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In wall bounded turbulence, the moment generating functions (MGFs) of the streamwise velocity
fluctuations

〈
exp(qu+

z )
〉

develop power-law scaling as a function of the wall normal distance z/δ.
Here u is the streamwise velocity fluctuation, + indicates normalization in wall units (averaged fric-
tion velocity), z is the distance from the wall, q is an independent variable and δ is the boundary layer
thickness. Previous work has shown that this power-law scaling exists in the log-region 3Re0.5τ . z+,
z . 0.15δ where Reτ is the friction velocity-based Reynolds numbers. Here we present empirical
evidence that this self-similar scaling can be extended, including bulk and viscosity-affected regions
30 < z+, z < δ, provided the data are interpreted with the Extended-Self-Similarity (ESS), i.e.
self-scaling of the MGFs as a function of one reference value, qo. ESS also improves the scaling
properties, leading to more precise measurements of the scaling exponents. The analysis is based on
hot-wire measurements from boundary layers at Reτ ranging from 2700 to 13000 from the Melbourne
High-Reynolds-Number-Turbulent-Boundary-Layer-Wind-Tunnel. Furthermore, we investigate the
scalings of the filtered, large-scale velocity fluctuations uLz and of the remaining small-scale com-
ponent, uSz = uz − uLz . The scaling of uLz falls within the conventionally defined log region and

depends on a scale that is proportional to l+ ∼ Re1/2τ ; the scaling of uSz extends over a much wider
range from z+ ≈ 30 to z ≈ 0.5δ. Last, we present a theoretical construction of two multiplicative
processes for uLz and uSz that reproduce the empirical findings concerning the scalings properties as
functions of z+ and in the ESS sense.

I. INTRODUCTION

Turbulent boundary layers have been one of the cen-
terpieces of turbulence research for many decades [1–3].
A robust feature of wall-bounded flows is the logarithmic
scaling of the mean velocity in the log region U/uτ =
1/κ ln(z+) + B [4–7], where U is the mean velocity, uτ
is the friction velocity, z is the wall normal distance, the
superscript + indicates normalization by wall units. Re-
cently, there has been growing empirical evidence for a
logarithmic scaling in the variance of the streamwise ve-
locity fluctuations,

〈
(u+
z )2

〉
= A1 ln(δ/z) + B1 [6–10],

where A1 ≈ 1.26 is the Townsend-Perry constant, B1 is
yet another constant, and δ is an outer length scale. Mo-
tivated by calculations based on the Townsend attached
eddy hypothesis [11], in Ref. [12], Meneveau & Marusic

observed logarithmic scalings in
〈
(u+
z )2p

〉1/p
; logarithmic

scalings are also found in the longitudinal structure func-

tions
〈
(u+
z (x+ r)− u+

z (x))2p
〉1/p

, where r is taken along
the streamwise direction at a fixed distance from the wall
[13].

To study the flow physics from a new perspective, it
was proposed in Ref. [14] to shift the attention to the
MGFs of the single-point streamwise velocity fluctua-
tions: W (q, z/δ) = 〈exp(qu+

z )〉 where 〈·〉 indicates ensem-
ble averaging and q is an independent variable that serves
as a “dial” to emphasize different turbulent fluctuation
intensities and signs. In Ref. [14] empirical evidence of a
power-law behavior in the log-region for the MGFs was

presented (see also Fig.1a in this paper), leading to the
introduction of the scaling exponents τ(q) according to

W (q, z/δ) =
〈
exp(qu+

z )
〉
∼ (δ/z)τ(q). (1)

From the perspective of modeling, the logarithmic scal-

ings in U ,
〈
(u+
z )2p

〉1/p
,
〈
(u+(x+ r)− u+(x))2p

〉1/p
, and

the power-law scaling in 〈exp(qu+
z )〉 evidence the pres-

ence of self-similar, space-filling, wall-attached eddies in
the log region [15–18]. Modeling the wall turbulence as
collections of self-similar, space-filling, wall-attached ed-
dies is the basic idea of the attached eddy model. As has
been reviewed, the attached eddy model is quite useful in
providing (non-trivial) estimates on the scaling behaviors
of flow statistics in the log region; and since Townsend
[11], this model has been providing guidance to studies
of the near-wall flow physics [14, 19–22]. In fact, many
results in this work can be understood in the framework
of the attached eddy hypothesis.

Besides the attached eddy model, in this work, we use
the concept of Extended-Self-Similarity (ESS) to inter-
pret the high Reynolds number boundary layer data. The
ESS concept was developed originally for isotropic ho-
mogeneous turbulence, see e.g. Refs. [23–25]. The ba-
sic idea of ESS is to define self-similarity and statistical
scaling as function of certain reference scaling. In early
works on ESS in homogeneous isotropic turbulence, the
specific statistical scaling is the power-law scaling in the
various moments of two-point velocity increments. Us-
ing ESS, the scaling ranges were seen to extend beyond
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the inertial range. With the extended scaling region, the
scaling exponents can be measured with higher accuracy
[26]. Beside isotropic homogeneous turbulence, applica-
tions of ESS in anisotropic turbulence and hydromagnetic
turbulence can be found in Refs. [27–30]. Several expla-
nations have been provided about the physics underlying
ESS [25, 31, 32]. There is general agreement that ESS
helps to reduce the deviations from inertial-range scaling
arising from finite-size and viscous effects at the edges of
the scaling range.

The context of this work is wall-bounded flows. Using
ESS, we express the scaling of W (q, z/δ) with respect to
W (qo, z/δ) (qo fixed):

W (q, z/δ) = W (qo, z/δ)
ξ(q,qo), (2)

instead of the scaling of W (q, z/δ) with respect to z as is
usually done. Eq. 2 is a quite general definition for scal-
ing. It trivially includes the definition in Eq. 1, for which
case ξ(q, qo) = τ(q)/τ(qo). The idea behind the definition
in Eq. 2 is as follows: for wall bounded flows, the un-
derlying physics does not permit perfect self-similarity in
wall eddies as a function of their sizes because of the bulk
flow effects (for z ∼ O(δ)) or viscous, dissipation effects
(for z+ ∼ O(1)); but because those effects exist both in
W (q, z/δ) and W (qo, z/δ), by defining scalings according
to Eq. 2, self-similarity can be extended; from this ex-
tended self-similarity, suitable physics-based models can
be developed.

In this work, we show that, with the scaling defined
in Eq. 2, self-similarity in wall-turbulence extends be-
yond the log region, to the region 30 < z+, z < δ, with
high quality scalings. With the extended high quality
scaling, the quantity τ(q)/τ(qo) can be determined with
higher accuracy than using the scalings defined in Eq. 1.
Furthermore, we decompose the fluctuating velocity into
a large-scale signal uLz and a small-scale signal uSz . We
present evidence that the breaking of the self-similarity
(power-law of the MGFs) is because of a change in the
statistical properties of uLz at z+ ∼ Re0.5

τ , whereas uSz
retains more universal scaling closer to the wall. Last, to
understand the physical processes underlying the statisti-
cal behaviors of uLz , uSz , we propose a model based on two
random additive processes for uSz and uLz . In this way, we
can explain the existence of ESS in the extended region
30 < z+, z < δ, the existence of conventional scaling Eq.
1 in the log region, and the failure of the conventional
scaling beyond the log region.

II. ATTACHED EDDY MODELS

Before detailed discussion of ESS, we briefly review a
recently develop formalism of the attached eddy model,
the hierarchical-random-additive-process [12, 14]. The
investigation of ESS in this work is motivated by predic-
tions from this attached eddy formalism. For simplicity,
unless indicated otherwise, wall units are used for nor-

malization of the velocity and we drop the superscript +
hereafter.

A direct consequence of space-filling, self-similar eddies
in the log region is the eddy population density being
inversely proportional to the wall normal distance, i.e.
P (z) ∼ 1/z. Knowing the eddy population density, and
modelling the velocity fluctuation at a generic point in
the flow field to be a consequence of superpositions of the
attached eddy induced velocities, we can write:

uz =

Nz∑
i=1

ai, Nz =

∫ δ

z

P (z′)dz′ ∼ log(δ/z). (3)

ai are identically, independently distributed random vari-
ables (i.i.d.). Each ai represents the effect of one attached
eddy (self-similarity of the attached eddies leads to the
property of i.i.d. of ai). The number of the random addi-
tives, Nz, is obtained by integrating the eddy population
density from z, the height of the point of interest, to
the boundary layer height. Taking exponential, ensem-
ble averaging of Eq. 3 leads to the power-law scaling of
the MGFs

〈exp(quz)〉 =

Nz∏
i=1

〈exp(qai)〉 ∼ (δ/z)τ(q). (4)

The symbol ‘∼’ here signifies ‘proportional to’. For
the equality, we have used independency among ai’s
and for the second the property of statistical identi-
cality. Provided the random additive ai is Gaussian,
we have: τ(q) ∼ q2. Central moments can be di-
rectly computed from the MGFs. For example,

〈
u2

〉
=

d2W (q, z/δ)/dq2
∣∣
q=0

. As was shown in Ref. [14], the

Towsend-Perry constant can then be calculated accord-
ingly: A1 = d2τ/dq2

∣∣
q=0

and measurements yielded

A1 ≈ 1.26 [14]. Near q = 0, the behavior of τ(q) is
well approximated by τ(q) ∼ q2, and the data analysis
yields [14]:

τ(q) = 0.63q2. (5)

Let us now anticipate the key observation of this work.
Scaling of the MGFs requires all additives in Eq. 3 to
be i.i.d. variables, i.e. wall attached eddies being sta-
tistically independent and identical. We relax one of
the requirements –the requirement of ai’s to be statis-
tically identical–but we maintain the request of ai’s be-
ing independently distributed, i.e. we still assume non-
interacting wall eddies, but we allow the eddies’ charac-
teristic velocities to depend on distance to the wall. For
example, let us take each additive being Gaussian with a
scale-dependent variance σi. We then have for Eq. 4:

〈exp(quz)〉 ∼
Nz∏
i=1

〈exp(qai)〉 ∼ exp

(
q2

2

Nz∑
i=1

σi

)
. (6)

Provided σi is i-independent, Eq. 6 simplifies to Eq. 4.
If σi is i-dependent, scaling of the MGFs in the usual
power-law sense does not survive. However, ESS still
holds with a z-independent ξ

ξ(q, qo) =
log 〈exp(quz)〉
log 〈exp(qouz)〉

=
q2

q2o
(7)
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for any couple of q, qo.
Eqs. 6, 7 capture the basic physics behind the ESS

scalings in the context of wall-bounded flows. Self-
similarity holds only in the log region, where the only
characteristic velocity scale is the friction velocity and
the only length scale is the distance from the wall. This
characteristic velocity scale is the basis of ai being as-
sumed to be i.i.d. and the characteristic length scale is
the basis of Eq. 3 with eddies being space-filling and
wall-attached. Beyond the log region, it is expected that
friction velocity ceases to be the only relevant velocity
scale. Thus we allow the ai distribution to vary and not
be independent on z. The existence of the ESS scalings
suggests that the HRAP formalism can be extended be-
yond the log region by allowing the characteristic velocity
to be scale-dependent.

III. EXTENDED SELF-SIMILARITY IN WALL
BOUNDED FLOWS

In this section we present empirical evidence of ESS
in wall bounded flows at high Reynolds number. Hot-
wire measurements of the streamwise velocity taken from
the Melbourne High-Reynolds-Number-Boundary-Layer-
Wind-Tunnel (HRNBLWT) from a boundary layer at
Reτ = 13000 are analyzed (with U∞ = 20(ms−1),
uτ = 0.639(ms−1) and δ = 0.319(m), see Refs. [33, 34]
for details of the dataset). A convergence analysis of this
dataset is conducted in Ref. [14].

The measured 〈exp(quz)〉 as functions of the wall nor-
mal distance z+ are plotted on a log-log scale in figure
1 (a) for representative positive q values, q = 0.5, 0.83,
1.17, 1.5 (see Ref. [14] for detailed discussion on the
scaling of W (q, z/δ)). As already anticipated, power-law
scalings are observed only in the log region 3Re0.5

τ < z+,
z < 0.15δ (see Ref. [6] for a detailed discussion on the ex-
tent of the log region in wall turbulence). In this section
we mainly focus on W (q, z/δ) with positive q values. Be-
cause 〈exp(quz)〉 emphasizes velocity fluctuations of the
same sign as q, positive q values emphasize high positive
velocity fluctuations. Taking positive q values, we em-
phasize those fluid configurations which are influenced
primarily by “sweep” motions [35–37]. A brief discus-
sion on the “ejection” motions, corresponding to nega-
tive q-values, can be found at the end of this section.
In figure 1(b), the measured W (q, z/δ) is plotted against
W (qo = 0.89; z/δ) for positive q values. The choice of qo
is arbitrary because ESS requires no specific choice of qo.
Here we fixed the reference scaling such that, τ(qo) = 0.5.
As is evident in the figure, extended self-similarity is ob-
served in 30 < z+, z < δ, i.e. in a region that is signifi-
cantly more extended than the log region. Let us stress
that τ(q) cannot be directly measured from the ESS scal-
ings and only ξ(q, qo) = τ(q)/τ(qo) is accessible. To re-
cover the value of the absolute exponent τ(q), we invert
the previous relation using the value of τ(qo) obtained
form the power-law scaling. Already on a qualitative ba-

z  !

30z
 
!

0.15z  !

0.53Rez
 

!
"

a)

z  !

30z
 
!

0.15z  !

0.53Rez
 

!
"b)

FIG. 1. (a) log-log plot of
〈
exp(qu+)

〉
against z+ for q = 0.5,

0.83, 1.17, 1.5. z+ = 30, 3Re0.5τ , z = 0.15δ, δ are indicated in
the figure using vertical lines. (b) log-log plot of

〈
exp(qu+)

〉
against

〈
exp(0.89u+)

〉
for q = 0.5, 0.83, 1.17, 1.5. z+ = 30,

3Re0.5, and z/δ = 0.15, 1 are indicated for q = 1.5. The
folding back of the line corresponds to the near wall region,
z+ ≤ 10.

sis, one can see that by comparing the scalings in figure
1(a)-(b), the ESS scalings are of higher quality and can
be observed in a more extended region.

To quantify the quality of the scalings, we plot in Fig.
2 (a) the MGFs compensated with the regular power-law
scalings W (q, z/δ)/(δ/z)τ(q) and in (b) MGFs compen-
sated with the ESS scalings W (q, z/δ)/W (qo, z/δ)

ξ(q,qo).
The ESS scaling extends to the near-wall region, 30 <

z+ < 3Re
1/2
τ , and to the bulk, 0.15δ < z+ < δ (devi-

ations from unit do not exceeding 10% for the largest
moment, q = 1.5). On the other hand, the power-law
scalings of the MGFs are observed only in the log region,
above z+ = 3Re0.5

τ and below z = 0.15δ.

With self-similar wall-attached eddies, the compen-
sated scaling W (q, z/δ)/(δ/z)τ(q) develops a plateau. As
can be seen in Fig. 2 (a), this plateau region coin-
cides with the log region. Beyond the log region, the
observed pleteau in W (q, z/δ)/W (qo, z/δ)

ξ(q,qo) suggests
that while the eddies’ characteristic velocity scale is de-
pendent on z outside of the log region, the eddies’ organi-
zation is not inconsistent with the attached eddy model
(or the HRAP formalism).

In figure 3 (a) and (b), we assess self-similarity scale-
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FIG. 2. (a) Compensated scaling, W (q, z/δ)/(δ/z)τ(q). (b)

Compensated ESS scaling, W (q, z/δ)/W (qo, z/δ)
ξ(q,qo) plot-

ted against z+. The plots are vertically shifted to collapse at
1.

by-scale using the local slopes of the curves shown in
figure 1 as a function of the wall normal distance z+.
For the power-law scaling of MGFs (shown in Fig. 3(a)):

τ(q, z) =
d log(W (q, z/δ))

d log(z/δ)
(8)

and for the ESS (Fig. 3(b)):

τ(q, z) = τ(qo) ·
d log(W (q, z/δ))

d log(W (qo, z/δ))
= τ(qo) · ξ(q, qo, z). (9)

Again, a significantly more extended scaling region is
found for the ESS scalings.

In figure 4, we summarize the results for the scaling
exponents for positive q values. Direct power-law fitting
of W (q, z/δ) against z/δ is restricted to the log region;
the ESS fit of W (q, z/δ) against W (0.89; z/δ) can be con-
ducted in 30 < z+, z < δ. Error bars are estimated by
considering a linear fit in log-log coordinate, y ≈ ax+ b.
We define the uncertainty in the fitted slope, a, as fol-
lows: ∆a = 3std(y−ax−b)/[a(max(x)−min(x))]. Where
std(y − ax− b) is the standard deviation of the residual,
and a(max(x) − min(x)) is the expected change of y in
the fitted range. The uncertainty in the fitted value of a
is taken to be three times the ratio of those two quanti-
ties. Up to q = 1, the measured scaling exponent follow
the Gaussian approximation closely. ESS clearly helps in

a)
z  !

30z
 
! 0.15z  !

0.53Rez
 

!
"

b)
z  !

30z
 
! 0.15z  !

0.53Rez
 

!
"

FIG. 3. (a) Local scaling exponent of W (q, z/δ) (Eq. 8). (b)
Point-to-point scaling exponent of W (q, z/δ) from ESS and
plotted against the wall normal distance (Eq. 9). The fitted
local scaling exponents locally averaged among 5 consecutive
points.

FIG. 4. Fitted scaling exponents of W (q, z/δ) (symbols). The
power law fit (+) is conducted in the log region (3Re0.5τ < z+,
z < 0.15δ). ESS fit (×) is conducted in the region 30 < z+,
z < δ. The solid line corresponds a best fit near q = 0, 0.63q2.

reducing the uncertainty in measuring the scaling expo-
nents.

The Reynolds number dependency is examined in
figure 5. Hot-wire measurements of boundary layers
at Reτ = 2700, 4800, 7800, 10000, 13000 from the
Melbourne HRNBLWT are analyzed. Details on this
dataset can be found in Ref. [34]. In figure 5, the
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a)

0.5q  

0.83q  

1.17q  

1.5q  

b)

0.5q  

0.83q  

1.17q  

1.5q  

FIG. 5. Log-log plot of the measured
〈
exp(qu+)

〉
against〈

exp(0.89u+)
〉

(a), b) respectively for
〈
exp(qu+)

〉
and〈

exp(−qu+)
〉
) for q = 0.5 (purple), 0.83 (yellow), 1.17 (or-

ange), 1.5 (blue) at Reτ = 2700 (+) , 4800 (◦), 7800 (/),
10000 (�), 13000 (×).

measured W (±q; z/δ) are plotted against the measured
W (±0.89; z/δ) for Reτ = 2700, 4800, 7800, 10000, 13000
on a log-log scale. No significant Reynolds number de-
pendency is found. Before concluding this section, let
us take a look at the statistics for negative q-values.
The region of extended self-similarity is narrower for
W (−q; z/δ) compared to positive q-valued MGFs. As
mentioned in this section, 〈exp(quz)〉 is dominated by
fluctuations of the same sign as q, therefore W (−q; z/δ)
emphasizes the “ejection” motions. For “ejection” mo-
tions, near wall fluid tends to be brought into the bulk
region. Because viscosity is mostly dominant in the near
wall region, footprints of viscous effects should be visible
in such “ejection” motions. This is probably the rea-
son why ESS scaling has a poorer quality compared to
the cases where q > 0 . Nevertheless, ESS shows much
improved scaling properties compared to the standard
scaling versus δ/z also for negative q values (not shown).

IV. EXTENDED SELF-SIMILARITY FOR
LARGE SCALE AND SMALL SCALE MOTIONS

In this section, empirical evidence of ESS scaling in
large scale and small scale fluid motions is presented. To
obtain the velocity signal for large scale motions, a top-
hat filtering in Fourier space (using a cutoff wavenumber
k∆ = 2π/∆, where ∆ is the filter scale) is conducted
on the hot-wire measurements of a boundary layer at
Reτ = 13000. Boundary layer data at this Reynolds
number provide us sufficient scale separation to decou-
ple the viscosity-affected near-wall cycles and geometric-
dependent large-scale motions [38, 39]. The filtering
length scale is one boundary layer height (∆ = δ) and is
kept constant at all wall normal heights (50 measurement
heights in total). The streamwise velocity fluctuations
are thus decomposed into the large scale, and small-scale
fluctuations:

uz = uLz + uSz . (10)

uLz is the filtered fluctuations, uz is the unfiltered veloc-
ity and uSz = uz − uLz . The measured large-scale MGFs〈
exp(quLz )

〉
as functions of the wall distance are plotted

in figure 6(a) for representative positive values of q. In
figure 6(b), the same quantities are plotted in ESS scal-
ing. In figure 7, the same plots for uSz are shown. As one
can see, power-law scaling of

〈
exp(quLz )

〉
is barely seen in

the log region. On the other hand, for
〈
exp(quSz )

〉
(Fig. 7

a)), power-law scaling is observed in the region 30 < z+,
z < 0.5δ. The ESS scalings are of high quality, both for
uLz and uSz . The region of ESS, from figures 6 b), 7 b),
extends from z+ = 30 to z = δ.

From the above observations, we might conclude that
the breaking of the power-law scaling of the MGFs is
mainly brought in by the large scale motions, which
develop a sudden change in their statistical properties

around z+ ≈ 3Re
1/2
τ . On the other hand, both the large-

scale and small-scale components seem to exhibit good
ESS scaling properties. As anticipated in §II, we can ra-
tionalize these findings as follows: we model the velocity
signal uSz to be an additive process of i.i.d. Gaussian vari-
ables aSi at all distances from 30 < z+ to z < δ, and uLz
to be another additive process of independent but not
identically distributed Gaussian additives aLi with the
variance σLi depending on z:

uSz =

Nz∑
i=1

aSi , uLz =

Nz∑
i=1

aLi . (11)

By invoking the independency among the random addi-
tives, one derives:

〈exp(quz)〉 ∼ 〈
Nz∏
i=1

exp(qaSi )〉〈
Nz∏
i=1

exp(qaLi 〉

∼
(
δ

z

)τS(q)

exp

(
q2

2

Nz∑
i=1

(σLi )

)
.

(12)

with τ(q) = σSq2/2. We can then define the z-dependent
variance σLi such as to reproduce the MGFs for uLz ,
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FIG. 6. a) log-log plot of
〈
exp(quLz )

〉
against z for q = 0.5,

0.83, 1.17, 1.5. The two vertical lines indicate z+ = 600,
2500. b) log-log plot of

〈
exp(quLz )

〉
against

〈
exp(0.89uLz )

〉
for

q = 0.5, 0.83, 1.17, 1.5.

WL(q; z) = 〈exp(quLz )〉. To do that, we discretize the
wall normal distance logarithmically: zi/δ = 2−i and we
define σLi such that:

exp

(
q2o
2
σLi

)
=

WL(qo, zi)

WL(qo, zi−1)
. (13)

Replacing Eq. 13 in to Eq. 12, we obtain the ESS scaling:

〈exp(quz)〉 ∼ 〈exp(qouz)〉(q/qo)
2

,

with 〈exp(qouz)〉 =

(
δ

z

)σSq2o/2 WL(qo; z/δ)

WL(qo; 1)

(14)

Hence ESS scaling is preserved in the range of scales
where the two signals uLz and uSz can be represented by
Eq. 11. In the above discussion, uSz , uLz are consid-
ered statistically independent. For boundary layer flows,
this cannot be exact (see e.g. Refs.[40–42]). To quan-
tify possible deviations, in Fig. 8 we compare 〈exp(quz)〉
against

〈
exp(quLz )

〉
·
〈
exp(quSz )

〉
. The agreement be-

tween
〈
exp(quLz )

〉
·
〈
exp(quSz )

〉
and 〈exp(quz)〉 is in fact

quite good (for q ≤ 1.17). Because for high q values
〈exp(qu)〉 emphasizes more rare, intense events, figure 8
suggests correlation among large and small scale motions
are mainly due to intense events.

a)

30z
 
!

0.5z  !

b)

z  !

30z
 
!

0.15z  !

0.53Rez
 

!
"

FIG. 7. Same as figure 6 but for uSz . The two vertical lines
indicates the wall normal heights z+ = 30, z = 0.5δ.

0.5q  

0.83q  

1.17q  

1.5q  

FIG. 8. Log-log plot of measured 〈exp(quz)〉 (symbols)
against the wall normal distance z for q = 0.5(�), 0.83(◦),
1.13(C). Lines are for

〈
exp(quSz )

〉
·
〈
exp(quLz )

〉
: q = 0.5 (pur-

ple), 0.83 (yellow), 1.13 (orange), 1.5 (blue).

V. CONCLUSIONS

Empirical evidence for ESS in the MGFs of the stream-
wise velocity fluctuations at high Reynolds number in the
region 30 < z+, z < δ is presented, indicating the exis-
tence of a common physical process in the log region, the
bulk region and in the viscosity-affected region. Results
are robust as a function of Reynolds number, at least
in the range analyzed here. Relaxing the requirement of
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wall attached eddy being self-similar at all scales in the
attached eddy model, we have shown that the hierarchi-
cal random additive processes can reproduce most ob-
served scalings. Within the framework of the Townsend
attached eddy hypothesis, present results suggest by al-
lowing the eddy characteristic velocity scale to be depen-
dent on the distance from the wall outside the log layer,
the attached eddy model may be used to describe the flow
beyond the log region. Then we split the velocity fluctua-
tions in a filtered large-scale component, uLz and a small-
scale remaining component, uSz = uz − uLz . A power-law
scaling of

〈
exp(quLz )

〉
is observed in the more restrictive

log region, while for
〈
exp(quSz )

〉
a more extended power-

law scaling is observed in the region 100 < z+, z < 0.5δ.
ESS scaling is found over a wide range 30 < z+, z < δ
for both uLz and uSz . The effects of the filtering length
scale and Reynolds number on the statistical properties

of uLz , uSz are left for future investigations, as well as the
statistical structure of the seemingly self-similar process
describing uSz . Studies of those effects can be helpful in
understanding the interactions among the large and small
scale motions in wall bounded turbulence.
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