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ABSTRACT 

The Rayleigh-Taylor instability (RTI) is investigated using the Direct Simulation Monte 

Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC 

RTI simulations are performed to quantify the growth of flat and single-mode perturbed 

interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood 

number and the gravitational acceleration. The DSMC simulations reproduce many qualitative 

features of the growth of the mixing layer and are in reasonable quantitative agreement with 

theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the 

simulations at late times, the instability enters the self-similar regime, in agreement with 

experimental observations. For the conditions simulated, diffusion can influence the initial 

instability growth significantly.  
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I. INTRODUCTION 

The Rayleigh-Taylor instability (RTI) evolves at the unstable interface of two fluids of 

different densities subjected to a common acceleration normal to the interface. In this situation, 

small interfacial perturbations evolve into mushroom-like structures with wavelength λ  and 

amplitude a , which increases as time progresses. The RTI is observed in flows with widely 

differing length scales: up to light-years for a supernova [1] and down to millimeters for inertial 

confinement fusion (ICF) [2]. In fact, failure to achieve ignition at the National Ignition Facility 

may be caused by RTI mixing that limits the radial compression by prematurely mixing the fuel 

and reducing heating efficacy at the time of maximum compression [3].  

Taylor [4] conducted the original theoretical study of the RTI, and Lewis [5] conducted 

the companion experimental study. Chandrasekhar [6] subsequently noted that Rayleigh [7] 

treated fundamentally the same problem in his earlier work on the equilibrium of a fluid of 

variable density under gravitational acceleration. Since then, many sophisticated theoretical and 

experimental studies have been conducted to quantify the behavior of the RTI. Extensive reviews 

of the more recent research on the RTI can be found in Sharp [8], Kull [9], and Abarzhi [10]. The 

development of the initial stage of the RTI is described by the theory of Taylor [4]. However, 

due to the complexity of the latter stages of the RTI, a complete understanding of the physical 

phenomena involved, such as secondary instabilities, failure modes, and the stabilization of the 

mixing process [10], has not been achieved to date.  

The RTI is often described [11]-[13] as having three fundamentally different 

phenomenological stages of mixing: linear, nonlinear, and turbulent. In the first stage, small 

initial perturbations on the interface grow exponentially. In this stage, the growth dynamics can 

be described by two length scales: the perturbation amplitude in the acceleration direction and 
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the perturbation wavelength, which is related to the mode of fastest growth (i.e., the most 

unstable wavelength). In the second stage, larger coherent structures appear as smaller 

disturbances interact and merge. These interactions occur when the perturbation amplitude 

becomes comparable to the perturbation wavelength. In this stage, the amplitude growth follows 

a power law with time. In the third stage, secondary instabilities like the Kelvin-Helmholtz 

instability develop and eventually break up the coherent structures, which results in turbulent and 

chaotic mixing of the fluids.  

The details of the evolution of the RTI clearly depend on the properties of the two fluids. 

The effects of compressibility, surface tension, diffusivity, and viscosity on the initial 

exponential growth rate of small-amplitude perturbations have been studied extensively [14]-

[17]. By broadening the density transition between the gases [15], viscosity and diffusivity 

inhibit small-wavelength perturbations from growing, thereby allowing a particular wavelength 

(the most unstable wavelength mλ ) to emerge, whose growth outpaces the growth of other 

wavelengths. Diffusion can also reduce the effective buoyant forces, thus slowing down the 

mixing process [16]. As a result, for an initially flat interface, the most unstable wavelength has 

the following form [8]:  

 2 1/34 ( / )m v Agλ π≈ ,  (1) 

where g  is the gravity (acceleration) to which the domain is subjected, v  is the mean kinematic 

viscosity of the two fluids, A is the Atwood number, and Hρ  and Lρ  are the densities of the 

heavy and light fluids, respectively:  

 H L

H L

A ρ ρ
ρ ρ
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Other factors that have been shown to influence the growth of the instability include the 

dimensionality of the flow, the time dependence of gravity, and boundary effects [8]-[11].  

Nondimensionalization and scaling have been applied to provide insight into the effects 

of various phenomena on the evolution of the RTI. Wei and Livescu [17] proposed using a 

perturbation Reynolds number Re p  to describe the evolution of RTI:  

 Re
1p

A g
v A
λ λ=

+
.  (3) 

They found that the growth at low Re p  is dominated by viscous diffusion but that the growth at 

high Re p  is dominated by complex vortical motions. Re p  quantifies the effect of diffusivity by 

introducing a cutoff wavelength below which the instability does not develop, even at late times. 

It is also common to utilize length and time scales based upon gravity and the initial perturbation 

wavelength as a means to analyze data [11]. A typical time scale associated with the growth of 

the instability is  

 ~ 1/ Agkτ , 2k π λ= . (4) 

In this paper, Bird’s Direct Simulation Monte Carlo (DSMC) method [18]-[19] of 

molecular gas dynamics is used to investigate the growth of the RTI. In distinction to most 

simulation methods that have been applied to the RTI [10], DSMC uses large numbers of 

computational molecules (called “particles” or “simulators”) to represent a gas flow. These 

particles move, collide with each other, and reflect from walls with the same statistics produced 

by actual gas molecules. Being a molecular method, DSMC straightforwardly treats multiple gas 

species. Macroscopic flow properties are found by averaging the properties of the particles 

within each cell over some period of time, which can be short compared to flow time scales. 

Current massively parallel computational platforms have now made it possible to track very 
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large numbers of particles for long times in macroscopic domains, which enables DSMC to 

simulate hydrodynamic flows [20]. Thus, molecular methods like DSMC are becoming 

increasingly popular for investigating the effects of viscosity and diffusivity in ICF applications, 

which are known as “kinetic” or “ion-kinetic” effects. See the recent paper by Larroche et al. 

[21] for an in-depth discussion of this topic.  

Fully resolved two-dimensional DSMC RTI simulations are performed for monatomic 

gases at essentially atmospheric conditions. In the first series of simulations, the Atwood number 

A  is fixed by using argon and helium, the gravitational acceleration g  is fixed, but the initial 

perturbation wavelength λ  is varied. In the second series of simulations, the Atwood number A  

is again fixed by using argon and helium, the initial perturbation wavelength λ  is fixed, but the 

gravitational acceleration g  is varied. In these two series, since the gases are fixed, the viscosity 

and the diffusivity are fixed. In the third series of simulations, the gravitational acceleration g  

and the initial perturbation wavelength λ  are both fixed, but the Atwood number A  is varied by 

using different combinations of gases. In this series, since the gases are varied, the viscosity and 

the diffusivity are varied along with the Atwood number, so the effect of Atwood number is not 

isolated in this series. It is in principle possible to specify DSMC gas parameters that would fix 

the transport properties while varying the Atwood number [18]-[19]. However, such “artificial” 

gases are not employed here. These three series of simulations employ an initial perturbation 

amplitude 0a  that is 1% of the initial perturbation wavelength λ . The first case for each of these 

three series is the same and thus is the baseline case for comparison. In the fourth series of 

simulations, the conditions are the same as in the third series except that the initial interface is 

molecularly flat (i.e., an initial amplitude 0a  of zero).  
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Amplitude-growth results obtained from these DSMC simulations are compared with 

linear and nonlinear theoretical results and experimental results. The trends with wavelength, 

gravitational acceleration, and Atwood number are as expected although differences from 

theoretical predictions due to diffusion are observed. When diffusion effects are small, the 

simulations produce the most unstable wavelength predicted by theory. The onset of self-

similarity for mixing at late times is also observed in some cases.  

II. THEORETICAL MODELS 

As described in the Introduction, numerous efforts have been made to characterize, 

predict, and describe the growth of the RTI. The early-time growth stage of the instability is well 

represented by an exponential derived from linear stability theory. The nonlinear growth stage of 

the instability has been the subject of multiple theoretical attempts to accurately represent the 

growth of coherent bubble and spike structures as the instability transitions to a self-similar, 

turbulent mixing regime. In the turbulent mixing regime, the width of the mixed layer is 

described by a simple quadratic expression.  

Linear stability theory determines when a flow is unstable to infinitesimal disturbances. 

Infinitesimal disturbances are always present, even for a molecularly flat surface. As mentioned 

in the Introduction, Rayleigh [7] first studied the stability of the interface between two fluids 

under the influence of a gravitational field, and Taylor [4] subsequently added an acceleration 

induced by pressure gradients. According to Taylor’s linear stability theory, initial perturbations 

with small wavelengths grow faster, where a  is the perturbation amplitude:  

 ( )0 cosha a t Agk= , 2k π λ= . (5) 
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Equation (5) indicates that smaller wavelengths have larger growth rates and that, for times 

before viscosity and diffusivity become important, the initial growth scales as 2gt . When the 

effects of viscosity and diffusivity become significant, the instability amplitude is modified [15]:  

 ( )2 4 1/2 2
0 exp ( / ) ( )a a Agk v k v D k tψ⎡ ⎤= + − +⎣ ⎦ ,  (6) 

where 2k π λ=  is the wavenumber for wavelength λ , ν  is the kinematic viscosity, D  is the 

diffusivity, and ψ  is a function of the Atwood number A . In this case, the exponent in 

Equation (6) has a maximum for some particular wavelength, the most unstable wavelength mλ . 

Experiments have confirmed that linear theory correctly accounts for the early-time 

evolution of the instability amplitude [8]-[10]. However, at later times, where ~1ka , the flow 

behaves in a more complicated way, so a nonlinear stability approach or an empirical analysis is 

required. Building on an earlier model of Layzer [22] and its extension by Goncharov [23], 

Mikaelian [24] developed a model for the bubble amplitude ba :  

 0
6 (1 )3( ) ln cosh

3(1 ) (3 )
b gkA AAa A a t

A k A

⎛ ⎞⎡ ⎤+⎛ ⎞+= + ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠
.  (7) 

It should be noted that in order to extend the model of Layzer [22] to a two-fluid system, 

Goncharov disregarded the boundary condition at one of the outer boundary of domain [23]. As a 

result, a spurious uniform ‘pipe-flow-like’ velocity field was produced in the light fluid far from 

the interface in the nonlinear regime [23]. Such a velocity field is not generally observed in RTI 

experiments and simulations. Thus, this type of model can be applied only in the vicinity of the 

interface and far away from the boundaries of the domain, as Goncharov noted [23]. 

Mikaelian proposed an empirical correlation for the spike amplitude sa  that interpolates 

between the spike amplitudes at Atwood numbers of 0 and 1:  
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⎛ ⎞⎡ ⎤⎛ ⎞⎜ ⎟⎡ ⎤= + + −⎢ ⎥⎜ ⎟⎣ ⎦⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠
.  (8) 

This empirical correlation is based on a large number of experimental and numerical results, the 

review of which is outside the scope of this paper. As expected, sa  approaches ba  for small A  

but increases with A  to become 4-5 times ba . While sophisticated theoretical approaches 

developed in the last decades have expanded our understanding of the RTI, especially for the 

early stages of the instability development, multiple issues, such as the RTI dynamics in 

diffusive and stratified media [10], still remain areas of active research. 

As the RTI develops further, the coherent structures begin to break down, and a self-

similar turbulent mixing layer evolves. The existence of a self-similar regime for the RTI was 

first discussed by Fermi and von Neumann [25] and is the basis of early turbulent mixing models 

[26]. In the turbulent regime, experimental data suggest that the bubble and spike growth rates 

are both self-similar [13], [26] and can be described by a relatively simple model: 

 , , 2b s b sa Agtα= ,  (9) 

where bα  is a constant, usually between 0.03 and 0.07, that is independent of A  but where sα  is 

not constant and depends on A  . For the self-similar solution to be applicable, the instability 

amplitude must be greater than the viscous and diffusion scales. In practical terms, this means 

that the total instability growth, b sh a a= + , must satisfy the condition 

 m h Lλ << << ,  (10) 

where L  is the size of the physical domain.  

Although the RTI has been treated successfully in the hydrodynamic regime, recently, 

and with the advent of supercomputers, RTI flow fields have been simulated using molecular 

methods. The applicability of molecular methods to instability simulations has been investigated 
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by Kadau et al. [28]-[29], Barber et al. [30], and Mościński et al. [31]. Their results suggest that, 

for liquids, molecular dynamics (MD) approaches can qualitatively and quantitatively describe 

the development of the RTI. In their results, the three stages of the instability are clearly 

observed as time progresses. The small initial perturbations evolve into larger spikes and 

bubbles, some showing turbulent shedding of vortices and eventually breaking completely apart. 

Kadau et al. [28]-[29] further showed good agreement with experimental data for spike positions 

and velocities. Using a particle-based, kinetic Monte Carlo method, Sagert et al. [32] also 

demonstrated good agreement with growth rates in the linear regime. 

Although most studies have focused on the RTI in liquids and plasmas, the RTI is 

observed in gases as well. For gases, inter-diffusion of the two species can cause the growth rate 

to differ from models that assume a sharp interface. A physically realistic representation of the 

growth rate must include the fact that the interface is continuous and evolving with time due to 

diffusion, which competes with the effect of acceleration. Abarzhi [10] suggests that, for 

compressible and miscible fluids, if the interface is defined as the region of steep density 

gradients, then kinetic processes at the molecular scale should be considered.  

III. NUMERICAL METHOD 

As mentioned in the Introduction, Bird’s Direct Simulation Monte Carlo (DSMC) method 

[18]-[19] is a molecular technique for simulating gas flows when the mean free path is much 

larger than the molecular diameter, which is typically the case. DSMC employs a particle-based, 

stochastic algorithm to solve the Boltzmann equation by approximating the continuous molecular 

velocity distribution function with a discrete number of computational molecules [18]-[19]. Each 

computational molecule, or “particle,” typically represents a large number of real molecules, and 

these particles move, collide with other particles, and reflect from boundaries. The physical 
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domain is discretized into a set of cells. A time-splitting scheme is used that consists of a move 

operation, during which particles translate ballistically over time step tΔ , followed by a collide 

operation, during which pairs of particles within the same cell are randomly selected for 

collision. Macroscopic gas properties are determined by sampling the properties of the particles 

resident in a cell at a particular time. Standard DSMC executes each of these operations once per 

time step in the order move-collide-sample. 

Historically, DSMC has been very successful in the study of rarefied, high-speed flows 

typical of aerospace engineering [33]. The validity of DSMC for this class of problems has been 

firmly established by comparisons to experimental measurements [34] and molecular-dynamics 

simulations [35]. Wagner [36] proved that DSMC simulations approach solutions of the 

Boltzmann equation for monatomic molecules in the limit of vanishing discretization and 

statistical errors. Recently, Gallis et al. [37] reported highly refined DSMC simulations of the 

Fourier heat-flow problem and observed excellent agreement (~0.2%) between their calculated 

bulk viscosity [37], thermal conductivity [38], diffusivity [39], and the Chapman-Enskog (CE) 

infinite-approximation results [40]. They also showed that the DSMC-calculated velocity 

distribution function, as quantified by its Sonine-polynomial coefficients, is in excellent 

agreement with the CE theoretical values [40] for near-equilibrium flows and with theoretical 

values from the Moment-Hierarchy method for highly non-equilibrium flows [41].  

In common with other molecular methods, DSMC has advantages and disadvantages 

relative to typical hydrodynamic simulation methods. A major advantage is that DSMC is not 

limited to near-equilibrium conditions and small gradients. More specifically, DSMC inherently 

accounts for both near-equilibrium transport (viscosity, thermal conductivity, mass diffusivity) 

and non-equilibrium phenomena (thermal and pressure diffusion). A major disadvantage of 
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DSMC is that the particles intrinsically produce significant statistical noise. When each particle 

represents a single actual molecule, DSMC exactly reproduces the fluctuations in an equilibrium 

gas [42], which are typically extremely small. Otherwise, the variances of the fluctuations in a 

DSMC simulation are the actual variances multiplied by the number of actual molecules 

represented by each particle (i.e., the simulation ratio).  

The extremely large computational effort required to achieve an acceptable signal-to-

noise ratio has generally prevented the use of DSMC and other molecular methods in the 

hydrodynamic regime. Thus, up to the present, the inherent capability of DSMC to simulate 

macroscopic hydrodynamic phenomena at the molecular level has rarely been exercised [30], 

[32]. Another, more subtle issue arises from fluctuation correlations [43]. At equilibrium, 

fluctuations of conjugate hydrodynamic quantities are uncorrelated. However, out of 

equilibrium, these quantities can be correlated, and these correlations can introduce a statistical 

bias. Despite these difficulties, the Richtmyer-Meshkov instability (RMI), often considered to be 

like the RTI with impulsive acceleration, has been successfully simulated by DSMC [20].  

The aim of this work is to study the development of RTI in gases at the molecular level 

and in particular to study the effect of gas diffusivity on the growth of the instability. Diffusivity 

is often considered of lesser importance and therefore neglected in hydrodynamic descriptions. 

However, diffusivity may be the primary growth driver in initially flat interfaces and a 

significant contributor in initially perturbed interfaces in millimeter-scale domains, similar to 

those encountered in ICF. More specifically, the three-dimensional DSMC code SPARTA [44], 

developed to be highly efficient on massively parallel computers, is used to simulate the RTI for 

two-dimensional perturbations in millimeter-scale domains for atmospheric-pressure gases with 

various Atwood numbers (0.32-0.82) and gravity 7 8 210 -10  m/sg = . Simulations are performed 
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on Sequoia, an IBM Blue Gene/Q supercomputer at Lawrence Livermore National Laboratory, 

using up to 1.57 million cores for up to 30 hours, which yielded a maximum of 17 Pflops.  

IV. NUMERICAL ANALYSIS DETAILS 

The DSMC code SPARTA [44]-[45] is used to simulate the RTI at the interface 

separating two gases experiencing a constant acceleration. The gases are dilute and obey the 

perfect-gas equation of state and are taken to have constant values of the specific heat ratio γ . 

These approximations are reasonable for the modest temperatures and pressures considered here.  

 

Table 1. Properties of pure gases at STP. DSMC automatically computes values for mixtures.  

Gas m  (kg) T  (K) p  (Pa) ρ  (kg/m3) μ  (Pa·s) ν  (m2/s) 

He 6.65×10-27 273.15 101325 0.179 1.865×10-5 10.4×10-5 

Ne 33.5×10-27 273.15 101325 0.900 2.975×10-5 3.31×10-5 

Ar 66.3×10-27 273.15 101325 1.781 2.117×10-5 1.19×10-5 

Kr 139.1×10-27 273.15 101325 3.737 2.328×10-5 0.62×10-5 

 

Four gases are used: helium, neon, argon, and krypton. For each gas combination 

investigated (Ar/He, Ar/Ne, Kr/Ne), the initial conditions consist of the heavier gas on top of the 

lighter gas. The lighter gas is initially at 273.15 K and 101325 Pa (STP) at the bottom of the 

domain. Throughout the rest of the domain, both gases are initially at 273.15 K and have initial 

density distributions corresponding to hydrostatic equilibrium at the given gravity value. Table 1 

shows the properties of pure He, Ne, Ar, and Kr at STP [18]-[19]. DSMC automatically 

computes the properties of gas mixtures [18]-[19]. Ar/He simulations are performed for four 
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gravity values: { } 8 21.0,  0.5,  0.3,  0.1 10  m/sg = × . All other gas combinations are simulated only 

for a gravity value of 8 210  m/sg = .  

For the baseline simulation, a 1 mm 4 mm×  domain is used, and a sinusoidal perturbation 

with a wavelength of 1 mmλ =  (equal to the domain width) and an amplitude 0 /100a λ=  is 

initially imposed on the interface at 2 mmy = . The domain is divided into 1.6 billion square 

cells with a side length of 50 nm, which is less than a mean free path at the interface for the gases 

considered. The domain is initialized in hydrostatic equilibrium with an average of 12.5 particles 

per cell, for a total of 20 billion particles. Due to the initial density gradient across the domain, 

most of the particles were concentrated at the lower half of the domain. With this particle 

density, the two-dimensional simulation could be considered as a thin (0.4 nm) three-

dimensional domain in which each particle represents one real molecule. The molecular 

collisions are performed using the hard-sphere model with parameter values suggested by Gallis 

et al. [37]. The time step is 0.1 ns , which is less than both the mean collision time and the mean 

transit time of molecules in a cell. Based on these simulation parameters, the discretization error 

is estimated to be less than 2% [38].  

The following boundary conditions are used in each simulation. Periodic boundary 

conditions are applied along the sides of the domain: particles exiting the domain at one side 

reenter the domain from the opposite side with no change in properties. The top and bottom 

boundaries are diffuse walls: incident particles are reflected such that statistically they are fully 

accommodated to the wall temperature, which is taken to be the initial gas temperature. This 

boundary condition ensures that the flow velocity vanishes far from the interface but does not 

vanish close to the interface, as in Layzer’s model [22] and Goncharov’s extension [23]. 
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Mass is conserved throughout a simulation: no particles are added or removed from the 

domain, so the number of particles remains unchanged with time. At each time step, a small 

amount of downward momentum from gravity is added to each particle. The force corresponding 

to this continual addition of momentum exactly counterbalances the pressure gradient from the 

hydrostatic density distribution used as the initial condition for a simulation. Besides energy 

changes due to gravity, particles also exchange small amounts of energy when reflecting from 

the top and bottom walls of the domain, as mentioned above.  

 

Figure 1. RTI schematic diagram showing gas densities, gravitational acceleration, and 

perturbation wavelength and initial amplitude.  

 

Due to the magnitude of the data managed and processed by SPARTA at every time step, 

storage limitations and buffering restrictions required the data to be reduced prior to output for 

post-processing and analysis. To accomplish this, we utilized in situ “on-the-fly” visualization 

capabilities in SPARTA to output images of the gas-species distributions in the domain. At pre-

defined time steps, images of the “majority-species” field are created in which each cell of the 

domain is colored to represent the gas with the most molecules in it, as shown in Fig. 1. The cells 
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could have been colored with other physical quantities, such as concentration, mass density, or a 

velocity component. However, only one field could be output for each of these simulations due 

to their size, so the majority-species field described above was selected because it reveals the 

bubbles and the spikes clearly and thus enables their growth rates to be determined accurately.  

Through image analysis, each series of images is post-processed to provide quantitative 

values for the instability growth. The bubble and spike peaks are defined to be the cells of one 

gas that have penetrated furthest into the cells of the other gas, and their positions are determined 

for each image. The interface position is taken to be stationary in the middle of the domain.  

V. RESULTS 

In this section, DSMC simulations of two distinct RTI scenarios are presented. In the first 

scenario, an initial perturbation is imposed upon the interface with an amplitude 0 /100a λ= , so 

the instability grows initially in the linear regime and progresses into the early nonlinear regime. 

In the second scenario, the initial interface is flat (i.e., the amplitude is set to zero initially). At 

the molecular level, an interface cannot ever be mathematically flat. Thus, the effect of 

molecular fluctuations on instability growth is inherently observed. In both situations, DSMC 

results are obtained that can be quantitatively compared to the models discussed previously. In 

the cases presented here, the domains are long enough to prevent the top and bottom boundaries 

from interfering with the growth of the perturbation for the time considered.  

A. Initially Perturbed Interfaces 

Table 2 presents the conditions for the DSMC RTI simulations. Four series of simulations 

are performed. In all four series, the domain width is equal to the perturbation wavelength λ . 

The first three series have an initial amplitude 0a  that is 1% of the perturbation wavelength λ , 

and the first (“a”) cases of these three series are identical. The first series investigates the effect 
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of perturbation wavelength λ  for fixed Atwood number A  and gravitational acceleration g . 

The second series investigates the effect of gravitational acceleration g  for fixed Atwood 

number A  and perturbation wavelength λ . The third series investigates the effect of 

gravitational acceleration g  for fixed Atwood number A  and perturbation wavelength λ . The 

fourth series is identical to the third series except that the initial amplitude 0a  is zero (the 

interface is initially molecularly flat). Since the product of the wave number 2k π λ=  and the 

initial amplitude 0a  is much less than unity for these cases, the instability growth is initially 

linear (but ultimately becomes nonlinear).  
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Table 2. Parameters for DSMC RTI simulations with various values of Atwood number A , 

gravity g , wavelength λ , and initial amplitude 0a . Here, Re p  is the perturbation Reynolds 

number, ,m meanλ  is the mean most unstable wavelength, and ,m lightλ  is the most unstable 

wavelength of the light gas.  

Case Gases A  g  (m/s2) λ  (mm) 0a  (μm) Re p  ,m meanλ  (μm) ,m lightλ  (μm) 

1a Ar/He 0.82 1.0×108 1.00 10.0 7486 26.9 80.1 

1b Ar/He 0.82 1.0×108 0.75 7.5 4863 26.9 80.1 

1c Ar/He 0.82 1.0×108 0.50 5.0 2647 26.9 80.1 

1d Ar/He 0.82 1.0×108 0.25 2.5 936 26.9 80.1 

2a Ar/He 0.82 1.0×108 1.00 10.0 7486 26.9 80.1 

2b Ar/He 0.82 0.5×108 1.00 10.0 5294 28.3 33.9 

2c Ar/He 0.82 0.3×108 1.00 10.0 4101 40.2 119.7 

2d Ar/He 0.82 0.1×108 1.00 10.0 2367 58.0 172.6 

3a Ar/He 0.82 1.0×108 1.00 10.0 7486 26.9 80.1 

3b Kr/Ar 0.61 1.0×108 1.00 10.0 12749 34.0 105.9 

3c Ar/Ne 0.32 1.0×108 1.00 10.0 5939 34.9 108.5 

4a Ar/He 0.82 1.0×108 1.00 0.0 7486 26.9 80.1 

4b Kr/Ar 0.61 1.0×108 1.00 0.0 12749 34.0 105.9 

4c Ar/Ne 0.32 1.0×108 1.00 0.0 5939 34.9 108.5 
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Figure 2. DSMC RTI simulations: Cases 1a-1d. Gases: Ar/He (A = 0.82). Perturbation 

wavelength (top to bottom): 1.00, 0.75, 0.50, 0.25 mm. Perturbation initial amplitude: 1% of 

wavelength. Gravity: 108 m/s2. Domains are one wavelength wide.  
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1. Effect of Perturbation Wavelength 

Fig. 2 presents the mixing profiles for Cases 1a-1d. As explained in the previous section, 

each computational cell is colored according to the majority species in the cell. While these cases 

begin as single-mode perturbations, Cases 1a-1b (the highest- Re p  cases) develop a multi-mode 

behavior as the interface evolves: secondary bubbles and spikes form, grow with time, begin to 

interact, and eventually merge. In some cases, the stems of the spikes get thinner with time, 

leading to the shedding of droplets during the last stages of development. In Cases 1a-1b, the 

numbers of secondary bubbles and spikes that arise are proportional to the numbers that would 

be observed based on the most unstable wavelength determined from average gas properties, as 

previously suggested [11]. The secondary bubbles and spikes ultimately cause the single mode to 

become asymmetric.  

Unlike Cases 1a-1b (the high- Re p  cases), Cases 1c-1d (the low- Re p  cases) evolve in a 

single-mode fashion until the bubbles and spikes eventually diffuse into each other. In Cases 1c-

1d, secondary bubbles and spikes do not appear because the most unstable wavelength is greater 

than or comparable to the domain width. However, even in Case 1d, for which the growth is 

predominantly diffusive, the initial perturbation grows and possesses some of the characteristics 

of the high- Re p  cases.  

Fig. 3 compares the bubble and spike amplitudes determined by DSMC simulations for 

Cases 1a-1d to the results of linear theory and Mikaelian’s model. The bubble amplitudes (the 

penetration of the light gas into the heavy gas) are shown as positive values, and the spikes (the 

penetration of the heavy gas into the light gas) are shown as negative values.  
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Figure 3. Effect of wavelength on amplitude growth for Cases 1a-1d in Figure 2.  

 

Thus, the total amplitudes are given by the separations between corresponding bubble 

and spike curves. As expected, the DSMC bubble growth is in excellent agreement with the 

linear theory until the amplitude grows to about twice the initial amplitude. At this point, the 

exponential growth is superseded by the power-law time-dependence in the nonlinear regime 

[10]. After the initial linear regime, the DSMC growth rate follows this trend, which is 
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significantly lower than the growth rate predicted by linear theory but is very close to the growth 

rate predicted by Mikaelian’s model. 

The effect of diffusion is clearly demonstrated in the DSMC growth of the spike, for 

which appreciable departure from linear theory is observed even for Case 1a (the highest- Re p  

case). It is noted again that Mikaelian’s model for spikes is a bridging function based on bubble 

growth. Bubble and spike growth rates are approximately equal only for vanishing Atwood 

numbers. Thus, unlike the bubble model, the spike model does not necessarily coincide with the 

DSMC results even initially.  

The perturbation Reynolds number Re p  indicates the degree to which diffusion affects a 

perturbed interface. For example, diffusion becomes the dominant factor in Case 1d, as expected 

for a low- Re p  case. This is not surprising considering that the initial amplitude and the initial 

wavelength for Case 1d are only 25% of the corresponding values for Case 1a.  

2. Effect of Gravity 

Cases 2a-2d illustrate the competition between the effects of buoyant convection and 

diffusion. For these cases, gravity is reduced from 8 210  m/s  to 7 210  m/s . As gravity is reduced, 

the Re p  value also decreases, indicating that diffusion should increasingly affect the instability 

growth. This trend is clearly seen when comparing frames at times with roughly constant values 

of 2gt , as suggested by Equation (5): for example, from smaller to larger effect of diffusion, 

Case 2a at 5 st μ= , Case 2b at 8 st μ= , Case 2c at 10 st μ= , and Case 2d at 18 st μ= .  

Fig. 4 presents the mixing profiles for Cases 2a-2d. As gravity becomes weaker, the 

instability still grows, but the interface becomes less well defined due to diffusion. Moreover, 

secondary instabilities are suppressed because the most unstable wavelength increases. As the 
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Re p  values for these cases suggest, diffusion becomes comparable to, and in Case 2d greater 

than, the buoyant convection forces.  

 

 

 

 

 

Figure 4. DSMC RTI simulations: Cases 2a-2d. Gases: Ar/He (A = 0.82). Wavelength: 

1.00 mm. Initial amplitude: 1% of wavelength. Gravity (top to bottom): {1.0, 0.5, 0.3, 0.1}×108 

m/s2. Domains are one wavelength wide.  
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Figure 5. Effect of gravity on amplitude growth for Cases 2a-2d in Figure 4.  

 

Fig. 5 presents the amplitude as a function of time for Cases 2a-2d. Even in Case 2a (the 

highest- Re p  case), diffusion propagates the initial perturbation into the bulk gas until gravity 

accelerates the flow such that the instability begins to develop. The domination of diffusion does 

not mean that the initial instability stops growing, even for the lowest gravity value, which is the 

most diffusive case, but diffusive growth is initially faster than convective growth.  

3. Effect of Atwood number 

Cases 3a-3c illustrate the effect of Atwood number on instability growth. The only 

difference between these individual cases is that different pairs of gases are used: Ar/He, Ar/Ne, 

and Kr/Ar. This leads to different Atwood numbers and different Re p  values and therefore to 

different values of the most unstable wavelength.  

Fig. 6 presents the mixing profiles for Cases 3a-3c. Case 3a, the Ar/He mixture, has the 

highest Atwood number. As the Atwood number decreases for Cases 3b-3c, the most unstable 

wavelength increases, and the instability changes from multi-mode to single-mode growth. For 
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these three cases, as the Atwood number decreases, Re p  first increases and then decreases. 

Thus, as mentioned earlier, the effect of Atwood number is not isolated from the effects of 

viscosity and diffusivity in this series. While it is in principle possible to specify DSMC gas 

parameters that would fix the transport properties while varying the Atwood number [18]-[19], 

such “artificial” gases are not employed here. Nevertheless, this series does indicate the 

qualitative effect of varying the Atwood number.  

 

 

 

Figure 6. DSMC RTI simulations: Cases 3a-3c. Gases (top to bottom): Ar/He (A = 0.82), 

Kr/Ne (A = 0.61), Ar/Ne (A = 0.32). Wavelength: 1.00 mm. Initial amplitude: 1% of wavelength. 

Gravity: 108 m/s2. Domains are one wavelength wide.  

 

Fig. 7 presents the amplitude as a function of time for Cases 3a-3c along with the 

corresponding predictions of linear theory and Mikaelian’s model. The comparison suggests that, 

in a similar fashion to what has been observed so far, the DSMC predictions are in reasonable 

agreement with theoretical predictions until diffusion becomes the dominant factor. It should be 
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noted that, even in lowest- Re p  cases, the instability will eventually grow under the influence of 

gravity. However, by that time, diffusion has altered the amplitude and the wavelength of the 

interface so much that it is not described by the linear theory for an initially thin interface.  

 

 

Figure 7. Effect of Atwood number on amplitude growth for Cases 3a-3c in Figure 6.  
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The lower right plot in Fig. 7 presents the nondimensionalized instability growth for 

Cases 3a-3c of Fig. 6. In agreement with expectations, the nondimensionalization suggests that 

the instability follows a universal behavior for high enough Re p  values. The differences 

between the cases simulated here become more pronounced in the nonlinear regime.  

B. Flat Interface 

One of the advantages of studying the RTI at the molecular level is that molecular 

techniques can initialize a simulation with a molecularly flat interface. This initial condition is 

hard, if not impossible, to achieve experimentally. Since fluctuations are absent, a simulation 

using a typical hydrodynamic method must be initialized with an artificially perturbed interface, 

often using the most unstable wavelength. In a molecular simulation, fluctuations excite all 

possible interfacial modes in a random fashion. In their molecular dynamics simulations 

initialized with a flat interface, Kadau et al. [28] observe that the unstable modes grow on 

average according to the predictions of linear stability theory.  

The simulations of Cases 4a-4c are identical to those of Cases 3a-3c except that they are 

initialized with flat interfaces. Although the interface is macroscopically flat, it is perturbed 

microscopically on the length scale of inter-particle separations. As a result, in the absence of a 

macroscopic perturbation, molecular fluctuations become important to the development and 

growth of the instability. In this situation, linear growth theory would predict no growth because 

macroscopically the perturbation amplitude is zero. However, as already observed, molecular 

fluctuations create a spectrum of perturbations. Perturbations with wavelengths near the most 

unstable wavelength will grow the most quickly. However, if no unstable wavelengths are 

produced, the interface will grow only by diffusion.  
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Figure 8. DSMC RTI simulations: Cases 4a-4c. Gases (top to bottom): Ar/He (A = 0.82), 

Kr/Ne (A = 0.61), Ar/Ne (A = 0.32). Domain width: 1.00 mm. Interface: initially flat. Gravity: 

108 m/s2. 

 

Fig. 8 presents the mixing profiles for Cases 4a-4c. Each of these cases has an initially 

flat interface (i.e., no perturbation wavelength is prescribed), so a spectrum of wavelengths can 

emerge in the flow field. Kadau et al. [28] point out that, as expected, although fluctuations 

excite all possible interfacial modes, the modes near the most unstable wavelength soon 

dominate. The interface grows as the emerging bubbles and spikes become longer, begin 

interacting with each other, and eventually merge, which results in chaotic mixing. As in 

Cases 3a-3c, which have initially perturbed interfaces, the dominant wavenumber of the 

instability is approximately equal to the most unstable wavenumber in the light gas (see Table 2).  

Unlike deterministic CFD simulations, DSMC simulations are subject to statistical error. 

To investigate the effect of the number of particles (i.e., the simulation ratio, the number of 
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actual molecules represented by each particle), these simulations are repeated with 2 to 50 times 

the number of particles. Although the final density profiles are not identical to those from the 

simulations with the smaller number of particles, the numbers of bubbles and spikes are 

unchanged. This suggests that the most unstable wavelength determined from a simulation is not 

a function of the simulation ratio. A small effect of the simulation ratio is observed only when 

the number of particles per cell becomes so small that the statistical representation of the gas is 

unacceptable. Similarly, simulations initializing the random number generator with different 

seeds produce the same number of bubbles and spikes.  

Fig. 9 presents the maximum amplitude growth, defined as the distance between the 

highest point of helium penetration into argon and the lowest point of argon penetration into 

helium, normalized by the most unstable wavelengths for Cases 4a-4c. As expected, the 

instability grows faster with increasing Atwood number. For Cases 4a-4b, the cases with the two 

highest Atwood numbers, the interface grows enough to enter the self-similar regime. For 

Case 4c, the interface grows due to diffusion up to the point at which it interacts with the upper 

and lower domain boundaries, so self-similar behavior cannot be observed. In Fig. 9, the solid 

curves are curve fits for the self-similar regime. Here, Case 4a has 0.0382bα =  and 0.1050sα =  

and Case 4b has 0.0600bα =  and 0.0661sα =  (Case 4c does not enter the self-similar regime). 

The bubble values appear to be in line with expectations from experimental data [26], [46]-[48].  

Fig. 10 presents the results of Fig. 9 in a log-log format to better illustrate if or when 

these cases begin to enter the self-similar regime. At early times, Cases 4a-4c exhibit a growth 

proportional to 1 2t , which is characteristic of growth by diffusion. At late times, Cases 4a-4b 

(but not Case 4c) transition to a growth proportional to 2t , as expected in the self-similar regime. 

This transition appears to occur around ( )1 2 40Agk t ≈ , which Case 4c just barely reaches.  
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Figure 9. Effect of Atwood number on amplitude growth for Cases 4a-4c in Figure 8, 

which have initially flat interfaces.  
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Figure 10. Effect of Atwood number on amplitude growth for Cases 4a-4c in Figure 8, 

which have initially flat interfaces, illustrating when these cases enter the self-similar regime.  

 

Cherfils and Mikaelian [49] present a model explaining how viscosity and diffusivity can 

delay the onset of self-similar behavior until the wavelengths become relatively long, after which 

time self-similar behavior is recovered. This trend is clearly observed in Fig. 9, especially for 

Case 4c with Ar/Ne, which has the smallest value of Re p .  
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VI. SCALING 

The computational intensity of molecular methods limits the size of DSMC RTI 

simulations. Thus, the geometries considered here are millimeter-scale, whereas many practical 

applications of the RTI involve larger length scales. The RTI growth can be rendered 

dimensionless using the most unstable wavelength mλ , given in Equation (1), and its exponential 

growth time τ , given in Equation (4). Kadau et al. [50] suggest that these two quantities can be 

written as follows based on dimensional analysis:  

 
1/32

1 2( , )
( )m

H L

f A V
g

μλ
ρ ρ

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

,  (11) 

 
1/3

2 2( , )
( )H L

f A V
g

μτ
ρ ρ

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

,  (12) 

where ( ) 2H Lμ μ μ= +  and H LV μ μ=  and 1 2,f f  are unknown, dimensionless functions of the 

Atwood number A  and the viscosity ratio V . Through a series of molecular-level simulations, 

Kadau et al. [50] show that different RTI conditions that have equal nondimensionalized 

quantities are in fact equivalent. Similarly, Wei and Livescu [17] suggest the development of the 

RTI is strongly influenced by the perturbation Reynolds number Re p , as defined in Equation (3)

. If the most unstable wavelength were to occur at a particular numerical value ,Re p m , then the 

following expression is obtained by substituting this value into Equation (3) and solving for mλ :  

 
1/32

,Re 1p m
m

A
Ag

μ
λ

ρ

⎛ ⎞⎛ ⎞ +⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
.  (13) 
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Both Equation (11) and Equation (13) indicate that the most unstable wavelength depends 

in basically the same manner on viscosity and gravity: 2 3 1 3
m gλ ν∝ . With the gas pressure and 

temperature at STP values, setting gravity to its ambient value suggests that the results obtain 

herein for wavelengths of ~ 1 mm  would scale to wavelengths of ~ 200 mm, typical of many 

experiments and analyses [8]-[12].  

VII. CONCLUSIONS  

DSMC simulations are performed to investigate the Rayleigh-Taylor instability (RTI), in 

which the amplitude of an initially sinusoidal interface between two gases grows with time. 

Several cases are considered, including various initial perturbation wavelengths, accelerations, 

and gas combinations with Atwood numbers ranging from 0.32 to 0.82. The DSMC method, a 

molecular-level technique, enables direct observation of the role of diffusion in RTI growth from 

perturbed and molecularly flat interfaces.  

For initially perturbed interfaces, as the perturbation Reynolds number is decreased, 

diffusion becomes more significant and dominates the mixing process in the early-time growth 

of the interface. However, the diffusive growth of the interface appears to act independently from 

the convective growth of the RTI, which becomes dominant as the exponential growth, due to 

gravitational acceleration of the flow, increases. The growth of the mixing region also shows 

that, although dominant in early times, diffusion does not affect the RTI significantly, thus 

justifying the simplifying assumptions often made in theoretical analyses of the RTI.  

For flat interfaces, it is demonstrated that the molecular nature of the DSMC simulations 

allows the RTI to appear, triggered only by molecular fluctuations. The numbers of bubbles and 

spikes are found to be proportional to the numbers predicted from the most unstable wavenumber 

and to be almost equal to the numbers predicted from the most unstable wavenumber of the light 
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gas. The statistical aspects of the simulations (simulation ratio and random number generator 

seed) do not affect the numbers of bubbles and spikes observed in the simulations.  

DSMC offers a novel way to study hydrodynamic instabilities at the molecular level. 

Since DSMC inherently accounts for compressibility, viscosity, thermal conductivity, and 

diffusivity, it has the potential to improve the understanding of how these phenomena can 

influence RTI development. The effects of internal degrees of freedom and chemical reactions on 

the RTI or other instabilities can also be studied straightforwardly at the molecular level.  

The DSMC simulations presented herein challenge the limits of the most extreme 

computational platforms available. Furthermore, no visualization package currently exists that 

can post-process these billion-cell/trillion-molecule data sets. Thus, we were forced to use in situ 

“on-the-fly” visualization, in which the physical quantities to be output are specified in advance 

of a run. Moreover, even on these extreme platforms, the available memory allowed only one 

field to be output per run. In this investigation, we selected the majority-species field because it 

reveals the bubbles and the spikes clearly and thus enables their growth rates to be determined. 

Future simulations on more extreme computational platforms will enable us to investigate the 

RTI in greater detail (i.e., outputting and analyzing concentration, pressure, and velocity fields).  
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