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Available high quality numerical simulation data are used to investigate and characterize the
kinetic energy budgets for fully-developed turbulent flow in pipes and channels, and in the zero-
pressure gradient turbulent boundary layer. The mean kinetic energy equation in these flows is
empirically and analytically shown to respectively exhibit the same four-layer leading order balance
structure as the mean momentum equation. This property of the mean kinetic energy budget
provides guidance on how to group terms in the more complicated turbulence and total kinetic
energy budgets. Under the suggested grouping, the turbulence budget shows either a two or three
layer structure (depending on channel or pipe versus boundary layer flow), while the total kinetic
energy budget exhibits a clear four-layer structure. These layers, however, differ in position and size
and exhibit variations with friction Reynolds number (δ+) that are distinct from the layer structure
associated with the mean dynamics. The present analyses indicate that each of the four layers is
characterized by a predominance of a reduced set of the grouped terms in the governing equation.
The width of the third layer is mathematically reasoned to scale like δ+ −

√
δ+ at finite Reynolds

numbers. In the boundary layer the upper bounds of both the second and third layers convincingly
merge under this normalization, as does the width of the third layer. This normalization also seems
to be valid for the width of the third layer in pipes and channels, but only for δ+ > 1000. The leading
order balances in the total kinetic energy budget are shown to arise from a non-trivial interweaving
of the mean and turbulence budget contributions with distance from the wall.

I. INTRODUCTION

Wall-bounded turbulent flows at high Reynolds num-
bers have become an increasingly active area of research
over the past several decades [1–3]. Here, scaling analy-
ses are used to investigate Reynolds number dependen-
cies and their physical and mathematical ramifications.
When the Reynolds number is sufficiently large, there
is a region where the streamwise mean velocity profile
exhibits a logarithmic variation, e.g., [4, 5]. More re-
cent studies indicate that the variance of the stream-
wise velocity fluctuations as well as their higher order
even moments also exhibit a logarithmic decay over nom-
inally the same domain [6, 7]. Consistent with classical
notions, this domain is sufficiently remote from bound-
ary condition effects, and the dynamics on this domain
are dominated by inertial momentum transport mech-
anisms. This inertial domain is also associated with a
self-similar structure admitted by the mean dynamical
equation [8], and consistently, other statistical measures
evidence self-similarity here as well [9, 10]. In accord with
self-similarity, analysis of the mean momentum equation
indicates that the inertial domain coincides with where
the wall-normal derivative of the widths of an intrinsic
hierarchy of scaling layers approaches a constant as the
Reynolds number becomes large [11]. The present study
complements these mean dynamics based analyses by
clarifying the average structure of the energy budgets in
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turbulent channel, pipe, and boundary layer flows. This
is accomplished by elucidating the leading order balances
of terms in the kinetic energy budgets, and contrasting
these with the leading balances exhibited by the mean
momentum equation.
The traditional description of turbulent wall-flow

structure has direct connection to the properties of the
mean velocity profile [12]. This profile is typically made
non-dimensional using inner variables, uτ and ν, where
uτ =

√

τw/ρ is the friction velocity, τw is the mean wall
shear stress and ν is the kinematic viscosity. With this
description, the viscous sublayer flow, 0 . y+ . 5, is
dominated by the effects of viscosity and characterized
by a linear mean profile. In the buffer layer, 5 . y+ . 30,
the viscous and Reynolds stresses are both dynamically
significant, and the profile transitions from linear to ap-
proximately logarithmic. Under the mean profile descrip-
tion, these two layers are associated with the direct effect
of viscosity, and their thickness remains a fixed number of
viscous lengths independent of Reynolds number. Con-
sistently, the velocity increments across these layers are
a fixed number in inner units. In the third classical layer,
the mean velocity has a logarithmic variation from near
y+ ≃ constant to y/δ ≃ 0.2. The dynamics here are
seen to be dominated by the inertial effects of the turbu-
lence. In the wake layer, 0.2 . y/δ . 1, mean inertia (or
mean pressure gradient) and turbulent inertia comprise
the predominant dynamical mechanisms. The logarith-
mic and wake layers grow at a rate proportional to δ with
their velocity increments approaching a fixed fraction of
U∞ as δ+ → ∞ [13, 14].
Efforts to describe kinetic energy and kinetic energy

equation behaviors in turbulent wall-flows arguably be-
gan in earnest with the experimental studies by Laufer
and Klebanoff [15–17]. As remains the case for physical
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experiments today, analyses were conducted without the
benefit of the comprehensive quantification of terms that
is now provided by direct numerical simulations, DNS.
These earlier descriptions were generally given within the
context of the traditional layer structure just described,
and often (but not exclusively) focused on the turbu-
lence kinetic energy (TKE). These early measurements
revealed that not all terms in the TKE budget are lead-
ing order across the entire flow, and in particular the
production and dissipation terms were found to nomi-
nally comprise the leading balance across the logarithmic
layer. Guided by such measurements, subsequent analy-
ses and interpretations were made within the context of
the budget equations. Using his attached eddy concepts,
Townsend [18] surmised that in the logarithmic layer the
streamwise and spanwise velocity fluctuation contribu-
tions to the TKE are, in the asymptotic limit, given
by functions that logarithmically decrease with distance
from the wall, with the wall-normal velocity fluctuation
contribution approaching a constant. Townsend further
described equilibrium boundary layer energy transport
as consisting of an inward flux of mean kinetic energy
that is coincident with an outward flux of turbulence en-
ergy, and with the primary conversion of mean to tur-
bulence kinetic energy occurring in the logarithmic layer
and below. Near the outer edge, he surmised that the
approximate balance is between the advection and tur-
bulent transport terms, and thus is inviscid at leading
order. The approximate balance between dissipation in
the logarithmic layer is often employed in wall-turbulence
scaling arguments, and is regularly used to explain the
existence of a logarithmic mean profile, e.g., [12, 14].

Studies over the past decade have used the properties
of the mean momentum equation to discern Reynolds
number dependence, scaling and dynamics [3, 19]. In
contrast to the traditional layer structure described
above, these analyses reveal a different four-layer struc-
ture for Reynolds numbers above the transitional regime
[20]. Denoted by layers I-IV, this structure was revealed
and characterized by considering the relative magnitudes
of the terms in the mean momentum equation. A sketch
of this layer structure at any given post-transitional
Reynolds number is presented in Fig. 1.

Layer I essentially retains the character of the viscous
sublayer, and is a region where the viscous stress gradi-
ent nominally balances the mean pressure gradient in the
channel/pipe or mean advection in the boundary layer.
In this layer, there exists a perturbed sheet-like distri-
bution of negative spanwise vorticity in the x − z plane,
and these perturbations motivate the evolution of mo-
tions out of layer I. (Note that x is in flow direction and
y is the wall-normal coordinate). In layer II, the ratio
of the viscous stress gradient to the Reynolds stress gra-
dient is close to −1, and thus these two terms comprise
the leading order balance. Layer II is associated with
the three-dimensionalization of the vorticity field, and a
reduction in the scale of the vortical motions relative to
those characteristic of the velocity field [21]. Across layer

FIG. 1. Sketch of the ratio of the viscous stress gradient to the
Reynolds stress gradient in boundary layer, pipe and channel
ows at any given Reynolds number. The dotted line in layer
I is for a boundary layer, and the solid line is for a pipe or
channel.

III, the Reynolds stress attains its maximum value, and
thus its gradient changes sign. This is associated with a
balance breaking and exchange of dominant terms [22].
Here, all terms are nominally of the same order of magni-
tude. The last layer (layer IV) is characterized by a loss
of the leading order viscous stress gradient term, and for
greater wall-normal distances the Reynolds stress gradi-
ent is balanced by the mean pressure gradient or mean
advection term. In contrast to layer II, the vortical mo-
tions become uncorrelated with the vorticity field near
the wall, and form into slender vortical fissures [21].

As expected, layer I and layer IV respectively com-
ply with inner and outer scaling. However, an inter-
mediate length scale, i.e.,

√

νδ/uτ , is empirically ob-
served and analytically shown to characterize the other
two layers, with their thicknesses respectively given by
3 . y+II . 1.6

√
δ+ and 1.6

√
δ+ . y+III . 2.6

√
δ+. The

velocity increment across layer II remains about one half
of U∞, independent of δ+, while there is only about a
1.0uτ increment across layer III [20].

Of course, the interest in Reynolds number effects also
extends to the TKE equation. As such, an equation
based characterization of the leading balances, similar to
that just given for the mean momentum equation, is de-
sired. The difficulties in obtaining accurate experimental
measurements of the relevant quantities postponed the
accurate determination of each term in the TKE bud-
get until the advent of DNS. Since the early DNS of
Mansour et al [23], numerous other studies have explored
the behavior of the terms in the TKE equation [24–27].
From these studies, it is probably safe to surmise that a
clear scaling structure to the TKE budget (and associ-
ated Reynolds stress budgets) has yet to emerge [28].
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Some general behaviors are, however, known to hold.
At the wall the dissipation term is maximal and is bal-
anced with the viscous diffusion term. Near the wall, the
dissipation term balances with the sum of the viscous dif-
fusion and pressure diffusion terms. Moving away from
the wall, the pressure diffusion term is small compared
to other terms, and the turbulent diffusion term becomes
important. This term is positive near the wall, but neg-
ative for 8 . y+ . 30. It thus plays a role in trans-
porting TKE towards the wall. In the region y+ & 30,
however, the balance is nominally composed of the pro-
duction and dissipation terms. It is rationally expected
that both the dissipation term, which is dependent on
small scale structure, and the turbulent diffusion term,
which is typically associated with larger scales, are sen-
sitive to Reynolds number via the effects of scale sep-
aration. Also, above the traditional buffer layer, most
terms in the TKE transport equation scale reasonably
well with u3

τ/δ. Within the viscous and buffer layers,
inner-normalization, u4

τ/ν, seems to apply, but the inner
scaling works poorly very close to the wall, especially for
the dissipation and pressure-related terms. The former
is attributed to the effect of the large scale motions, and
the latter is due to the scaling of pressure itself [28].
The above and similar descriptions of kinetic energy

transport are referenced to the traditional layer struc-
ture. The relevance of this structure to scaling the flow
field energetics is, however, not well-established. Given
this, the present study mimics the more recent approach
used in the analysis of the mean momentum equation
[20]. This approach is used to explore the mean, turbu-
lence, and total kinetic energy balances in planar chan-
nels, circular pipes, and flat plate boundary layer flows.
Here we note that the analysis of section II A 3 reveals
that the leading order layer structure of the mean kinetic
energy balance is identical to that of the mean momen-
tum balance, while for Reynolds numbers available to
DNS, the profiles of the terms in the turbulence kinetic
energy equations are very similar in pipes and channels.
The present analyses indicate that there exists a four-
layer structure to the total kinetic energy budget equa-
tion, with the property that in each of these layers a bal-
ance occurs between a subset of the relevant terms. This
layer structure is, however, shown to be distinct from
the layer structure of the mean momentum balance. The
Reynolds number dependent scaling of the thickness of
each layer is empirically quantified using DNS data, and
for one layer (layer ii) is also analytically reasoned. The
physical processes associated with each layer and their
connections to the kinetic energy balance for the mean
flow and turbulence are also discussed and clarified.

II. KINETIC ENERGY BUDGETS

In the following, x denotes the streamwise direction,
with the wall-normal direction given by y. Upper-case
letters or angle brackets denote the averaged quanti-

ties, and lower-case letters indicate fluctuations about
the mean. The x, y and z velocity components are given
by variants of u, v and w, respectively, and δ is used to
denote the boundary layer thickness, pipe radius, or half
channel height.

A. Mean kinetic energy budgets

Consideration of the mean kinetic energy balance re-
veals an important connection to the structure of the
mean dynamics. With the Reynolds stress denoted by
τRij = −〈uiuj〉, in a Cartesian system the balance equa-
tion for the mean kinetic energy, E = 1/2 (UiUi), is

∂

∂t

(

1

2
UiUi

)

+Uk
∂

∂xk

(

1

2
UiUi

)

= −1

ρ

∂

∂xi
(UiP )

+νUi
∂2Ui

∂xk∂xk
+ Ui

∂

∂xk
τRij , (1)

where the conventions of indicial notation are taken to
hold.

1. Fully developed turbulent channel and pipe flows

Statistically stationary and fully developed turbulent
flow in a planar channel or circular pipe with smooth
walls is considered. Since this flow is both planar (axis-
symmetric) and fully developed, derivatives of averaged
quantities with respect to x and z are zero, and such
mean quantities are solely a function of y, e.g., U = U (y).
Note that for the pipe y+ = δ+ − r+ such that this co-
ordinate is zero at the wall. For these flows we also note
that

−1

ρ

∂

∂xi
(UiP ) = U

(

−1

ρ

∂P

∂x

)

, (2)

and that the relation between the mean pressure gradient
and the friction velocity is

− δ

ρ

∂P

∂x
= u2

τ , (3)

where uτ =
√

τw/ρ. This gives

−1

ρ

∂

∂xi
(UiP ) =

u2
τ

δ
U. (4)

Applying this and the noted assumptions yields

u2
τ

δ
U + ν

∂2

∂y2

(

1

2
U2

)

− ν
∂U

∂y

∂U

∂y
− U

∂ 〈uv〉
∂y

= 0. (5)

The terms in Eq. (5) are now normalized using uτ and
ν. Following convention, this normalization is denoted
by a superscript “+”. Note that δ appears owing to (4).
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Letting T+ = −〈uv〉+, subsequent rearrangement yields
the inner normalized equation for the mean kinetic en-
ergy in fully-developed turbulent channel flow

∂2

∂y+2

(

1

2
U+2

)

+U+∂T+

∂y+
−∂U+

∂y+
∂U+

∂y+
+

1

δ+
U+ = 0. (6)

The four terms presented in Eq. (6) are physically re-
ferred to as mean viscous diffusion (MVD), rate of work
by net Reynolds stress (WRS), mean dissipation (MD)
and mean pressure diffusion (MPD).

2. Zero-pressure gradient turbulent boundary layer

Relative to the channel or pipe, the differences in devel-
oping the equation for the flat plate boundary layer are
associated with mean streamwise advection and a zero
mean pressure gradient. Considering these, along with
the boundary layer approximations, yields

Uk
∂

∂xk

(

1

2
UiUi

)

= U
∂

∂x

(

1

2
U2

)

+ V
∂

∂y

(

1

2
U2

)

, (7)

−1

ρ

∂

∂xi
(UiP ) = 0. (8)

The other terms are the same as in channel/pipe flow.
To within the boundary layer approximations, the inner-
normalized equation for the mean kinetic energy in the
zero-pressure gradient turbulent boundary layer is thus
given by

∂2

∂y+2

(

1

2
U+2

)

+ U+ ∂T+

∂y+
− ∂U+

∂y+
∂U+

∂y+
+

[

−U+ ∂

∂x+

(

1

2
U+2

)

− V + ∂

∂y+

(

1

2
U+2

)]

= 0. (9)

The four physical terms in Eq. (9) are respectively de-
noted as mean viscous diffusion (MVD), rate of work by
net Reynolds stress (WRS), mean dissipation (MD) and
mean advection (MA).

3. Balance in mean kinetic energy budgets

As described in the Introduction, the mean momen-
tum equation has a four-layer structure that is re-
vealed by considering the ratio of the viscous force term,
V F = ∂2U+/∂y+2, to the turbulent inertia term, TI =
−∂ 〈u+v+〉 /∂y+, as a function of wall-normal position.

The same methodology is now utilized to explore the
leading order terms in Eqs. (6) and (9). In this case
we consider the ratio of the sum of the mean viscous dif-
fusion and mean dissipation terms (MVD +MD) to the
rate of work by net Reynolds stress term (WRS). This
ratio profile is shown in Figs. 2(a),(b) for channels and
boundary layers, respectively.
Here we note that these profiles are identical to those

of V F/TI. This observation is analytically verified by
noting that the MVD term can be written as

∂2

∂y+2

(

1

2
U+2

)

= U+ ∂2U+

∂y+2
+

∂U+

∂y+
∂U+

∂y+
, (10)

which allows the mean kinetic energy equation to be writ-
ten as

U+

(

∂2U+

∂y+2
+

∂T+

∂y+
+

1

δ+

)

= 0. (11)

This relation also holds for the pipe, since the mean mo-
mentum equation for the pipe and channel can be written
in identical forms. Similarly, the analogous construction
holds for the boundary layer. The mean kinetic energy
transport equation is therefore seen to exhibit the same
layer structure as the mean momentum equation.

B. Total kinetic energy budgets

The turbulence kinetic energy equations are obtained
through the same set of simplifications just employed,
and for completeness their development is given in Ap-
pendix A. Here we now present the budgets for the total
kinetic energy.
The combination of Eq. (6) and Eq. (A4) gives rise

to the normalized budget equation for the total kinetic
energy in channel flow (and pipe flow if the coordinate
y+ = δ+ − r+ is employed)

∂2

∂y+2

(

1

2
U+2 +K+

)

+
∂

∂y+
[

U+T+ −
〈

v+K+
〉]

+D+ +
1

δ+

[

U+ − ∂

∂y+
〈

p+v+
〉

]

= 0, (12)

where D+ = −
[

d+ + (∂U+/∂y+)
2
]

. Four physical

mechanisms are present in Eq. (12). These are viscous
diffusion (V D), production/turbulent diffusion (PT ),
dissipation (D) and total pressure diffusion (PD).
The combination of Eq. (9) and Eq. (A7) gives rise

to the normalized budget equation for the total kinetic
energy in the boundary layer,
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FIG. 2. Ratio of the sum of mean viscous diffusion and mean dissipation terms (MVD +MD) to the rate of work by net
Reynolds stress term (WRS). (a) Fully developed channel flows, DNS data are from Hoyas et al. [28] :△, δ+ = 186; ▽, δ+ = 547;
⊳, δ+ = 934; ⊲, δ+ = 2003; Bernardini et al [29] : ♦, δ+ = 4079; Lee & Moser[30] : �, δ+ = 5186. (b) Zero pressure gradient
turbulent boundary layers, DNS and LES data are from Eitel-Amor et al..[31] : △, δ+ = 252; ▽, δ+ = 359; N, δ+ = 458;
⊳, δ+ = 492; ⊲, δ+ = 671; H, δ+ = 725; ×, δ+ = 830; ◭, δ+ = 957; ·, δ+ = 974; ♦, δ+ = 1043; ◦, δ+ = 1145; ◮, δ+ = 1169;

�, δ+ = 1244; ✩, δ+ = 1271; •, δ+ = 1367; +, δ+ = 1561; �, δ+ = 1751; /, δ+ = 1937; �, δ+ = 2118; ⋆, δ+ = 2299; ✴,
δ+ = 2479.

∂2

∂y+2

(

1

2
U+2 +K+

)

+
∂

∂y+
[

U+T+ −
〈

v+K+
〉]

+D+ +

[

−U+ ∂

∂x+

(

1

2
U+2 +K+

)

− V + ∂

∂y+

(

1

2
U+2 +K+

)

− 1

δ+
∂

∂y+
〈

p+v+
〉

]

= 0. (13)

The different terms of Eq. (13) are referred to as viscous
diffusion (V D), production/turbulent diffusion (PT ),
dissipation (D) and advection/turbulent pressure diffu-
sion (APD).

C. Terms in the total kinetic energy budgets

Analysis begins by individually considering the behav-
iors of the four grouped terms in Eqs. (12) and (13).
Figs. 3 (a)-(l) show profiles of the terms. The first three
terms for the channel, pipe, and boundary layer exhibit
nearly the same behavior. The profiles of the V D and
D terms convincingly merge for all Reynolds numbers
plotted, except immediately adjacent to the wall in the
channel and pipe. Here the V D term appears to con-
sistently increase with Reynolds number below y+ ≃ 3,
and the D term decreases with Reynolds number below
y+ ≃ 7. Hoyas et al. [28] attribute these behaviors to the
effect of the large scale inactive motions that exist in the
logarithmic layer. Existing evidence indicates that this
is a weak but persistent Reynolds number dependence
[3]. The V D term has a value of about 1.2 close to the
wall. Starting near y+ = 2 this profile decreases rapidly
and crosses zero at y+ ≃ 7.5 and 7.75 in the channel
and pipe, respectively, and at y+ ≃ 7.3 for the boundary
layer. The V D profiles reach their minimum values near

y+ = 15, but increase thereafter to approach zero from
below. Opposite to the V D term, the D term begins at a
value of about −1.2 close to the wall but increases more
gradually as it approaches zero from below. The V D and
D terms identically balance at the wall.

The PT term profiles in Figs. 3 start with a zero value
at the wall, and rapidly ascend. The peaks in all the pro-
files attain values of about 0.70 near y+ = 9.0. Beyond
the peak, the PT term descends to cross zero from pos-
itive to negative. The negative portion of this profile is
concave-upward, and this characteristic is more evident
for the boundary layer. The position of the zero-crossing
in the PT term moves to greater y+ values with increas-
ing δ+.

The PD and APD terms in Figs. 3 (g) and (h) are both
zero at the wall, and become larger with increasing dis-
tance from the wall. The maximum values of these pro-
files are Reynolds number dependent. Moreover, there
is an obvious peak in the APD profile, and this term
decreases towards zero in the outer region. This is qual-
itatively distinct from the PD profiles in the pipe and
channel, which exhibit highly similar profile shapes, but
small quantitative differences. In the overall balance, the
behavior of the APD profile has been verified to compen-
sate for the concave-upward trend of the PT term near
the edge of the boundary layer. In the region near the
wall, the PD term in the pipe and channel and the APD
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FIG. 3. Profiles of the individual terms in the total kinetic energy transport equation. Panels (a), (d), (g) and (j) respectively
represent the V D, PT , D, and PD terms for turbulent channel flow, (b), (e), (h), (k) respectively represent the V D, PT , D,
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PTD achieves its maximal value. The pipe flow data are from the DNS of [32].

term in the boundary layer are much smaller than the
other three terms, but both rise to leading order in the
outer region.

III. STRUCTURE OF TOTAL KINETIC

ENERGY BALANCE

A. Balance ratios of grouped terms

The analysis of section IIA 3 reveals a mean kinetic
energy layer structure that is the same as for the mean
momentum balance (see of Fig. 2). This finding moti-
vates examining the analogous ratio in the total kinetic
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FIG. 4. Ratio of the sum of the viscous diffusion (V D) and the dissipation (D) terms to the production/turbulent diffusion
(PT ) term versus y+. (a) Channel flows. (b) Boundary layer flows. Symbols are the same as in Fig. 2.

energy equation: the ratio of the sum of the viscous diffu-
sion and the dissipation terms (V D +D) to the produc-
tion/turbulent diffusion term (PT ). Here we note that if
the ratio is

|(V D +D) /PT | ≪ 1, (14)

then both the V D and D terms are small, and the PT
and the PD terms are nominally in balance. If

|(V D +D) /PT | ∼= 1, (15)

their effects are in balance, and the PD term is either of
the same order of magnitude or much smaller. Else, if

|(V D +D) /PT | ≫ 1, (16)

the PT term is very small, and either the V D term is
balanced with the D term or the PD term is of the same
order of magnitude as these two terms.
Figs. 4 (a) and (b) show (V D +D) /PT for the chan-

nel and boundary layer, respectively, with the pipe data
(not shown) exhibiting similar behaviors. These data in-
dicate a four-layer structure. This structure is, however,
distinct from the layer structure identified by Wei et al.
[20] for the mean momentum equation, which, as shown
herein, also corresponds with the mean kinetic energy
structure. To avoid confusion with the layers associated
with the mean momentum equation, in what follows the
layers evident in Figs. 4 are denoted with lower case i-iv.
The analysis now proceeds by describing how the con-
tributing terms in Eqs. (12) and (13) conspire to produce
the layer structure evident in Figs. 4.

B. Layers i and ii

Layer i lies very close to the wall, y+ . 1.5. The end-
ing value cited is based on the criterion that the ratio
becomes less than −2 [20]. In this domain, the leading

balance is between the viscous diffusion and dissipation
term, as exemplified in Fig. 5 for the channel and bound-
ary layer. Here the ratio V D/D deviates from −1 by less
than 4%. Outside this thin layer exists a region (layer ii)
that is characterized by a nearly exact balance between
the sum of the V D and D terms and the PT term. At
the onset of this region the viscous diffusion term is pos-
itive, but with increasing y+ goes to zero faster than the
dissipation term. It subsequently crosses zero, reaches a
minimum, and then asymptotes to zero. Beyond where
the V D term crosses zero, its magnitude contribution to
the sum of the V D and D terms increases gradually and
attains a maximum, see Figs. 3 and 5. This maximum
is slightly greater than half the contribution to the sum
(about 54%), and is located near y+ ≃ 18.

For greater distances from the wall, but still within
layer ii, the contribution from the V D term decreases
and becomes negligible compared to the D term. This
occurs near the outer edge of layer ii. Fig. 3 shows that
near the start of layer ii, the PT term increases to balance
the V D andD terms; achieving peak values of about 0.70
near y+ = 9.0. The extent of layer ii exhibits a Reynolds
number dependence, with its external boundary extend-
ing into the inertial/advection balance layer (layer IV) of
the mean momentum equation.

C. External bounds of layers ii and iii

Per the criterion developed by Wei et al [20], the start
of layer iii is where (V D +D) /PT drops below −2. Con-
sistently, the end of layer iii is where this ratio falls below
0.5. Fig. 6 shows the normalized width of layer iii (∆y+iii)
versus δ+ for channel, pipe, and, boundary layer flows as
determined by these criteria. Per the scaling analysis of
Appendix C, ∆y+iii is normalized by (δ+−

√
δ+), as this is

reasoned to constitute a finite Reynolds number correc-
tion to outer normalization. To within their scatter, the
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FIG. 6. Width of layer iii normalized by (δ+−
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δ+) and plotted versus δ+. (a) Channel and pipe flows. channel: △, δ+ = 186;
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boundary layer data of Fig. 6 seem to remain constant
over their entire Reynolds number range. Conversely, the
channel data seem to decay toward a constant value with
increasing δ+. The pipe flow data show a similar trend
as the channel data, but only extend to δ+ ≃ 1000.

While the analysis of Appendix C indicates that ∆y+iii
should scale with (δ+ −

√
δ+) at finite δ+, this analysis

does not require that the beginning and end points of
layer iii individually adhere to this scaling. This rather
subtle point is clarified in Fig. 7, which re-plots the data
of Fig. 4 versus y+/(δ+ −

√
δ+). The data of Fig. 7(b)

suggest invariance under this normalization, and thus the
end points of layers ii and iii in the boundary layer seem
to scale with (δ+ −

√
δ+). On the other hand, examina-

tion of the channel and pipe data reveals that the end

points of both layers ii and iii deviate from this scaling
over the given δ+ range. As exemplified in Fig. 7(a),
the channel data at δ+ = 186 show a considerable de-
viation from those at higher δ+. With increasing δ+,
however, the profile-to-profile deviation diminishes. The
deviation of the δ+ = 186 profile in Fig. 7(a) is not es-
pecially surprising, since this profile is just barely within
regime where the mean momentum equation exhibits its
four layer structure [33]. Additionally, it has been veri-
fied that both the channel and pipe profiles exhibit the
same qualitative behavior when plotted versus y/δ. De-
termining whether the beginning and end points of layer
iii for the channel and pipe eventually align under the
normalization of Fig. 7 awaits higher Reynolds number
data.
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as in Fig. 2.

D. Layers iii and iv

Across layer iii there is an exchange in the balance of
terms in Eqs. (12) and (13) that we now describe but
do not graphically demonstrate. This exchange occurs
around the location of maximum [U+T+ − 〈v+K+〉]. In
this region the dissipation (D) term and the total pres-
sure diffusion (PD) term in channel/pipe flows (or the
advection/turbulent pressure diffusion (APD) term in
boundary layers) nearly balance. Before and beyond the
peak in [U+T+ − 〈v+K+〉], the PT term is in leading
order balance with the sum of the D and PD terms in
channel and pipe flows, and balances the D+APD terms
in boundary layers. The V D term in this layer is less than
a tenth of the D term. Thus, within layer iii, there are
three terms of significant magnitude, with the V D term
being much smaller.
Close examination also indicates that across layer iii

the PT term changes its sign, and the contribution from
turbulent diffusion is much smaller when compared to the
contribution from the production term. This character-
istic is reflected in the results of Fig. 8. Accordingly, the
wall-normal position where the production term crosses
zero is very close to where the PT term crosses zero.
These findings substantiate that the turbulent diffusion
term over layer iii is quite small. We therefore sur-
mise that the turbulent diffusion term is small but non-
negligible in layer ii, but attains negligible values in layer

iii.

The dissipation term is dominated by its turbulence
contribution in layer iii. This is demonstrated in
Figs. 9(a) and (b), which show the ratios of the mean
to turbulent dissipation. In these figures, the abscissa
starts near the outer edge of layer ii at δ+ = 180 and 252
for the turbulent channels and boundary layers, respec-
tively. Beyond the start of layer iii the mean dissipation
is at least 10 times smaller than the turbulent dissipation,
and its effect over layer iii diminishes with increasing δ+.
These findings are similar to previous observations that
the fluctuating enstrophy dominates the mean enstrophy
in layer IV of the mean momentum equation [21].

The ratio of the turbulent pressure diffusion to the
mean pressure diffusion is exemplified for the channel in
Fig. 10(a), while the ratio of turbulent pressure diffusion
to advection in the boundary layer is given in Fig. 10(b).
The fact that these ratios are both less than 10−3 beyond
layer ii indicates that the turbulent pressure diffusion is
justifiably absent from the leading balance in layer iii.
The layer iii balance in the channel/pipe therefore sim-
plifies to

∂

∂y+
[

U+T+
]

+ d+ + ǫ2U+ = 0, (17)

where ǫ2 = 1/δ+, and for the boundary layer is

∂

∂y+
[

U+T+
]

+ d+ +

[

−U+ ∂

∂x+

(

1

2
U+2 +K+

)

− V + ∂

∂y+

(

1

2
U+2 +K+

)]

= 0. (18)

Beyond layer iii, the magnitude of both the V D and
D terms gradually become smaller than either the PT
or PD terms in the channel/pipe flows, or the APD

term in the boundary layer. Similarly, both the turbulent
diffusion and the turbulent pressure diffusion are much
smaller than their mean contributions. Thus, the balance
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FIG. 9. The ratio of the mean dissipation to the turbulent dissipation. (a) Turbulent channel flows; (b) Turbulent boundary
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diffusion to advection in boundary layers.
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is established between the production and mean pressure
diffusion for channel/pipe flows

∂

∂y+
[

U+T+
]

+
1

δ+
U+ = 0, (19)

and between the production and the advection for bound-
ary layers, i.e.,

∂

∂y+
[

U+T+
]

+

[

−U+ ∂

∂x+

(

1

2
U+2 +K+

)

− V + ∂

∂y+

(

1

2
U+2 +K+

)]

= 0. (20)

Eqs. (17) and (19) respectively give the leading bal-
ances in layers iii and iv for the channels and pipes, and
Eqs. (18) and (20) give the same for the boundary layer.
Since

∂ (U+T+)

∂y+
= U+

(

∂T+

∂y+

)

+ T+

(

∂U+

∂y+

)

, (21)

the individual behaviors of the two contributions on the
right are of interest. Figs. 11 (a) and (b) respectively
show profiles of the terms in Eqs. (17) and (18) across
layers iii and iv. These representative profiles are shown
at a single δ+ for the channel and boundary layer. Within
layer iii, the four relevant terms are of the same order of
magnitude but have different trends. The turbulent dis-
sipation profile gradually moves towards zero from be-
low and crosses the U+ (∂T+/∂y+) profile, which passed
through zero to negative values in layer ii. Above the zero
axis, the T+ (∂U+/∂y+) and ǫ2U+ profiles exhibit a sim-
ilar crossing. These crossing points exhibit a Reynolds
dependence that is consistent with its position residing
within layer iii for all δ+. The two crossing positions
for channels and boundary layers are respectively plot-
ted versus (δ+ −

√
δ+) in Figs. 12 (a) and (b), while

it has been confirmed that the pipe exhibits behaviors
very similar to those in the channel. These data indicate
that the T+ (∂U+/∂y+) and ǫ2U+ (or advection) terms
cross slightly closer to wall than the U+ (∂T+/∂y+) and
d+ terms at lower Reynolds numbers, but these posi-
tions essentially coincide at higher δ+. Similar to the
phenomena illustrated in Fig. 7, the channel data gradu-
ally approach the indicated curve-fit line with increasing
Reynolds number, while the boundary layer data con-
vincingly follow the linear curve-fit for all δ+. For all
three flows the profile-crossings occur slightly closer to
y+ii end than y+iii end.
Both the T+ (∂U+/∂y+) and the d+ terms lose lead-

ing order in layer iv, becoming negligible compared
to the U+ (∂T+/∂y+) and ǫ2U+ terms, or similarly
the advection term in the boundary layer. Figs. 13
(a) and (b) respectively show profiles of the ratio of
U+ (∂T+/∂y+) to ǫ2U+ (or advection term), and the ra-
tio of T+ (∂U+/∂y+) to d+. As might be expected, al-
though both the T+ (∂U+/∂y+) and d+ terms are much
smaller than the other two terms (and thus are not lead-
ing order), their ratio is nearly −1. This ratio then

approaches zero at the edge of layer iv. Beyond the
outer edge of layer ii the traditional production term,
T+ (∂U+/∂y+), is initially balanced with the turbulent
dissipation term, d+, but with the traditional production
term approaching zero more rapidly as y+ → δ+.
The ratio of the other two leading order terms is also

approximately −1 throughout layer iv. This balance be-
gins near the middle of layer iii for the channel/pipe, and
near the outer edge of layer ii for the boundary layer. It is
thus concluded that beyond layer ii, the U+ (∂T+/∂y+)
term balances with the ǫ2U+ term for the channel/pipe,
and similarly with the advection term for the boundary
layer. Notably, the two separate balances in Fig. 11 re-
flect the individual balances of the mean and turbulence
kinetic energy equations.

IV. CONCLUSIONS AND DISCUSSION

Properties of the layer structure associated with the
total kinetic energy equation are summarized in Table I.
From this table, it is evident that channel, pipe, and
boundary layer flows qualitatively exhibit the same be-
haviors to within the differences between the mean pres-
sure and mean advection effects. Quantitatively, the
layer thicknesses are shown herein to exhibit distinct
Reynolds number dependencies. As is evident, layer i ad-
heres to inner scaling. The analysis of Appendix C leads
us to surmise that the layer iii width follows a (δ+−

√
δ+)

dependence at finite Reynolds numbers. This result ap-
pears to hold in the boundary layer for all observed δ+,
and also seems to hold for the individual upper bound-
aries of layers ii and iii. In the channel the present es-
timates suggest that the layer iii width scales with this
length for δ+ > 1000. The layer scaling behaviors asso-
ciated with the total kinetic energy differ substantially
from those of the mean momentum balance. It is sig-
nificant to note, however, that the layer structure of the
mean kinetic energy equation, which is identical to that
of the mean momentum equation, is embedded within
this structure.
The present results indicate that the major portions

of layers ii and all of layer iii and iv reside in the iner-
tial/advection balance layer (layer IV) of the mean mo-
mentum balance. Here the Reynolds stress gradient bal-
ances the pressure force in channel flow or the mean ad-
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FIG. 11. (a) Profiles of terms in Eq. (17) across layer iii and iv at δ+ = 4079. △, U+
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layer ii. The vertical solid line denotes the external bound of layer iii.
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FIG. 12. Reynolds number dependence of the two crossing points in Fig. 11. (a) Channel flows. △, crossing point between

T+
(

∂U+/∂y+
)

and ǫ2U+, curve fit is given by dashed line which is 0.1145(δ+−
√
δ+); ▽, crossing point between U+

(

∂T+/∂y+
)

and turbulent dissipation d+, curve fit is given by solid line which is 0.1140(δ+ −
√
δ+). (b) Boundary layers. △, crossing point

between T+
(

∂U+/∂y+
)

and advection term, curve fit is given by dashed line which is 0.2542(δ+ −
√
δ+); ▽, crossing point

between U+
(

∂T+/∂y+
)

and turbulent dissipation d+, curve fit is given by solid line which is 0.2419(δ+ −
√
δ+).

TABLE I. Magnitude ordering and approximate scaling behaviors associated with the four layer structure of the total kinetic
energy equations for channel/pipe and boundary layer. V D, D, PT , PD and APD respectively refer to the viscous diffusion,
dissipation, production/turbulent diffusion, total pressure diffusion and advection/turbulent pressure diffusion terms in Eqs.

(12) and (13). Note that
(

δ −
√

νδ/uτ

)

approaches δ as δ+ → ∞.

Channel/Pipe flow Boundary layer flow
Layer Magnitude ordering ∆y increment Magnitude ordering ∆y increment

i |V D| ∼= |D| O (ν/uτ ) (∼= 1.5) |V D| ∼= |D| O (ν/uτ ) (∼= 1.5)

ii |V D| ∼= |D| ∼= |PT | O
(

δ −
√

νδ/uτ

)

(∼= 0.07) |V D| ∼= |D| ∼= |PT | O
(

δ −
√

νδ/uτ

)

(∼= 0.17)

iii |D| ∼= |PT | ∼= |PD| O
(

δ −
√

νδ/uτ

)

(∼= 0.21) |D| ∼= |PT | ∼= |APD| O
(

δ −
√

νδ/uτ

)

(∼= 0.25)

iv |PT | ∼= |PD| O (δ) (∼= 0.68) |PT | ∼= |APD| O (δ) (∼= 0.58)
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FIG. 13. (a)Ratios of (⊳)U+
(

∂T+/∂y+
)

to ǫ2U+ and (△)T+
(

∂U+/∂y+
)

to turbulent dissipation d+ for turbulent channel

flow at δ+ = 4079. (b) Ratios of (⊳)U+
(

∂T+/∂y+
)

to advection term and (△)T+
(

∂U+/∂y+
)

to turbulent dissipation d+ for

turbulent boundary layer at δ+ = 2299.

vection in the boundary layer flow, while the viscous force
is negligible. For the total kinetic energy balance the vis-
cous diffusion term gradually becomes negligible near the
external bound of layer ii, and the dissipation term loses
leading order in layer iv. The leading order balance is
inviscid in the outer 30% of the channel/pipe, and outer
40% of the boundary layer.

Lastly, we note that the leading order balances asso-
ciated with the total kinetic energy budget exhibit an
intriguing and potentially telling set of behaviors. Re-
calling that the total budget is the sum of the mean and
turbulence budgets, the relevant behaviors are that mean
budget contributions dominate the leading terms near
the wall, the turbulence equation contributions become
leading order over an interior region, and then in the
outermost portion mean equation terms return to dom-
inance. This spatial inter-weaving of the leading order
contributions suggests that care should be taken when
using traditional Reynolds averaging to discern proper-
ties associated with the energetic motions within the flow.
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Appendix A: Turbulence kinetic energy budgets

1. Channel flow

Beginning with the general budget equation for the
kinetic energy of the turbulence,

∂

∂t

[

1

2
〈uiui〉

]

+ Uk
∂

∂xk

[

1

2
〈uiui〉

]

=

− ∂

∂xk

[〈

uk
1

2
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〉

+
1

ρ
〈ukp〉

]

+ ν
∂2

∂xk∂xk
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]

−〈uiuk〉
∂Ui

∂xk
− ν

〈

∂ui

∂xk

∂ui

∂xk

〉

, (A1)

and applying the same assumptions noted in section II,
one arrives at the budget equation for the turbulence
kinetic energy in fully-developed channel flow

− ∂

∂y

〈

v
1

2
uiui

〉

− ∂

∂y

1

ρ
〈vp〉+ ν

∂2

∂y2

[

1

2
〈uiui〉

]

−〈uv〉 ∂U
∂y

+ d = 0, (A2)

where d = −ν
〈

∂ui

∂xk

∂ui

∂xk

〉

. All terms in Eq. (A2) are now

normalized by inner variables, but with

p+ =
δp

ρuτν
. (A3)

Here, the pressure fluctuation is normalized with ρuτν/δ
rather than by ρu2

τ . This follows from the analogous
scaling of the mean pressure gradient in terms of the
friction velocity and the half-channel height (Eq. (4)).
Physically, this seems appropriate because the fluctuat-
ing pressure is a non-local quantity, with the pressure at
a point found by integrating over the domain. The anal-
ysis of Appendix B empirically evidences that the use of
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FIG. 14. Ratio of the sum of turbulent viscous diffusion and turbulent dissipation terms (MVD +MD) to the produc-
tion/turbulent diffusion term (PTD). (a) Channels. (b) Boundary layers. Symbols are the same as in Fig. 2.

this normalization does not alter conclusions regarding
the resulting layer structure.
With K+ = 1/2

〈

u+

i u
+

i

〉

, T+ = −〈u+v+〉, and by col-
lecting terms, the inner-normalized budget equation for
the turbulence kinetic energy in channel flow becomes

∂2

∂y+2

(

K+
)

+

[

T+∂U+

∂y+
− ∂

∂y+
〈

v+K+
〉

]

+ d+

+
1

δ+

[

− ∂

∂y+
〈

p+v+
〉

]

= 0. (A4)

Four grouped terms in Eq. (A4) are referred to as turbu-
lent viscous diffusion (TV D), production/turbulent dif-
fusion (PTD), turbulent dissipation (TD) and turbulent
pressure diffusion (TPD). The inner-normalized form of
the turbulence kinetic energy budget for fully developed
turbulent pipe flow has a form that is identical to that for
channel flow when expressed in terms of the wall-normal
variable y+ = δ+ − r+.

2. Boundary layer flow

Similar to the mean kinetic energy equation for the
boundary layer, the advection of the turbulence kinetic
energy can be written as

Uk
∂

∂xk

[

1

2
〈uiui〉

]

=

U
∂

∂x

[

1

2
〈uiui〉

]

+ V
∂

∂y

[

1

2
〈uiui〉

]

. (A5)

The inner-normalized equation for the turbulent bound-
ary layer then becomes

∂2

∂y+2

(

K+
)

+

[

T+∂U+

∂y+
− ∂

∂y+
〈

v+K+
〉

]

+ d+ + (A6)

[

−U+ ∂

∂x+
K+ − V + ∂

∂y+
K+ − 1

δ+
∂

∂y+
〈

p+v+
〉

]

= 0.

The first three grouped terms in Eq. (A7) are the same
as in Eq. (A4). The fourth one is referred to as turbulent
advection/pressure diffusion (TAPD).

The leading balances for the turbulence kinetic en-
ergy (Eqs. A4 and A7) are considered, as these are use-
ful for understanding the total budget structure. Here
the results of Fig. 2 motivate examining the ratio of the
sum of turbulent viscous diffusion and turbulent dissi-
pation terms (TV D + TD) to the production/turbulent
diffusion term (PTD). Because the pipe flow results
are essentially indistinguishable from the channel results,
Fig. 14 only shows these ratio profiles for the channel and
boundary layer. In contrast to the ratio profiles of the
mean kinetic energy terms in Fig. 2, there is no appar-
ent change of balance indicated in Fig. 14. The pro-
file curves start from large negative values near the wall.
Here Eqs. A4 and A7 indicate that the diffusion of TKE
identically balances turbulent dissipation at the wall, and
thus to leading order a small distance from the wall. Be-
yond this region, the ratio of Fig. 14 closely approximates
−1. Detailed examination (not shown) indicates that this
balance is comprised of one of the PTD terms and the
TV D and TD terms. Along the −1 dashed line, the
TV D term gradually gets closer to 0, which results in
the change in balance from three terms to two terms;
namely the TD and PTD terms. This two-term balance
is continuously sustained throughout the remainder of
the channel. Unlike the channel, the boundary layer pro-
files deviate from −1 and approach zero as y → δ. In this
region, the TAPD term increases in relative importance
and forms a new balance with the TD and PTD terms.
Thus, the turbulence kinetic energy budget exhibits three
layers but four distinct balances in the boundary layer.
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Appendix B: Turbulent pressure normalization

As described in Appendix A, in the present analysis
turbulent pressure is effectively normalized by ρuτν/δ,
rather than by ρu2

τ . If ρu2
τ is used for turbulent pres-

sure normalization, the turbulent pressure diffusion term
is simply given by −∂ 〈p+v+〉 /∂y+, and the normalized
magnitude of this term increases by a factor of δ+. This
appendix quantifies, however, that the leading order bal-
ances do not change owing to the present choice for fluc-
tuating pressure normalization.
Figs. 15 (a) and (b) show the ratio of −∂ 〈p+v+〉 /∂y+

to D+. In layer i, all its values fall between 0 and −0.02,
and thus the dominant balance determined for layer i
herein is retained. In layer ii,−∂ 〈p+v+〉 /∂y+ is always
observed to be less than 1/10 of the sum of the V D andD
terms, and generally much less. This behavior is shown
in Figs. 15 (c) and (d) for two representative Reynolds
numbers. There is no apparent Reynolds number trend
associated with this ratio. Across layers iii and iv the
total pressure diffusion contribution in channel flows (or
the advection/turbulent pressure diffusion in boundary
layers) is still much larger than the turbulent pressure
diffusion contribution. The profiles of Figs. 15 (e) and
(f) at a fixed Reynolds number reflect representative be-
havior in this regard.

Appendix C: Basis for the characteristic length scale

of layer iii

This appendix provides a scaling analysis for the chan-
nel supporting the use of the coordinate (δ+−

√
δ+) used

in a number of the figures herein. Eq. (17) reflects the
relevant balance in layer iii. Note also that this layer is
located in the inertial sublayer associated with the self-
similarity admitted by the mean momentum equation
[11]. Here, the normalized derivative of the turbulent

inertia term, A = −∂2T+/∂y+2 (∂T+/∂y+ + 1/δ+)
−3/2

,
approaches constancy as δ+ → ∞ [34]. Given this con-
dition, integration yields

∂T+

∂y+
=

(

2

A

)2
[

1

(y+ − C)
2
− 1

(

y+m − C
)2

]

=
φ2

(y+ − C)
2
− φ2

(

y+m − C
)2

, (C1)

where φ = 2/A, C is a constant, and T+ attains its
maximum value, T+

m , at the position y+m. Integration
of Eq. (C1) gives

T+ = C′ − φ2

y+ − C
− y+φ2

(

y+m − C
)2

, (C2)

where C′ → 1 as δ+ → ∞. The position of T+
m is em-

pirically and asymptotically verified to be y+m = λm

√
δ+,

[34–36] where λm → φ as δ+ → ∞. Neglecting C for

large δ+ and using y+m = λm

√
δ+ gives

∂T+

∂y+
=

φ2

y+2
− φ2

λ2
mδ+

, (C3)

and

T+ = C′ − φ2

y+
− y+φ2

λ2
mδ+

. (C4)

The first term in Eq. (A3) can be expanded into two
parts, e.g., U+ (∂T+/∂y+) and T+ (∂U+/∂y+). Each of
these two terms is of the same order of magnitude as the
last term, ǫ2U+. Letting U+ (∂T+/∂y+) ∼ ǫ2U+(‘∼’
denoting same order of magnitude) gives

∂T+

∂y+
= O

(

ǫ2
)

. (C5)

This derivative magnitude is consistent with classical
outer scaling arguments [12], and the momentum equa-
tion analyses of Wei et al. [20]. Specifically, ∂T+/∂y+

becomes O
(

ǫ2
)

at the beginning of layer III and retains
this order of magnitude throughout both layers III and
IV of the momentum balance. From Eq. (C3), we thus
have

φ2

y+2
− φ2

λ2
mδ+

= O
(

ǫ2
)

. (C6)

As δ+ → ∞, φ → φc and λm → φc, where φc is a con-
stant. Thus φ2/λ2

m is O (1), and φ2
c itself is an O (1)

constant. Under these conditions, Eq. (C6) is only valid
when y+ > O (1/ǫ). Requiring y+ > O (1/ǫ) in Eq. (C4)
and noting that C′ → 1 as δ+ → ∞ yields

T+ = O (1− ǫ) . (C7)

This order of magnitude is corroborated by the relevant
region residing beyond the peak of T+, where the maxi-
mum value T+

m is 1−O (ǫ) at y+m [34].
Within layer iii, a rescaling of Eq. (A3) is now applied

such that all terms reflect the actual orders of magni-
tude. The present analysis only requires considering the
leading order balance between ∂ [U+T+] /∂y+ and ǫ2U+.
Rescaling begins by setting

U+ = αŪ, T+ = βT̄ , y+ = y+0 + γȳ, (C8)

where Ū , T̄ and ȳ are all O (1) as δ+ → ∞. Analogous
to ym relative to layer III, y+0 is the position where the
∂ [U+T+ − 〈v+K+〉] /∂y+ term changes sign in layer iii.
The indicated transformations give

∂

∂y+
[

U+T+
]

=
αβ

γ

∂

∂ȳ

[

Ū T̄
]

, ǫ2U+ = ǫ2αŪ . (C9)

Rendering all terms O(1) requires that

αβ

γ
= ǫ2α, (C10)
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〈
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/∂y+ to D term in layer i for (a) channels; (b)boundary layers. Ratio of −∂
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sum of the V D and D terms for (c) channel at δ+ = 4079; (d) boundary layer at δ+ = 2299. (e) Ratio of −∂
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/∂y+ to

the mean pressure diffusion term for channel at δ+ = 4079; (f) Ratio of −∂
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layer at δ+ = 2299.

or

γ =
1

ǫ2
β. (C11)

From Eqs. (C7) and (C8) β = 1 − ǫ in layer iii, and

with this γ is determined by

γ=
1

ǫ2
(1− ǫ)

=
1

ǫ2
− 1

ǫ
, (C12)



17

or

y+= y0 +

(

1

ǫ2
− 1

ǫ

)

ȳ

= y0 + (δ+ −
√
δ+)ȳ. (C13)

By definition, ȳ is O (1) in layer iii, and thus it follows

that the inner-normalized width of this layer is O(δ+ −√
δ+). This scaling is interpreted as a finite Reynolds

number correction to traditional outer scaling, since it is
apparent that (δ+ −

√
δ+) → δ+ as δ+ → ∞.
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