilities and turbulence phenomena. Specifically,

common turbulent flows involve inertial effects and vortex stretching. While vortex stretch-
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ing is absent in 2D flows, it plays a significant role in the energy cascade when 3D modes are

present. In electroconvection the inertial term in the momentum equation is negligible, and

vortex stretching is therefore absent in both 2D and 3D, resulting in a qualitatively similar

appearance of the field data. While the qualitative similarities are abundant, as we shall

see, the comparison of statistics demonstrate significant quantitative differences in the field

data and transport mechanisms between 2D and 3D systems.

V. MEMBRANE STATISTICS

We examine statistics at the cation-selective surface to understand the effect of chaotic

dynamics on ionic transport in the overlimiting regime. An instantaneous snapshot of current

density on the membrane surface, Figure 6, indicates that the vast majority of the surface

area is characterized by low current density with random sparse “hot spots” of high current

density. Unlike observations from the transitional voltage regime[32], the current density

pattern does not have a regular geometric shape, rather it is highly irregular. Intuitively,

it is expected that the current hot spots will occur in regions where high conductivity fluid

extends to the membrane since this would provide a direct path for the electric current

between the reservoir and the membrane. Consequently, it is expected that these high

conductivity regions would extend towards the membrane by advection, since diffusion and

electromigration primarily cause CP depletion. Therefore, according to these hypotheses,

the membrane normal velocity field in the vicinity of the hot spots should point towards

the membrane surface. Prior investigations in the transitional regime[32] showed data fields

consistent with these expectations: near the hot spots, normal flow points towards the

membrane and, by continuity, tangential flow points away from the hot spot zones forming

zones of in-plane divergence.

Figure 6(b) is an example of the in-plane flow field near the membrane to show the re-

lationship between the chaotic flow field and areas of high current density. In contrast to

transitional regimes, some of the very high current density regions involve converging tan-

gential flow fields. We will investigate these effects quantitatively in the following sections.

Figure 7(a) shows that the current density highly fluctuates at an arbitrary fixed location

on the membrane surface. Hot spots of high current density appear randomly and are short-

lived, with a residence time ∆t ≈ 1 × 10−4. In this case the maximum dimensionless
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Figure 6. (a) Instantaneous snapshot of current density on the membrane surface. Dark blue indi-

cates areas of high current density. (b) Zoom-in super-imposes velocity vectors near the membrane

surface at y = 0.002.

point-wise current density is i ∼ 80, about 7 times larger than the ensemble-average current

density of 〈I〉 = 11.2. This is approximately one third of the maximum possible current

density (i = 240) that is realizable if the fluid between the reservoir and membrane had a

concentration of c+ = c− = 1.
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Figure 7. (a) Current density fluctuations at a point on the membrane surface. (b) Histogram of

current density on the membrane surface. (c) Temporal spectrum of the current density.

The histogram in Figure 7(b) quantitatively shows that very small current density is the

most probable state. Consistent with Figure 7(a), the histogram indicates that any given
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point on the membrane surface is at low current density (below the average) most of the

time. Sparse spikes in current density therefore make a significant contribution to the mean

current density. In some practical applications, such as electrodialysis for desalination, it is

desirable to sustain higher current density (i.e., higher desalination throughput) for a given

voltage. Understanding the mechanism behind the appearance of hot spots and ultimately

developing a method to control and enhance them is of crucial importance[20].

Figure 7(c) shows the temporal spectrum of current density on the membrane surface.

Over a wide range of frequencies the spectrum follows a k−1 power law, indicating a behavior

analogous to Brownian noise. This power law persists up to high frequencies on the order

of ω ∼ 104, indicating that the current density is highly influenced by fast dynamics and

in agreement with the short lifespan of hot spots observed in Figure 6(a). Consistent with

both observations, visual inspection of the velocity field also shows the complex behavior

of vortices that appear to randomly translate in the tangential directions, particularly near

the membrane.

VI. SPECTRAL ANALYSIS

We compute the spatial and temporal spectra to examine how fluctuations in concen-

tration and velocity fields are distributed across the existing length and time scales. By

comparing spectra from the 2D and 3D DNS we determine how inclusion of the third di-

mension changes the statistical behavior of the fields. All of the examined spectra exhibit

broadband behavior reminiscent of spectra from high Reynolds number turbulent flows.

Temporal spectra are computed by taking the Fourier transform of field data in time

and ensemble-averaging the power spectra in the homogeneous tangential directions. The

spectra are then plotted for different y locations. Spatial spectra are computed by taking the

Fourier transform of the field data with respect to the tangential (homogeneous) directions

and then ensemble-averaging the power spectra over time. For 2D simulations, there is only

one homogeneous direction and plotting the spectrum is straight forward. 3D simulations

are statistically isotropic in the tangential directions, therefore, the spectra are integrated in

the kx − kz space over cylindrical shells of constant k =
√
k2x + k2z . All spectra are properly

computed such that the integral of each spectrum is equal to the variance of the fluctuating

quantity.
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Figure 8. (a) Comparing 2D (dashed) and 3D (solid) spatial spectra of c+ at multiple surface

normal locations. (b) Spatial spectrum of c+ (solid) and c− (dotted) from 3D DNS. (c) 3D DNS

spatial spectrum of charge density. Refer to Figure 10 regarding the definition of yESC, max ρ, yESC,

yv2max
, yDL.

Figure 8(a) presents spatial spectra for the cation concentration at various y locations

for both 2D and 3D simulations. The 3D simulation predicts more energetic behavior across

the majority of the wavenumbers particularly near the membrane. The spectra from the 3D

simulation indicate up to three times higher energy compared to that from the 2D simulation.

However, in regions away from the membrane this difference becomes smaller. Results from

the 3D simulation indicate an intermediate wavenumber range with a power law scaling of

k−3/2.

Figure 8(b) presents the comparison between spatial spectra of cations and anions from

3D simulation data. Outside the ESC spectra from the 2D and 3D simulations are virtually

identical with minor deviations at high wavenumbers. This result suggests that away from

the ESC the concentration field is likely governed by the quasi-electroneutral approximation.

At y = 0.037 there is a significant difference between the spectrum of c+ and c−. In this

region the domain is essentially devoid of c−. All spectra peak at k ∼ 4, which corresponds

to a dimensional wavelength of ∼ 1.5L indicating that fluctuations are dominated by scales

on the order of the domain size. However, regions closer to the membrane present spectra

that extend further to high wavenumbers, which indicates that higher frequency fluctuations

are sustained in this region. This is analogous to observations in turbulent boundary layers.

However, in contrast to the boundary layers, the peak intensities in electroconvection spectra
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are observed away from the membrane.

Figure 8(c) shows spatial spectra associated with fluctuations of charge, ρ = c+ − c−, at

the same y locations considered in Figure 8(b). Inside the ESC c− has a negligible presence

and the charge spectra is identical to that of c+. Moving away from the ESC, the fluctua-

tions in charge density drop across all frequencies. This is despite the fact that concentration

fluctuations increase further away from the membrane. In other words, the dynamics be-

come increasingly more electroneutral. The peak frequency of charge fluctuations does not

correspond to peaks observed in spectra of individual ions. Charge density spectra show

peaks at around k ∼ 6 − 8 which is roughly twice the wavenumber of the peaks in ion

concentration. Similar to the concentration spectra, the charge density spectra reach higher

frequencies closer to the membrane surface.

103 104

angular frequency, ω

10-4

10-3

10-2

10-1

100

101

102

E
u
u
+
E
vv

+
E
w
w

-1
(a) (b) (c)

yESC,max ρ=0.037

yESC=0.104

yv 2
max

=0.250

yDL=0.820

103 104

angular frequency, ω

10-2

10-1

100

101

E
vv

-1

y = 0.025

y = 0.101

y = 0.604

100 101 102

wavenumber, k

10-8

10-6

10-4

10-2

100

102

104

E
u
u
+
E
vv

+
E
w
w

-9/5

yESC,max ρ=0.037

yESC=0.104

yv 2
max

=0.250

yDL=0.820

Figure 9. (a) Temporal spectrum of kinetic energy. Comparison of 3D DNS (solid) and 2D DNS

(dashed). (b) Temporal spectrum of kinetic energy. (c) Spatial spectrum of kinetic energy.

Next, we present spectral analysis of the velocity field. Figure 9(a) shows the tempo-

ral spectrum of the vertical velocity, v, at different distances from the membrane. The

v-component contributes to the ensemble-averaged ion mixing, while the other components

of the velocity field primarily contribute to dispersing ions in the homogeneous direction.

The figure also contrasts the spectra obtained from 2D and 3D simulations. Similar to obser-

vations of concentration spectra, the 3D simulations allow for higher fluctuation intensities

at large frequencies. Other qualitative trends are similar to observations for concentration

spectra as well. However, quantitative differences are expected since momentum transport is

dominated by instantaneous diffusion (due to the low Reynolds number) while concentration

transport is dominated by advection (due to the high Peclet number).
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Figure 9(b) shows the temporal spectra of all three components of the velocity field,

representing the distribution of kinetic energy in frequencies. For regions not too far from the

membrane, a power law of E ∼ k−1 emerges for intermediate frequencies. Figure 9(c) shows

the corresponding spatial spectra. In this case a power law region is hardly visible, and a line

with slope -9/5 is only drawn as a reference. Nevertheless, one can see that the temporal and

spatial spectra decay at different rates, and unlike traditional turbulence, Taylor’s hypothesis

does not hold for electroconvective flows. This is expected since Taylor’s hypothesis assumes

a strong advective component, while here the momentum field is primarily governed by a

Newtonian viscous response to the fluctuating electrostatic body force.

Unlike concentration spectra, the velocity spectra indicate a drop in kinetic energy across

all wave numbers for locations away from the membrane. This behavior can be explained

by the fact that the electrostatic body force, which is a driver of kinetic energy, is primarily

active in regions near the membrane. Kinetic energy attenuates as it diffuses to regions away

from zones with the driving body force. The rate of attenuation with distance, is higher

for higher wavenumebrs. This observation is explained by the response of the momentum

which is mostly governed by the Laplacian operator in the Stokes’ flow equation, thus higher

frequencies are expected to attenuate exponentially faster, proportional to e−ky. Similar to

concentration spectra, the peak intensities are observed for k ' 4. In other words, both

momentum and ion transport are modulated primarily with modes at a scale of roughly

1.5L.

VII. ENSEMBLE-AVERAGED FIELDS

In this section we present an analysis of the mean field data from 2D and 3D simulations.

Additionally, we use the mean concentration fields to identify various regions and important

y-locations for this canonical domain setting.

Figure 10(a) shows the ensemble-averaged concentration field, c = c+ + c− from the 3D

DNS. The ensemble average is defined as,

f(y) =
1

LxLzτ

∫ t0+τ

t0

∫ Lx

0

∫ Lz

0

f(x, y, z, t) dxdzdt, (11)

where t0 is the time when the flow has reached fully developed condition and τ is sufficiently

larger than the temporal correlation time to allow converged statistical averaging. The
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Figure 10. (a) Average total concentration from the 3D DNS. Concentration drops rapidly across

the EDL approaching near zero in the ESC. (b) Percent difference between 2D and 3D DNS, with

3D as the reference: (c2D−c3D)
c3D

∗ 100. (c) Average charge density ρ = c+ − c− from 3D DNS. (d)

Mean potential gradient as a function of distance from the membrane.

high concentration in the EDL is predominantly composed of cations and rapidly drops to

a very small concentration in the ESC. In the 2D DNS we highlighted major impacts of

chaotic flow on the mean concentration profile[17]. Many of these qualitative trends are

observed in 3D DNS as well. Namely, the ESC is significantly smaller than 1D predictions

and the mixing layer (ML) emerges between the ESC and the DL. The ML makes up the

majority of the domain and is characterized by a relatively flat concentration profile at

moderate values, much smaller than the reservoir concentration but much larger than the

ESC concentration. As we shall see in Section IX the advective fluctuations in the ML

dominate the net transport. The shrinking of the ESC is explained by the fluctuating eddies

that bring high salt concentration fluid from the ML to the membrane at a time scale
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comparable to the time scale of ESC formation due to CP.

Near the reservoir, advective fluxes are suppressed due to the no slip boundary condition,

and the mean concentration profile is characterized by a relatively constant slope within the

DL. The slope of the concentration profile at the reservoir boundary is directly connected to

the net current in the system. At the boundary, the advective flux is zero and thus transport

is governed by diffusion and electromigration. Given that this region is far away from the

ESC, one can use the electroneutral approximation and write the current density as:

j = j+ − j− =
∂c

∂y y=1

(12)

Figure 10(b) represents a quantitative comparison between the results of 2D and 3D

simulations, by plotting the local percent difference between the two, c2D−c3D
c3D

∗ 100. Our

results indicate that significant differences of up to 26% are present in the ESC region where

the 2D simulation underpredicts the concentration. Even though the ESC is a small region

in the domain, prediction of the concentration in this region is critical for correct prediction

of net transport. From a circuit model point of view, the ESC acts as a large resistor in

series with the rest of the domain, and thus contributes significant impedance against the net

current. For the explored setting, the net current through the system is 〈I〉 = 11.2 from the

3D simulation, and 〈I〉 = 10.4 from the 2D simulation. In this setting, the underprediction of

concentration in the ESC by the 2D simulation, leads to an overall higher Ohmic resistance

in the domain, and thus 7 percent lower electric current. This effect can also be observed

by the difference in the slope of concentration near the reservoir, in conjunction with the

relation presented in equation (12).

Figure 10(c) shows the mean charge density across the domain. Aside from the EDL, the

ESC involves the most significant charge. Similar to 1D solutions[37], the ESC is charac-

terized by a peak in charge density. High charge density persists even beyond the ESC in

up to 15% of the distance to the reservoir. However, comparison of Figure 10(a) and 10(c)

suggests that the majority of the mixing layer is reasonably electroneutral. The 2D DNS

underpredicts the charge density by up to 34%.

Lastly Figure 10(d) shows the mean membrane normal electric field, −∂φ/∂y versus y.

As previously discussed, the ESC region has a relatively high electric resistance and requires

a higher electric field to sustain the same current as in the ML. The area under the plot

represents the potential drop in the domain. One can see that almost half of the potential
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drop occurs in the ESC region.

The plots shown in Figure 10, highlight specific y locations, associated with different

regions of the system. We define four such locations which are used to track other quantities

such as concentration and velocity spectra in Section VI. Starting at the membrane surface,

the first location is identified by the peak in mean charge density, yESC,maxρ = 0.037. The

second location, which we refer to as the edge of the ESC, yESC, is defined based on extension

of the line tangent to the inflection point in the charge density profile, shown in Figure 10(c).

For the investigated setting, the yESC = 0.104. The third location, yv2,max = 0.25 (shown in

Figure 12(a)), is defined by the peak in the root-mean-square normal velocity fluctuations.

Lastly, the fourth location, yDL = 0.82 highlights the edge of the diffusion layer, and is

defined by extending the tangent line to the concentration profile at y = 1, as shown in

Figure 10(a). The specific values listed here are in general dependent on ∆φ and other

input parameters. Investigation of multiple DNS data combined with scaling analysis is

needed in order to achieve scaling laws for asymptotic dependence of the extent of various

layers on the input parameters.

VIII. ENSEMBLE AVERAGED EQUATIONS

We examine the time averaged fluxes corresponding to transport of ions in the system. We

first introduce the representation in [17] and considered time-averaged equations for trans-

port of separate species. Then, we demonstrate that this representation can be significantly

simplified, when it is derived for total salt given the fact of approximate electroneutrality

for the majority of the domain. As presented by Druzgalski et al., the transport equation

for ionic species (2) and (3) can be rewritten after ensemble averaging in the following form:

∂

∂y

(
−∂c

±

∂y
∓ c±∂φ

∂y

)
+

∂

∂y

(
∓c±′ ∂φ′

∂y
+ c±′v′

)
= 0. (13)

where the overbar (̄ ) symbol represents the ensemble averaged field and the prime sym-

bol, ( )′ represents fluctuations relative to the ensemble averaged field. This equation, has

two unclosed terms, which are not describable in terms of ensemble-averages of the primary

variables. These terms, c±′ ∂φ′

∂y
and c±′v′, respectively represent transport of ions by fluctuat-

ing electric field and fluctuating eddies. Figure 11(a) shows the individual electromigration

fluxes in equation (13) as well as the total electromigration flux, c± ∂φ
∂y

. Outside the ESC
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the electromigration flux for cations is approximately equal in magnitude, but opposite in

sign to the anions for all components of the electromigration flux. This observation confirms

that the electroneutrality approximation, c+ ' c−, is highly reasonable in describing fluxes

outside of the ESC.

One consequence of this observation is that the total electromigration flux, c± ∂φ
∂y

must be

relatively constant throughout this subdomain, and equal to half of the net current as seen

in Figure 11(a). This consequence is well known from analysis of 1D binary systems[10],

and here we briefly rephrase the reason leading to this observation. Given electroneutrality

outside of ESC, the diffusive flux and advective fluxes are also equal for cations and anions;

these fluxes cancel out the net electromigration flux for anions and sustain the other half of

the net current associated with anions.
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Figure 11. (a)Components of the electromigration flux for c+ (red) and c− (blue). (b)Fluxes for

transport eqn for c = c+ + c−. All data are presented from 3D simulation.

The observations above motivate analysis of the field data in terms of transport for total

salt, c, allowing for approximate cancellation of electromigration fluxes. We present this

analysis for chaotic electroconvection here for the first time. The exact transport equation

for total salt, c, can be derived by addition the evolution equations for c+ and c−:

∂c

∂t
= ∇ · (−uc+∇c+ ρ∇φ) (14)

Ensemble averaging of this equation leads to the following one-dimensional ordinary differ-



24

ential equation:

∂

∂y

(
−∂c
∂y
− ρ∂φ

∂y

)
+

∂

∂y

(
−ρ′∂φ

′

∂y
+ c′v′

)
= 0 (15)

Figure 11(b) compares all four fluxes as a function of distance from the membrane. At

any location these fluxes sum to the net current density through the system, 〈I〉 = 11.2.

As expected, outside of ESC both electromigration fluxes are negligible and transport is

dominated by mean diffusion and advection by the fluctuating velocity field. The fluctuating

electromigration flux is small compared to other fluxes through the majority of the domain,

including even a significant portion of the ESC. In the ML it is the advective flux that

dominates over all other fluxes. The last observation, implies that the only important

unclosed flux is the fluctuating advection flux. This implies that future modeling effort

should focus on understanding and capturing this term.
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simulation.

Given that the advective flux is governed by fluctuations in both concentration and

velocity, next we investigate fluctuations of these quantities in the domain. Figure 12(a)

shows velocity variance as a function of y. The variance of the tangential velocity peaks

at a location inside the ESC. This is expected because the body force that drives the flow

is dominantly confined to within the ESC zone. As explained in Section I, the instability

mechanism can generate tangential force near the membrane that would sustain vortices

in the domain. The Stokes’ flow solution requires that the velocity decays away from the
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active forcing zone, as observed in the plot, and as discussed earlier in the analysis of velocity

spectra. The variance of the membrane normal velocity component peaks further away from

the peak of the tangential component. This is expected, since by continuity the normal

component of the velocity must grow slower than the tangential component as one moves

away from a no-slip surface. Specifically, within the leading order Taylor series expansion,

the normal component grows as v ∼ y2 while the tangential component grows as u ∼ y.

Furthermore, the fact that v2 peaks outside the ESC indicates that this velocity component

is mostly driven by the pressure term to enforce the continuity mismatch associated with

in-plane gradients of tangential velocity rather than by the electrostatic body force.

Figure 12(c) shows the variance of concentration field in the domain. The interesting

observation is that the concentration variance has its peak near the reservoir boundary,

away from the membrane and away from the peak velocity fluctuation zone. We explain

this observation based on knowledge from passive scalar transport in turbulent media. The

analogy to passive scalars is reasonable here since in the majority of the domain (outside of

ESC where concentration is appreciable) the electroneutral assumption is valid and thus one

can ignore the last term in equation (14). The production term for variance of scalars[38] is

−c′v′ ∂c
∂y

(16)

Our explanation for maximum concentration variance near the reservoir is based on the fact

that the production term peaks near the reservoir. By inspection, one can see that the

production term is indeed the product of the advective flux and diffusive flux in equation

(15). The sum of these fluxes is constant throughout most of the domain as shown in Figure

11(b). Therefore, their maximum takes place where the two are equal. Figure 11(b) indicates

that the crossing point is at y = 0.85; this location corresponds to the peak concentration

variance in Figure 12(c).

IX. TRANSPORT

To explore the mechanisms that contribute to hot spots of high current density observed

in Figure 6, we compute joint probability densities between current density i on the surface

and other quantities. Based on observations at transitional voltages [32], one hypothesis is

that the hot spots correspond to zones where high concentration fluid is advected to the
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membrane. Based on this hypothesis one expects to see hot spots correlated with high

salt concentration, and velocity towards the membrane. We explore these correlations in

Figure13. Figure 13(a) shows the joint PDF of current on the membrane surface and c−

at y = 0.1. The reason to not use c+ for the investigation of correlation, is because cation

concentration is highly influenced by the EDL on the membrane as well as by electromigra-

tion in the ESC. c− is the species whose high concentration near the membrane can only

be sustained by advection. We considered a location further away from the membrane to

compute the correlation, since c− is exponentially small very near the membrane, and thus

we considered a location on the edge of the ESC to be more appropriate for this study.

Likewise, for investigation of correlations with other quantities we considered locations near

but not exactly on the membrane surface. According to Figure13(a), the presence of high

c− in the near-membrane region, does not guarantee that a hot spot will form on the mem-

brane surface. However, there is a weak positive correlation between high current density

on the membrane and high local concentration. In Figure 13(b) the joint PDF of current

density on the membrane and gradient in potential near the surface is well correlated. One

interpretation is that at the hot spots, there is a path from reservoir to the membrane in

the bulk fluid that involves an overall small resistance. Therefore, most of the electrostatic

drop happens near the membrane, which inevitably involves extreme depletion. In other

words, the correlation presented in Figure13(b) is better than that in Figure 13(a), because

it takes into account both the local concentration effects and the entire path for current to

pass from reservoir to membrane.

In Figure 13(c) the surface normal velocity and current density do not show a strong

correlation, however note that high current density (80 and above) is only possible with a

negative normal velocity. This implies that pockets of high current density are associated

with locations where the flow advects the fluid towards the membrane surface. The fact

that the presented correlations are weak, do not perfectly clarify the mechanism of hot

spots. Here we present that the sign of correlations match the intuitive expectations but

further research is needed for full characterization of hot spots and understanding of the

mechanisms responsible for their formation.

Last, we address the question of the scales that contribute most to advective transport.
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Figure 13. (a) Joint PDF of current density and c−. (b) Joint PDF of current density and potential

gradient indicates a strong correlation: large gradients are associated with high current density.

(c) Joint PDF of current density and v shows that high current density is only correlated with

velocity into the membrane.

We compute the spectrum of v′c′ defined as:

Ev′c′(y, k) =
1

2τ

(
L

πNxNz

)2 ∫ π

0

∫ t0+τ

t0

ĉ′
∗
v̂′(kx, y, kz)dtdθ (17)

where (̂) is the 2D discrete Fourier transform and ()∗ is the complex conjugate. Like other

presented spectra, we integrate this spectrum over cylindrical shells in the kx−kz plane. The

resulting plot represents a decomposition of v′c′ in terms of wavenumbers (scales). Figure

14(a) shows such spectra corresponding to different y locations. The negative numbers on

the y-axis indicate that the corresponding scales contribute to transport from reservoir to

the membrane. Positive numbers indicate a counter gradient transport from membrane to

the reservoir. For regions outside of the ESC, the spectra reach the most negative value at

the wavenumber k ' 4. This indicates that in these regions, transport to the membrane is

mostly controlled by large eddies λ = 2π
k
' 1.5L. This is not surprising since, as shown in

Figure 8 and Figure 9, the most energetic fluctuations for both concentration and velocity

fields are associated with the same wavenumber. In the regions within the ESC however,

the spectrum has a broadband flat region indicating a wider range of scales contribute to

the net transport. Again, this is consistent with earlier observations indicating the presence

of small vortices near the membrane.

Some of the presented spectra are positive for a portion of the wavenumbers indicating a

counterintuitive salt transport from membrane to the reservoir. While this type of transport
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does not happen in the time averaged sense (v′c′ is negative for all y’s) locally such effects can

occur. For example, in Figure 14(b), we show a mushroom structure generated as a result

of the growth of depletion fingers away from the membrane. The velocity field points away

from the membrane on the main depletion branch, but once one of the extended depletion

fingers overturns, the velocity field transports a region of low concentration back to the

membrane. In other words, particularly on thin extended fingers, it is possible to achieve

transport against the mean gradient of concentration.

Figure 14. (a) Spectrum of v′c′ for different y locations. (b) Concentration field with arrows

indicating the direction of the velocity field. Presented results are from 3D DNS data.

X. CONCLUSION

The presented results contribute to the advancement of understanding electroconvec-

tion in the highly chaotic regime and quantitative characterization of the phenomena that

contributes to OLC. Specifically, we considered electroconvection at an applied voltage of

∆φ = 120 which is well into the highly chaotic regime. An examination of instantaneous

snapshots from 2D and 3D DNS show many qualitative similarities. Inertial turbulence

demonstrates qualitative difference between 2D and 3D fields, which is attributed to the

presence of vortex stretching in 3D flows. However, electroconvection is a low Reynolds

number phenomenon, and thus vortex stretching is absent both in 2D and 3D. Despite these

qualitative similarities, the quantitative prediction of mean quantities such as concentration,
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charge density, and current density show significant discrepancies between 2D and 3D. The

affects of dimensionality on the quantitative prediction, particularly in the ESC where the

body force and kinetic energy are largest, highlight the need for full 3D DNS calculations.

Instantaneous snapshots of current density on the membrane surface reveal the appear-

ance of high-intensity yet short-lived current density hot spots. Statistical analysis shows

that the majority of the membrane surface is characterized by relatively low current density,

while the hot spots contribute significantly to the mean current density. We compute joint

PDFs of current density on the membrane and other quantities to explore the mechanism

that causes hot spots. Understanding this mechanism and ultimately developing a method

to control and enhance it has many favorable engineering applications, such as increasing the

throughput in electrodialysis systems. The computed correlations match intuitive expecta-

tions such as the appearance of high current density correlated with a velocity field towards

the membrane surface. Although the presented analysis indicates positive correlations, these

correlations are not very strong. Therefore, further research is needed to fully characterize

the mechanisms leading to hot spots.

The spatial and temporal spectra of quantities such as concentration, charge density,

velocity, and kinetic energy were computed and showed broadband behavior reminiscent of

spectra from high Reynolds number turbulent flows. The spatial spectra of concentration

showed up to 3 times higher fluctation intensity in 3D than in 2D over a wide range of

wavenumbers. Both the concentration and kinetic energy spectra from 3D data show a peak

at k ∼ 4 indicating that both momentum and ion transport are modulated primarily with

modes at a scale of roughly 1.5L.

We derived an ensemble-averaged one-dimensional ODE with two unclosed terms and

used the 3D data to compute the time averaged fluxes that contribute to transport of ions.

We determined that the only important unclosed flux term is the fluctuating advection flux

and thus modeling efforts should focus on this term. Furthermore, our analysis revealed

that transport in the ML can be well approximated by an electroneutral model; in the ML

the fluctuating advection flux is the only important term.

Lastly, we assessed the importance of different scales on the advective transport by exam-

ining cross-correlations between concentration and velocity fluctuations in the wavenumber

space. Transport to the membrane is mostly controlled by large eddies, however in the ESC

a wider range of scales contribute to net transport due to the presence of small vortices near
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the membrane.

The research presented here can be extended in multiple directions. First, even within the

considered simplified canonical setting the trends in transport and dependence of the nested

boundary layers (EDL, ESC, ML, DL) on the input parameters is still an unsolved problem.

Many more DNS simulations are needed to allow for a general quantitative characterization

of the regimes and their coupling. Second, development and verification of a reduced order

model is crucial to extend these developments to practical engineering applications. The

presented ensemble-averaged equation is one framework for the development of such models.

Lastly, extending the analysis of electroconvection to non-ideal scenarios is a natural next

step. Such extensions may include complex geometry[20], imposed flow[18], complexity of the

electrolyte and coupling with non-equlibrium chemistry[39], and non-ideal membranes[40].
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Jongyoon Han, Philippe Sistat, and Gérald Pourcelly. Desalination at overlimiting currents:

State-of-the-art and perspectives. Desalination, 342:85–106, June 2014.

[30] Mahamet A.-Kh. Urtenov, Evgeniya V. Kirillova, Natalia M. Seidova, and Victor V. Niko-

nenko. Decoupling of the Nernst Planck and Poisson Equations. Application to a Membrane

System at Overlimiting Currents. The Journal of Physical Chemistry B, 111(51):14208–14222,

December 2007.

[31] Isaak Rubinstein and Boris Zaltzman. Electro-osmotically induced convection at a permselec-



33

tive membrane. Physical Review E, 62(2):2238, 2000.

[32] E. A. Demekhin, N. V. Nikitin, and V. S. Shelistov. Three-dimensional Coherent Structures

of Electrokinetic Instability. arXiv preprint arXiv:1402.2889, 2014.

[33] Mustafa Sabri Kilic, Martin Z. Bazant, and Armand Ajdari. Steric effects in the dynamics

of electrolytes at large applied voltages. I. Double-layer charging. Physical Review E, 75(2),

February 2007.

[34] Jonathan W. Lee, Ali Mani, and Jeremy A. Templeton. Atomistic and Molecular Effects in

Electric Double Layers at High Surface Charges. Langmuir, 31(27):7496–7502, July 2015.

[35] Elif Karatay, Mathias Bækbo Andersen, Matthias Wessling, and Ali Mani. Coupling between

Buoyancy Forces and Electroconvective Instability near Ion-Selective Surfaces. Physical Re-

view Letters, 116(19), May 2016.

[36] Elif Karatay, Clara L. Druzgalski, and Ali Mani. Simulation of chaotic electrokinetic transport:

Performance of commercial software versus custom-built direct numerical simulation codes.

Journal of Colloid and Interface Science, 446:67–76, May 2015.

[37] Ehud Yariv. Asymptotic current-voltage relations for currents exceeding the diffusion limit.

Physical Review E, 80(5), November 2009.

[38] Stephen Pope. Turbulent Flows. Cambridge University Press, 2000.

[39] Mathias B. Andersen, David M. Rogers, Junyu Mai, Benjamin Schudel, Anson V. Hatch,

Susan B. Rempe, and Ali Mani. Spatiotemporal pH Dynamics in Concentration Polarization

near Ion-Selective Membranes. Langmuir, 30(26):7902–7912, July 2014.

[40] Robert Femmer, Ali Mani, and Matthias Wessling. Ion transport through elec-

trolyte/polyelectrolyte multi-layers. Scientific Reports, 5:11583, June 2015.


