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Abstract

We present a complete theoretical framework for the axial dispersion of a Brownian colloidal

suspension confined in a parallel plate channel, extending the Taylor-Aris treatment to particles

with diameters comparable to the channel width. The theoretical model incorporates the effects

of confinement on the colloid distribution, corrections to the velocity profile due to the effects of

colloid concentration on the suspension viscosity, and position-dependent diffusivities. We test

the theoretical model using explicit-solvent molecular dynamics simulations that fully incorporate

hydrodynamic correlations and thermal fluctuations, and obtain good quantitative agreement be-

tween theory and simulations. We find that the non-uniform colloid distributions that arise in

confinement due to excluded volume between the colloids and channel walls significantly impact

the axial dispersion.
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I. INTRODUCTION

Particles in non-uniform flow fields undergo an enhanced axial dispersion (spreading)

compared to diffusion in the absence of flow.[1] Qualitatively, axial dispersion is enhanced

by flow because particles diffuse across streamlines and advect at rates different from the

average velocity, resulting in a net spreading relative to the mean. In his seminal papers,[2, 3]

Taylor calculated the asymptotic form of this dispersion coefficient for non-interacting point-

like tracer particles in a cylindrical tube under the assumptions that the solute particles

diffuse isotropically and explore all streamlines of the flow field uniformly. Aris subsequently

performed a moment analysis that justified the assumptions in Taylor’s original analysis and

captured the transient evolution of the dispersion.[4]

The Taylor-Aris description of dispersion works well for molecular solutions, whose com-

ponents are considerably smaller than the channel diameter. However, the physical picture

becomes significantly more complicated for colloidal systems. Some volume of the channel

is excluded to the colloids due to their finite diameters. Under sufficient confinement, the

excluded volume between the colloids and channel walls can establish a non-uniform col-

loid distribution.[5–7] This means that the colloids do not explore all streamlines equally.

Moreover, due to hydrodynamic interactions between the colloids and the channel walls, the

colloid diffusion tensor can be anisotropic;[8] the diffusion coefficient normal to the channel

walls may differ significantly from the axial diffusion coefficient even at rest. For sufficiently

high colloid concentrations, secondary flows between colloids may also modify the effective

flow field or diffusion coefficient.

Brenner and Gaydos have comprehensively treated the dispersion problem for a single

colloid in a cylindrical pore.[9] Their theory accounts for anisotropic diffusion and an ap-

plied external field on the colloid. Silebi and DosRamos applied DLVO theory to compute

the forces between colloids and the walls of a capillary tube, and also accounted for an

effective external potential due to inertial lift on the colloids.[10] A simplified version of

the Brenner and Gaydos theory assuming no external field and isotropic diffusion has also

been developed for rigid colloids between parallel plates and amounts to the introduction

of an additional geometric factor that reduces the actual dispersion from the Taylor-Aris

value.[11] Bhattacharya et al. applied a perturbation method to analyze the dispersion of

finite-size particles confined in cylindrical tubes subject to inertial lift.[12] However, these
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theories do not account for non-uniform colloid distributions that can arise even when the

colloids have only hard-core volume exclusion with the channel walls. Moreover, classical

dispersion theory results may not be sufficiently accurate to model dispersion in a confined

suspension, where hydrodynamic coupling between many colloids and the channel walls can

affect the dispersion. For example, Griffiths and Stone showed that shear-enhanced diffusion

can cause a reduction of the axial dispersion.[13]

The invention of microfluidic devices has fueled interest in Taylor-Aris dispersion in or-

der to control dispersion,[14–16] improve micromixing,[17, 18], probe flow fields,[19] and

measure colloid[20] and nanoparticle[21] diffusion coefficients. Unfortunately, experimental

validation of theoretical models for axial dispersion remains challenging due to the small dif-

fusion coefficients of the colloids, which necessitate long channels for capturing the long-time

dispersion,[22] and the difficulty of performing particle-tracking measurements with sufficient

spatial and temporal resolution. Computer simulations are an ideal tool to address these

issues because they allow for the precise tracking of the colloidal particles, direct measure-

ment of the flow fields, and systematic control over the relevant parameters, such as solute

concentration and flow strength. Recently, two-dimensional mesoscale simulations were per-

formed to study the axial dispersion of repulsive colloidal disks of varying diameter.[23]

Significant deviations from the theoretical Taylor-Aris prediction were observed, but due to

the challenge of obtaining reliable statistics the authors were unable to conclude whether or

not existing theory was sufficient to describe this behavior.

In this contribution, we develop a theory for the axial dispersion of dilute Brownian

colloids in a parallel plate geometry that explicitly takes into account the effects of colloid

concentration and confinement on the colloid distribution, velocity profile, and diffusion

coefficients. We describe a framework to estimate all of the necessary parameters to reliably

predict the enhancement to the axial dispersion. We perform complementary molecular

dynamics simulations to directly test our theoretical predictions. Our simulation approach

fully takes into account hydrodynamic interactions and thermal fluctuations.

The article is organized as follows. In Section II, we derive an expression for the axial

dispersion of colloids in the parallel plate geometry. We introduce our simulation model and

methodology in Section III. We present our results and findings in Section IV, and provide

a brief summary and outlook in Section V.
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II. THEORY

The analysis presented by Brenner and Gaydos [9] for a colloidal particle in a cylindrical

pore can be straightforwardly applied to the parallel plate geometry, schematically drawn in

Figure 1. The coordinate system has been chosen so that the principal axes coincide with

the transverse (x), vorticity (y), and axial directions (z). Due to the channel walls, the

colloid center of mass cannot cross the boundaries at x = ±`/2. The accessible width ` will

be smaller than the actual channel width Lx because of the finite particle diameter a.

z	

x	

y	
a `Lx	

u

Figure 1. Schematic representation of flow in the parallel plate geometry, indicating the transverse

(x), vorticity (y), and axial (z) directions. The colloid of diameter a diffuses in the accessible width

` of the full channel width Lx, and is advected by the velocity field u.

We model the time-dependent probability distribution p for the center of mass position

of a single colloid. In doing so, we neglect correlations between the distributions of different

particles and assume that the colloid has negligible inertia on the timescales of interest

so that its velocity is Maxwell-Boltzmann distributed. Then, the time evolution of the

distribution is governed by the Smoluchowski equation,

∂p

∂t
+∇ · j = 0, (1)

with a probability flux j,

j = pu−D · ∇p− pβD · ∇φ . (2)

The first term is the advection due to the flow field u, the second term is the diffusion due

to Brownian motion with diffusion tensor D, and the third term represents an applied force

due to some external potential φ, where β = 1/(kBT ) is the inverse temperature.

Concentration and confinement effects of the suspension are included in a mean-field

treatment through the effective flow field, diffusivity, and external potential. In the parallel
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plate geometry, the flow field is expected to be one-dimensional in nature: u = u(x)ez.

Moreover, in the absence of an applied field, the external potential should only be due

to the effects of confinement between the walls so that φ = φ(x). We neglect any shear-

enhanced diffusion so that D has only diagonal elements. This is justified for sufficiently

small particles, low concentrations, or slow flow rates, where Brownian motion dominates

over advective transport. Simplifying and applying a product rule to eq. (2) yields the

governing equation

∂p

∂t
+ u(x)

∂p

∂z
=

∂

∂x

(
w(x)Dx(x)

∂

∂x

(
p

w(x)

))
+Dz(x)

∂2p

∂z2
, (3)

where Dx is the diffusion coefficient in the transverse direction, Dz is the diffusion coefficient

in the axial direction, and w is the normalized Boltzmann weight for the particle

w(x) =
e−βφ(x)∫ `/2

−`/2 e
−βφ(x)dx

. (4)

In order to close the problem, we apply no-flux boundary conditions at the walls, jx(x =

±`/2, z, t) = 0, and assume an infinite channel in order to neglect entrance effects, p(x, z →

±∞, t) → 0. The colloid’s initial position is assumed to be (x0, z0), so p(x, z, t = 0) =

δ(x− x0)δ(z − z0) to make p properly normalized. Under these conditions, it can be shown

that w is the steady-state marginal probability distribution for the colloid across x (see

Appendix). In eq. (3), we have assumed that Dz is independent of the colloid’s z position,

which is reasonable for an infinite channel. However, hydrodynamic interactions with the

channel walls significantly influence diffusion as a function of transverse position,[8] and so

Dx and Dz are taken to be functions of x.

We seek the long-time dispersivity K that quantifies the average spreading of the particle

distribution, which is expected to have a contribution due to Brownian motion and an

enhancement due to flow. We define K using the Einstein relation for a Brownian particle

in a moving frame of reference

K =
1

2
lim
t→∞

d

dt

〈
(z − 〈z〉)2

〉
, (5)

where the brackets indicate the total expectation taken using p(x, z, t). Performing a mo-

ments analysis in the spirit of Aris[4] and Brenner and Gaydos[9] (see Appendix for details)

yields the dispersivity

K = Dz +

∫ `/2

−`/2

dx

w(x)Dx(x)

[∫ x

−`/2
(u(x̂)− u)w(x̂)dx̂

]2
, (6)
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where Dz is the average axial diffusion coefficient

Dz =

∫ `/2

−`/2
Dz(x)w(x)dx, (7)

and u is the mean velocity experienced by the colloid

u =

∫ `/2

−`/2
u(x)w(x)dx . (8)

The dispersivity K is then fully determined by knowledge of only a few important param-

eters: (1) the steady-state colloid distribution w, (2) the velocity profile u, and (3) the

diffusion tensor D. Theoretical methods for estimating these parameters will be discussed

in detail in Section IV.

III. SIMULATION MODEL AND METHODS

In order to test the theoretical prediction of eq. (6), we performed molecular dynamics

(MD) simulations of colloidal suspensions under flow. Explicit-solvent molecular dynamics

incorporates hydrodynamic effects, energetic interactions between particles, and thermal

fluctuations. The solvent and colloids were modeled as spherical particles interacting through

the Lennard-Jones potential

Uij(r) = 4εij

[(σij
r

)12
−
(σij
r

)6]
, (9)

where r is the distance between particles of types i and j, εij sets the interaction strength,

and σij sets the range of the interaction. Unless stated otherwise, the potential was truncated

at rcut = 3σij with a smoothing polynomial applied from 2.5σij so that both the energy and

force were zero at rcut. In what follows, all quantities are reported in reduced units derived

using the solvent-solvent interaction energy scale, εss = 1; solvent-solvent interaction length

scale, σss = 1; and solvent particle mass, ms = 1, as the fundamental units. For example,

the derived unit of time is
√
msσ2

ss/εss in this system of units.

Neutrally buoyant colloids were density-matched to the solvent by setting their mass

mc = πρsa
3/6, where ρs is the solvent density and a is the effective diameter of the colloids

(see Section IV A). The interactions between colloids were modeled through the Weeks-

Chandler-Anderson (WCA) potential,[24] which is obtained by truncating eq. (9) at its

minimum, rcut = 21/6 σij, and shifting it by εij. The colloid-colloid interaction length was
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set to σcc = 3, and the interaction strength was set to εcc = 10 to reduce possible overlap

between colloids. Colloid-solvent cross-interactions were modeled using the Lennard-Jones

potential with σcs = (σcc + σss)/2 = 2 and εcs = 1.

We confined our colloidal suspension between two planar walls in the xy-plane using

a similar model to that of Khare and co-workers.[25, 26] The walls were constructed by

placing particles into one layer of a face-centered cubic crystal with lattice spacing 1.3 at

x = ±12 and fixing their positions with stiff harmonic springs (spring constant 500). Wall

particles interacted with each other through the Lennard-Jones potential with σww = 1 and

εww = 1. Wall-solvent interactions were similarly treated with σsw = 1 and εsw = 1. The

cross-interactions with the colloid were modeled using the purely repulsive WCA potential

with σcw = 2 and εcw = 1. With this choice of parameters, the lattice spacing gave a

nearest-neighbor distance smaller than σww, which achieved two important effects: (1) the

suspension could not penetrate the walls, and (2) the walls became microscopically rough,

which is essential to establish no-slip boundary conditions. A representative simulation

snapshot is shown in Figure 2.

Figure 2. Simulation snapshot[27] of the parallel plate channel for colloid volume fraction Φ = 0.1.

The coordinate axis is oriented as in Figure 1.

Despite the purely repulsive colloid-wall interactions, we observed that the colloids would

sometimes “stick” to the channel walls, which limited our ability to statistically sample the

entire colloid distribution during the accessible simulation time. We attribute this effect to

structuring of the Lennard-Jones solvent and depletion forces that resulted in a weak net

attraction of the colloids to the walls. In a physical suspension, there may be additional

repulsive forces between the channel walls and the colloids, e.g. electrostatics, which coun-
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teract these attractions. The proposed theory is general and is able to accommodate such

repulsive external fields imposed on the colloids. Accordingly, we introduced an additional

purely repulsive 9-3 potential acting only on the colloids

Ur(x) = εr

[
2

15

(
1

|x− xr|

)9

−
(

1

|x− xr|

)3
]
, (10)

where x is the transverse position of the colloid, εr = 144 is the interaction strength, and

the walls have been placed at xr = ±10. The potential was truncated at its minimum,

xcut = (2/5)1/6, and shifted by εr
√

10/3. This potential effectively reduced the width of the

channel that the colloid could explore by about 10%. We emphasize that this potential has

been chosen as a matter of simulation convenience, and other wall interactions (including

attractive surfaces) can also be incorporated into the theory through φ in eq. (4).

We performed molecular dynamics simulations using the HOOMD-blue simulation pack-

age [28–30] with double precision floating point operations to minimize momentum drift

during long simulations. The equations of motion were integrated using the velocity Verlet

algorithm with a timestep ∆t = 0.0025. Due to the size asymmetry between the colloid and

solvent particles, the pair force calculations were accelerated with a binary tree neighbor

search.[31] Pressure-driven flow was generated by applying a constant gravitational body

force Fg = mig to all particles in the dispersion along the flow direction with acceleration

constant g. The non-equilibrium flow of the suspension generates heat that must be dissi-

pated to maintain the fluid at a constant temperature. In order to minimally perturb the

dynamics of the suspension, a Langevin thermostat was applied to the wall particles with

friction factor γ = 4, essentially turning the walls into heat sinks. The suspension was not

explicitly thermostatted. All values of g investigated in this work were sufficiently small so

that the excess heat was efficiently dissipated through the walls and the system remained

at the targeted temperature T = 2.5.

The suspensions were initialized by placing the colloid and solvent particles randomly on

a lattice between the parallel plates in order to give a suspension density of approximately

ρ = 0.62. We applied periodic boundary conditions in the vorticity (y) and axial (z) dimen-

sions of our simulations with box lengths Ly = Lz = 29.9. This kept the suspensions at one

effective average concentration throughout the simulation, making it possible to systemati-

cally identify concentration effects on the dispersion. We define the concentration from the

colloid volume fraction Φ = Ncπa
3/(6LxLyLz), where Nc is the total number of colloids in
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the system and Lx is the effective channel width set by the atomistic walls (discussed in

Section IV A). The number of colloid and solvent particles simulated for each concentration

are summarized in Table I.

Table I. Number of colloids, Nc, and solvent particles, Ns, in the channel for targeted volume

fraction, Φ, and suspension density ρ = 0.62. D is the simulated bulk diffusion coefficient of the

suspension extrapolated to infinite box size. Dz is the simulated axial diffusion coefficient at rest

in the parallel plate channel. Subscripts on reported values indicate the measurement uncertainty

in the last digit.

Φ Nc Ns D Dz

0.005 6 12822 0.1261 0.1161

0.025 30 12619 0.1170 0.1071

0.050 61 12356 0.1100 0.0971

0.075 91 12101 0.1030 0.0890

0.10 122 11838 0.0960 0.0831

We equilibrated the suspensions for 105 MD steps at rest, and performed 5 × 105 MD

steps to allow the flow to reach steady-state before performing measurements. We recorded

the position and velocity of each colloid every 50 MD steps, and conducted between 4 and

16 independent simulations for every colloid concentration and flow rate considered, each

running at least 1.5× 108 MD steps. We measured the mean squared displacement (MSD)

of each colloid in the frame of reference of the average velocity of all colloids, 〈(z − ut)2〉,

because at long times the mean of the distribution advects with the average colloid velocity

(see Appendix). The dispersivity can be computed from the first derivative of the MSD with

respect to time using eq. (5). Figure 3 shows the results of this procedure for Φ = 0.005 at

increasing g, where the first derivative of the MSD has clearly converged to a limiting value.

We determined K by fitting over this plateau region. We emphasize the need to perform

multiple independent simulations, particularly for dilute concentrations, over long times in

order to obtain a reliable measurement of K.
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Figure 3. Time derivative of the MSD along the flow direction of the channel for a dilute colloid

suspension with Φ = 0.005 at increasing g. The dark lines are averages over multiple independent

simulations, while the shaded regions correspond to the measurement uncertainty determined from

the standard error of the independent simulations (less than 2% of average values).

IV. RESULTS AND DISCUSSION

The colloid distribution, velocity profile, and diffusion coefficients for our simulated model

must be obtained to compare eq. (6) against the direct simulation results. Ideally, these

parameters could all be obtained theoretically so that predictions can be made independently

of the simulations. In the present work, we estimate parameters for a dilute suspension of

colloids with perfect slip because these are the conditions obtained in our simulations. In

a physical system, the colloids are likely to have either no-slip or partial slip boundary

conditions, which may modify the effective colloid velocity and the diffusion coefficients in

confinement. These differences can be accommodated by appropriate modification of the

theory presented here.

First, we characterize properties of our simulated system such as channel size, fluid prop-

erties, and colloid diameter. Then, we theoretically estimate the colloid distribution, flow

profiles, and diffusion coefficients, and compare our predictions directly against the simu-

lation results when possible. Finally, we incorporate these results into eq. (6) to compare

dispersion models of increasing detail with our simulation results.
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A. Model characterization

We investigated the flow behavior of the pure solvent in the parallel plate channel. We

placed Ns = 12873 solvent particles randomly into the channel. We performed simulations

for different acceleration constants, 0.002 ≤ g ≤ 0.010, and measured the steady-state

solvent velocity profile. Figure 4 shows a representative velocity profile of the pure solvent

at g = 0.002, which clearly has the characteristic parabolic shape expected for pressure-

driven flow of a Newtonian fluid between parallel plates

u(x) =
3

2
U

[
1−

(
2x

Lx

)2
]
, (11)

where U is the mean solvent velocity. We fit U and Lx to the simulated velocity profiles for

the different flow rates, and found Lx = 23.4±0.1 independent of g, from which we compute

an effective average solvent density of ρs ≈ 0.62. The measured Lx is slightly smaller than

the nominal distance at which the walls were placed due to the roughness of the walls and the

excluded volume between the solvent and wall particles. In order to determine the solvent

viscosity, we used the relationship between U and the fluid properties in this geometry,

U =
ρsgL

2
x

12ηs
, (12)

and found ηs = 0.99± 0.02 in excellent agreement with the value of 1.00± 0.03 interpolated

from available equilibrium data for the Lennard-Jones fluid.[32, 33]

0.00

0.02

0.04

0.06

0.08

0.10

-12 -8 -4  0  4  8  12

u

x

simulated
fit, eq. (11)

Figure 4. Velocity profile of the pure solvent at ρs = 0.62, T = 2.5, and g = 0.002.

In order to density-match the colloid to the solvent, we needed to identify the effective

colloid diameter a. We tentatively set the mass of the colloid using a ≈ σcc and ρs = 0.62.
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We then performed bulk simulations of a single colloid in a cubic simulation box of edge

length L = 20 at the same effective density as in the parallel plate channel. In contrast to the

suspensions in the parallel plate channels, isothermal conditions were achieved by applying

a Nosé-Hoover thermostat to the suspension with time constant τNH = 0.5. We measured

the equilibrium diffusion coefficient of the colloid by computing its three-dimensional MSD,

〈∆r2〉, as a function of time. The simulated diffusion coefficientDL is related to the measured

MSD by 〈∆r2〉 ∼ 6DLt at sufficiently long times. We use the symbol DL to emphasize the

fact that the diffusion coefficient measured in a simulation is system-size dependent and

needs to be corrected for finite-size effects, as explained later in this section. Figure 5 shows

〈∆r2〉 averaged from four independent runs. We can see that the motion of the colloid is

ballistic at short times and then becomes fully diffusive after t & 30, where the MSD achieves

a slope of 1. We extracted a diffusion coefficient of DL = 0.107 ± 0.005 from this diffusive

regime.

10
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1

〈∆
r
2
〉

t

Figure 5. Mean square displacement 〈∆r2〉 of a single colloid vs. time t.

Due to the long-ranged nature of hydrodynamic interactions, the simulated DL must be

corrected for finite size effects of the periodic simulation box in order to obtain the true bulk

diffusion coefficient D. We employed the correction derived by Yeh and Hummer [34]

D = DL +
ξkBT

6πηL
, (13)

where ξ ≈ 2.837297 for a cubic simulation box and η is the viscosity. We used η ≈ ηs for

a single colloid, leading to a bulk diffusion coefficient D = 0.126 ± 0.005. We verified the

reliability of this correction by performing additional simulations in a simulation box with

L = 30, and found DL = 0.114± 0.004 and D = 0.127± 0.004.
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For a single colloid, we also expect the diffusivity to be given by the Stokes-Einstein

relation D = µkBT , where µ is the mobility. Because the colloids are modeled as smooth

spherical particles, the solvent is able to exert normal forces but no torques. Hence, we

expect the colloids to have perfect slip boundary conditions, µ = 1/(2πηa). We can then

estimate a ≈ 3.2 using η ≈ ηs. This estimate is consistent with our simulation model because

the Lennard-Jones potential should exclude slightly more volume than the sphere defined

by σij because the potential’s minimum is at 21/6σij. Accordingly, we set the mass of our

colloids to mc = 10.64 in all simulations using ρs = 0.62.

We then additionally measured the bulk diffusion coefficient D of our suspensions (edge

length L = 30). Nc and Ns were appropriately adjusted for the larger volume of the sim-

ulation box compared to the slit channels. Because the suspension viscosity is not known

a priori, we instead corrected our data for finite size effects of the periodic simulation box

using the expression from Yeh and Hummer[34] for particles with slip boundary conditions

that is independent of the suspension viscosity

D ≈ DL

(
1− ξa

3L

)−1
. (14)

The suspension diffusion coefficients reported in Table I decrease as a function of concen-

tration. We qualitatively expect that this is due to an increase in the suspension viscosity.

Cichocki and Felderhof[35] showed that the viscosity of dilute suspensions of colloids with

slip boundary conditions is

η(Φ) = ηs
(
1 + 2.5Φ + 1.911Φ2

)
, (15)

which increases with concentration and can be considered a small correction of order Φ2

to the Einstein viscosity.[36] We repeated the correction of the measured suspension diffu-

sion coefficients using eq. (13) with the viscosity given by eq. (15). We found quantitative

agreement with the results obtained by eq. (14), indicating that eq. (15) is a reasonable con-

stitutive equation for our simulated suspensions. We also compared D with the values that

would be predicted by the Stokes-Einstein relation for the suspension, and found deviations

of less than 4% over the range of concentrations we have considered.
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B. Colloid distributions

Colloidal mixtures of sufficiently high concentration adopt non-uniform density profiles in

confinement. It is well-known from classical statistical mechanics that this effect is present

even for a simple purely repulsive hard sphere fluid against a structureless flat wall.[5–7]

In this case, the fluid density is typically higher near the surface, and decays to the bulk

density far away. The structuring near the wall occurs only due to the excluded volume

interactions both within the hard sphere fluid and against the wall, and to our knowledge

has not been accounted for in previous theories of axial dispersion. We can incorporate this

inhomogeneous particle distribution into our current model through an “effective” external

potential φ that modifies the distribution w according to eq. (4).

Various statistical mechanical methods are available to predict the inhomogeneous den-

sity profiles of simple liquids.[37] In particular, classical density functional theories[38, 39]

and direct molecular simulations, e.g. Monte Carlo or MD, have been applied to predict the

density profiles of fluids near surfaces[7, 40, 41] using only knowledge of the interparticle

interactions. MD is obviously most expedient to determine the equilibrium particle distribu-

tion in the current work. However, we emphasize that this profile could also be determined

theoretically by alternative computational methods or experimentally through appropriate

particle tracking measurements.

The purely repulsive WCA colloids in our model can be approximately mapped onto

the hard sphere fluid,[24] and so are expected to exhibit similar structuring near the walls

in confinement. Figure 6 shows the steady-state colloid distribution along the transverse

direction, w, at increasing Φ both at rest and at g = 0.010. At the lowest concentration, Φ =

0.005, the colloids are nearly uniformly distributed between the walls, but then gradually

start to aggregate at the edges as Φ is increased.

Particles can undergo cross-stream inertial migration in Poiseuille flow,[42] even at small

but finite Reynolds number.[43] Inertial migration could lead to the focusing of particles

onto planes near the walls in the parallel plate geometry, further enhancing the structuring

observed in w. It has been shown that inertial migration effects are significant when the

product of the particle Reynolds number, Rec, and particle Péclet number, Pec, is greater

than unity.[12] For our suspensions, we estimate Rec ∼ 0.4 and Pec ∼ 0.4 using the defi-

nitions in ref. 43, and so we expect that inertial effects should not be significant and any
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structuring should be due only to the colloid interactions in confinement. We confirmed

this by repeating the measurement of w under flow at g = 0.010 (the maximum flow rate

considered) and found that the profiles are essentially indistinguishable. Accordingly, the

equilibrium particle distribution may be applied even under flow for the concentrations and

flow rates we have considered.
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Figure 6. Probability w to find a colloid at a given x-position at rest (lines) and for g = 0.010

(symbols) for increasing colloid concentrations Φ. Only every second point is drawn for g = 0.010.

Error bars are omitted for clarity, but are no larger than ±10% for all points.

C. Velocity profiles

At steady state, the colloid velocity profile should approximately satisfy the one-

dimensional Navier-Stokes equation for gravity-driven flow

d

dx

[
η (Φ(x))

du

dx

]
+ ρ(x)g = 0 (16)

with no-slip boundary conditions at the walls, u(x = ±Lx/2) = 0. We neglect any additional

flows between the colloids and the walls, and any lag in the colloid velocity relative to

the solvent. Here, ρ(x) is the density of the suspension with contributions due to the

solvent and the colloids, which may in principle depend on transverse position due to the

confinement. Because the colloids are density-matched to the solvent, we can approximate

the total suspension density as a uniform distribution

ρ(x) ≈ ρ =
msNs +mcNc

LxLyLz
. (17)
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The suspension viscosity η is a function of concentration, which depends on the colloid

volume distribution. The colloid volume distribution can be computed by convolving w,

which effectively gives the distribution of the colloid center of mass, with the volume of a

colloid in three dimensions,

Φ(x) =
Nc

LyLz

∫
w(x− x′)Θ(a/2− |r′|)dr′ , (18)

where x′ is the x component of r′, |r′| is the magnitude of r′, and Θ is the Heaviside step

function. The resulting distributions for Φ(x) are qualitatively similar to w, but are slightly

smoothed near the channel walls.

We solved eq. (16) numerically using eq. (18) for Φ(x) with eq. (15) for η. We emphasize

that there are no free parameters used when solving eq. (16). Figure 7 compares the steady-

state colloid velocity profiles measured from flow simulations at g = 0.010 with the numerical

solution. In all cases, the maximum velocities predicted by the numerical solution are in

excellent agreement with the simulated data. At the highest concentrations, the curvature of

the simulated velocity profiles is somewhat steeper than predicted by eq. (16). This deviation

in the near-wall region may be partially due to colloid-wall hydrodynamic interactions,

which may reduce the colloid velocity. We will assess the importance of these deviations for

computing the dispersion coefficient in Section IV E. We did not observe any lag between the

colloid velocity and that of the solvent in our simulations,[1] consistent with numerical and

experimental results for neutrally buoyant spherical particles of comparably sized particles

in a parallel plate channel.[44, 45]

In the limit that the colloids explore the channel uniformly, the velocity profile given by

eqs. (16) and (18) should be essentially parabolic. However, it is evident that the velocity

profiles in Figure 7 are not parabolic due to the spatially varying viscosity of the suspension.

Hence, it is important to consider the effects of confinement on the velocity profile when

the density profile is highly non-uniform or when there are strong repulsions between the

colloids and the channel walls that exclude the colloid from accessing significant regions of

the channel.
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Figure 7. Suspension velocity profiles u at g = 0.010 for increasing colloid concentrations Φ.

Symbols are measured from simulations, and lines are calculated from eq. (16). Error bars for the

simulated data are smaller than the symbol size.

D. Diffusion coefficients

Considerable theoretical effort has been undertaken to predict the diffusion coefficient of

bulk colloidal suspensions.[35, 46, 47] Incorporating the effects of confinement on the sus-

pension is an even greater theoretical challenge. In the present work, we approximate the

diffusion coefficient in confinement from results for the Stokes flow of a single colloid. Wa-

cholder and Weihs exactly solved the enhancement to the drag on a spherical fluid droplet

moving perpendicular to a single planar wall,[48] which affects the observed transverse dif-

fusion coefficient Dx. From their work, the mobility of a spherical particle with perfect slip

boundary conditions is reduced by a factor 1/λ1, where

λ1(d) = sinhα
∞∑
n=1

n(n+ 1)

(2n− 1)(2n+ 3)

×
[

(2n+ 3)e2α + 4e−(2n+1)α − (2n− 1)e−2α

2 sinh(2n+ 1)α− (2n+ 1) sinh 2α

]
, (19)

d is the center-of-mass separation from the wall, and α = cosh−1(2d/a). In the limit of large

separations, the unperturbed mobility is recovered. Using the method of reflections,[49–51]

eq. (19) can be used to approximate the drag on a particle in a channel by superimposing

the effects of two walls at x = 0 and x = Lx. The particle mobility at center of mass position
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x is reduced by 1/λ2, where

λ2(x) ≈ λ1(x) + λ1(Lx − x)− 1 . (20)

The transverse diffusion coefficient of the confined suspension is then approximately related

to the bulk diffusion coefficient by Dx(x; Φ) ≈ D(Φ)/λ2(x). D can be determined by mea-

surement or an appropriate theoretical model. In this work, we will use the measured bulk

diffusion coefficients of Table I, which are in good agreement with Stokes-Einstein predic-

tions.

Chang and Keh have used a semi-analytical boundary colocation method to exactly

solve the drag on a spherical fluid droplet moving perpendicular to two planar walls.[52]

Equation (20) overestimates the drag they reported for a particle with perfect slip boundary

conditions on the centerline by about 5%. However, their solution is considerably more

computationally demanding to evaluate than eq. (19). Moreover, we have already made a

more significant approximation that the result for a single particle can be applied to the

suspension of many particles. In reality, there are additional flows (reflections) between

particles that may incur error at higher particle concentrations.

We attempted to validate eq. (20), but found that it was challenging to measure Dx

directly in our simulations. We observed in the bulk that a colloid translated a significant

fraction of the accessible channel width before it entered the diffusive regime (see Figure 5).

During this time, the particle is not a purely Brownian walker, and so standard techniques

for evaluating the diffusion coefficient are unsuitable. We accept eq. (20) as a reasonable

approximation for lack of an alternative theory for the simultaneous effects of confinement

and concentration on diffusion of a suspension, and will later validate its usefulness from

the axial dispersion measurements.

The axial diffusion coefficient Dz should also be affected by confinement to some

extent.[52, 53] However, the periodic boundary conditions of our simulation box may also

affect the observed diffusion, as they do in the bulk, making it challenging to theoretically

predict this quantity for the simulated system. Since Dz amounts only to a constant offset in

the overall dispersivity and can be determined experimentally by appropriate extrapolation

of K as g tends to zero, we simply measure the effective diffusion coefficient Dz for the

suspension at rest (see, for example, g = 0.000 in Figure 3), and report the diffusivity in

Table I. Typically, Dz is roughly 85% to 90% of D for our suspensions. If it is not possible
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to determine Dz, a theoretical prediction can be obtained in a manner analogous to eqs. (19)

and (20) for motion parallel to a planar surface (see, for example, ref. 53).

E. Axial dispersion

The results derived so far can be applied in eq. (6) to develop models of increasing

detail for the axial dispersion. We start from the classical Taylor-Aris case in the parallel

plate channel, in which point particles access the entire channel uniformly so ` = Lx and

w(x) = 1/Lx. The classical parabolic velocity profile of eq. (11) is assumed. The diffusion

coefficients are taken to be isotropic so that Dx = Dz = D. Taking the integrals in eqs. (6)

and (8) gives the well-known result[54]

K/D = 1 +
Pe2

210
, (21)

where the Péclet number is defined as Pe = ULx/D.

Using geometric considerations, James and Chrysikopoulos[11] derived an expression for

the dispersivity of rigid colloids between parallel plates when the colloids are excluded from

part of the channel but otherwise remain uniformly distributed. The assumptions related

to the velocity profile and isotropic diffusion remain unchanged. The dispersivity is then

K/D = 1 +
Pe2

210

(
`

Lx

)6

. (22)

We can relax the assumption of isotropic diffusion in eq. (22) by replacing the transverse

diffusion coefficient by its average value in the accessible channel width, Dx. This assumption

is reasonable when the variations in Dx across the accessible channel width are not too large.

From this, we analogously obtain

K/Dz = 1 +
Pe

2

210

(
`

Lx

)6

, (23)

where Pe = ULx/(DxDz)
1/2. We expect that these approximate models should be less

accurate than the full prediction of eq. (6).

Table II summarizes the equations and parameterizations used in these models in order

to make direct comparison with simulation data. Model A is the classical Taylor-Aris result

for the parallel plate channel, in which we set D = Dz so that K/Dz = 1 at rest. Model

B incorporates the effects of the accessible channel width to Model A, but still assumes
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isotropic diffusion. Model C adds anisotropic diffusion through eq. (23). Finally, Model D

fully incorporates the non-uniform colloid distribution into eq. (6) through w and u, and

so includes all the parameters and effects considered so far in this work. In Models A, B,

and C, the characteristic velocity U is calculated using eq. (11) with the suspension density

and viscosity. In Models B and C, we set the accessible width ` ≈ 18.2, estimated from the

accessible region shown in Figure 6 and the expected range of the repulsive wall potential

acting on the colloids. We obtain Dx for Model C by taking an average of D(x) with the

uniform distribution so that Dx ≈ 0.75D.

Table II. Theoretical models for axial dispersion.

model ref. eq. parameters

A 54 (21) D = Dz

B 11 (22) D = Dz, ` = 18.2

C this work (23) Dx = Dx, ` = 18.2

D this work (6) Dx = Dx(x), w(x) from Fig. 6

All models, including Model D, predict enhancements that increase quadratically with

the acceleration constant g because K ∼ U2 in eq. (6) and U ∼ g from eq. (16). Figure 8

compares the theoretical predictions of the different models to the simulated enhancements

K/Dz as a function of g for the most dilute concentration, Φ = 0.005. At this concentra-

tion, the colloids are nearly uniformly distributed in the channel, and so Models B and C are

expected to perform their best at these conditions. It is apparent that Model A vastly over-

predicts the enhancement. This should not be surprising, based on the strong dependence

of eqs. (22) and (23) on the accessible channel width, which predict an ≈ 80% reduction in

the dispersivity due to the exclusion of the colloid from the slowest parts of the velocity pro-

file. The remaining models are quantitatively much closer to the simulated enhancements.

Model C differs from Model B by a factor of Dz/Dx, which is typically greater than 1 for our

simulated suspensions (and more generally for a single particle between two parallel plates),

and so Model C consistently predicts a larger enhancement than Model B. For the dilute

case, Model D gives the best quantitative prediction of the dispersion.

In order to assess which model performs best across multiple concentrations, we compare
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Figure 8. Comparison of predictions of different models for the enhancement of the axial diffusion,

K/Dz, as a function of acceleration constant g at Φ = 0.005. Model predictions are given by labeled

curves, while the simulated values are plotted as points. Error bars for the simulated values are

smaller than the symbol size. See Table II for model details.

the predicted relative enhancements as a function of increasing concentration at fixed g =

0.010, shown in Figure 9. Model A clearly overpredicts the relative enhancement for all

concentrations by a large factor. This overprediction is in agreement with the numerical

results of Sané et al.[23] The predictions of Models B and C are much closer to the simulated

enhancements, but fail at capturing the correct concentration dependence of K/Dz. Only

Model D is able to produce reasonable agreement between the theory and simulation data

for the entire concentration range.

Although Model D captures the qualitative concentration dependence of K/Dz best from

the four models considered, it consistently underpredicts the dispersion by a small amount

at the highest concentrations. We attribute this error to the incorrect curvature of the

velocity profiles predicted by eq. (16) at the higher concentrations in the near-wall regions.

Qualitatively, we expect that the dispersion should increase if the velocity gradient is steeper

because the colloids advect faster relative to the mean. This error is further amplified at

the higher concentrations because the colloid distribution is biased towards the wall region,

where the error in the velocity is largest. We confirmed this source of error by recomputing

the dispersion coefficient using Model D with the velocity profiles from the simulations. The

predicted enhancement is shown as a dashed line in Figure 9, and is in quantitative agreement

with the simulated data. This indicates the sensitivity of the dispersion prediction to small

errors in the velocity, especially near the channel walls, and the importance of reliably
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Figure 9. Comparison of predictions of different models for the enhancement of the axial diffusion,

K/Dz, as a function of concentration Φ at fixed g = 0.010. Model predicitions are given by labeled

curves, while the simulated values are plotted as points. Error bars for the simulated data are

smaller than the symbol size. The dashed line corresponds to prediction of Model D with the

velocity profiles from eq. (16) replaced by the simulated velocity profiles of Figure 7.

predicting the colloid velocity profile.

Although not shown in Figure 9, we also replaced Dx = Dx in Model D, and observed only

a negligible difference in the predicted enhancements. Hence, the most significant difference

between Model C and Model D is the colloid distribution. We conclude that the colloid

distribution is the most significant factor controlling the concentration dependence of the

enhanced dispersion. This makes physical sense given that the colloid distribution controls

how the colloid explores the streamlines of the velocity profile that drive dispersion.

Consider two extreme cases. There is no enhancement to the dispersion when the colloid

is confined to a single streamline because it always advects with its mean velocity. In the

opposite case, the enhancement is maximized if the particle is distributed in such a way

that it spends half its time advecting at the maximum possible velocity, and the other half

advecting at the slowest possible velocity. As concentration increases, peaks are obtained

towards the extrema regions of the velocity profile. It is then crucial to obtain a reliable

estimate for the distribution of the particles in the channel.

Figure 10 concisely highlights the results of the present work by comparing the simulated

enhancement of the axial dispersion to the predictions of Model D for all five concentrations

considered as a function of flow rate. The agreement between the simulations and the

predictions is good in all cases, and can be made completely quantitative by correcting for
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the simulated velocity profile (not shown here). The enhancement increases monotonically as

a function of Φ. From eq. (6), the enhancement qualitatively scales with the Péclet number,

K/D ∼ (UL/D)2. But, U and D should both scale in the same way with concentration

due to their inverse dependence on the viscosity. Hence, we attribute the increase in the

relative enhancement as a function of concentration to the increasingly non-uniform colloid

distribution, which biases the colloids to the streamlines that have the largest deviation from

the mean velocity, and controls the exact scaling prefactor.
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Figure 10. Enhancement of the axial dispersion, K/Dz, as a function of applied body force per

mass g for colloidal suspensions of increasing concentration Φ. Symbols are simulation results,

while lines are predictions from Model D. Error bars for the simulated data are smaller than the

symbol size.

Ultimately, however, all the effects of confinement on the colloid distribution and dif-

fusion are relevant. Although the qualitative concentration dependence of Model C is not

significantly different from Model B, there is a considerable quantitative difference due only

to the anisotropic diffusion. Indeed, Model D would also fail to quantitatively predict the

dispersion if the bulk diffusion coefficient were used rather than Dx. The fact that Dx could

be reasonably replaced by Dx in Model D suggests that eq. (20) provides a reasonably es-

timate of Dx, but the exact functional form for Dx is not necessary. This is promising for

experiments seeking to determine the transverse diffusion coefficient by fitting dispersion

data rather than make predictions.
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V. CONCLUSIONS

We developed a predictive model for the axial dispersion of Brownian colloids in confine-

ment. We showed that non-uniform colloid distributions that arise in confinement due solely

to interparticle interactions significantly influenced the effective axial dispersion. The axial

dispersion was also found to be sensitive to the colloid velocity profile near the channel walls

and the anisotropic diffusion tensor. Our model gave good predictions for the flow rate and

concentration dependence of the dispersion coefficients measured from explicit molecular

dynamics simulations that fully take into account hydrodynamic correlations and thermal

fluctuations. This model should prove useful in many applications involving the axial dis-

persion of colloids, including extracting diffusion coefficients from microfluidic experiments

and modeling the transport of colloids in geological fractures.

In this article, we have restricted ourselves to analyzing dilute suspensions of Brown-

ian colloids with slip boundary conditions. The presented theoretical framework can be

easily extended to no-slip or partial slip boundary conditions on the colloids by appropri-

ate modification of the expressions for the colloid velocity and diffusion coefficients. At

high concentrations, the mean-field approximation that the motion of individual colloids

is independent may break down due to correlations between particles. Moreover, at high

concentrations or flow rates, shearing between colloids may cause the effective diffusion

coefficients to have an additional flow-rate dependence. The approximations for the col-

loid velocity profile and diffusion coefficients may become less accurate for sufficiently large

particle diameters relative to the channel width due to increased colloid-wall interactions.

Unfortunately, the employed simulation approach is not suitable to access these conditions

due to two challenges: (1) diffusion slows considerably as concentration or particle diameter

increases and it becomes difficult to reliably measure the dispersion, and (2) more heat is

generated at high flow rates than can be reasonably removed through the channel walls

alone and thermal gradients develop. These difficulties might be overcome with a mesoscale

simulation approach to determine the concentrations and particle sizes at which deviations

from the presented theory are observed.
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Appendix: Moment analysis

Our derivation is adapted from that of Brenner and Gaydos in a cylindrical tube,[9] and

accordingly we present it in similar form and notation to allow the interested reader to

compare. We define axial moments µm and total moments Mm of the distribution

µm =

∫ ∞
−∞

(z − z0)mpdz, Mm =

∫ `/2

−`/2
µmdx, (A.1)

and assume that (z − z0)
mp → 0 as z → ±∞ in order that µm remains finite. By the

normalization condition, M0 = 1 on p. Using eq. (5), the dispersivity can be computed from

from the total moments

K =
1

2
lim
t→∞

[
dM2

dt
− 2M1

dM1

dt

]
. (A.2)

The problem then reduces to computing the first and second moments of the distribution.

Taking the axial moments of eq. (3) and integrating by parts gives

∂µm
∂t

= L[µm] +mu(x)µm−1 +m(m− 1)Dz(x)µm−2, (A.3)

where L is a compact notation for the operator

L[p] =
∂

∂x

(
w(x)Dx(x)

∂

∂x

(
p

w(x)

))
. (A.4)
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Explicitly, the first three moments are:

∂µ0

∂t
= L[µ0] (A.5)

∂µ1

∂t
= L[µ1] + u(x)µ0 (A.6)

∂µ2

∂t
= L[µ2] + 2u(x)µ1 + 2Dz(x)µ0 . (A.7)

The transformed no-flux boundary conditions at x = ±`/2 are

jx,m = −w(x)Dx(x)
∂

∂x

(
µm
w(x)

)
= 0 . (A.8)

The transformed initial conditions are µ0(x, t = 0) = δ(x − x0) and µm(x, t = 0) = 0 for

m > 0.

We begin by solving for µ0, which is essentially the marginal distribution of the colloid

along the transverse channel dimension. The steady state solution that satisfies the normal-

ization condition is w(x), or equivalently, the Boltzmann distribution in the external field.

This moment is expected to relax exponentially to its steady state. Since we are interested

in long-time behavior, we neglect these transient terms and adopt a quasi-steady state ap-

proximation for µ0(x, t) ≈ w(x). This approximation is valid after a characteristic diffusion

time τ ∼ `2/Dx. (Note that using this approximation it is no longer possible to satisfy the

initial condition.)

We substitute µ0 into eq. (A.6) and guess a solution of the form

µ1 ∼ w(x) (ut+B(x)) (A.9)

so that
d

dx

(
w(x)Dx(x)

dB

dx

)
= −(u− u)w(x) . (A.10)

At the boundaries, −w(x)Dx(x)dB/dx = 0, so integrating across the channel yields eq. (8),

and demonstrates that u is precisely the average velocity of the colloid. Integrating twice

allows us to evaluate B(x)

B(x) = B(0)−
∫ x

−`/2

dx′

w(x′)Dx(x′)

∫ x′

−`/2
(u(x̂)− u)w(x̂)dx̂ . (A.11)

The existence of such a solution validates the original guess for the functional form. The

first total moment is

M1(t) ≈ ut+ C, (A.12)
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where we defined the constant C for convenience

C ≡
∫ `/2

−`/2
B(x)w(x)dx . (A.13)

The time derivative dM1/dt ≈ u, showing that the mean of the distribution advects with

the mean colloid velocity, as it should. For the second (and higher) order moment(s),

dMm

dt
=

∫ `/2

−`/2

∂µm
∂t

dx (A.14)

= m

∫ `/2

−`/2
u(x)µm−1dx

+m(m− 1)

∫ `/2

−`/2
Dz(x)µm−2dx, (A.15)

which is obtained by substituting eq. (A.3) and applying the boundary conditions on µm.

For m = 2, substituting µ0 and µ1 and simplifying gives

dM2

dt
= 2

(
u2t+

∫ `/2

−`/2
u(x)w(x)B(x)dx+Dz

)
, (A.16)

where Dz is defined by eq. (7). Multiplying eq. (A.10) by B(x) and integrating by parts

allows us to evaluate the integral to give

dM2

dt
≈ 2u2t+ 2uC + 2Dz

+ 2

∫ `/2

−`/2

dx

w(x)Dx(x)

[∫ x

−`/2
(u(x̂)− u)w(x̂)dx̂

]2
. (A.17)

Substituting eqs. (A.12) and (A.17) into eq. (A.2) gives eq. (6).
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