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Abstract 
A cantilevered-capillary force apparatus is used to study the time scale for the 
coalescence of two droplets compressed together with a constant force. Power-law trends 
for the coalescence time as a function of droplet radius and compression force are 
experimentally measured. The measurements are compared against several different 
scaling theories from the literature. One of the existing theories is found to correctly 
predict the dependence on the droplet radius, but all of the theories over-predict the 
dependence on the force. A transition is also observed in the measured drainage time 
from a having a small variation around a single deterministic value for droplets with a 
radius of 125 μm or less, to a broad distribution of drainage times for droplets with a 
radius of 150 μm. A qualitative explanation for this transition is provided via scaling 
arguments.  

1. Introduction 
Many everyday items such as shampoo, mayonnaise, and beauty crèmes are emulsions. 
The quality of these products is tied to the tendency of the emulsions to phase separate 
over time. A fundamental understanding of the phase separation process, via coalescence 
in particular, will enable improved processing of these products and better product 
quality. In many of these products, the emulsion droplets are very small and therefore 
their behavior can often be modeled in the viscous flow (low Reynolds number) regime. 
Numerous experimental and theoretical studies of coalescence in viscous systems have 
been performed over the last 50 years to understand this process. Reviews by Chesters [1], 
Leal [2], and Janssen and Anderson [3] provide a detailed summary of much of this work.  
 
Despite the extensive work that has been done, the coalescence process is a very 
complicated one and the dynamics of even simplified systems involving only two 
droplets, lack a unifying theoretical description. This is not to say that the two-droplet 
interaction cannot be successfully modeled numerically. Various groups have used 
numerical methods to study the complete flow field for droplets colliding and coalescing 
in a flow [3,4,5]. There has also been extensive work on numerically modeling a 
simplified system based upon the thin-film approximation [6,7,8,9,10,11,12,13]. 
However, a change in the system configuration or system parameters (such as droplet 
radius or viscosity) requires that the numerical model, whether based on the full problem 
or the thin-film approximation, be solved again for the new conditions. Therefore, 
simpler, scaling-type descriptions involving the system parameters would be more useful 
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from the point of view of developing design equations for the commercial production of 
emulsions. For example, the time scale over which two colliding droplets must interact 
before they will coalesce is important for determining emulsion stability. Many scaling 
relations have been proposed over the years to predict the time scale for coalescence [14], 
but each new model tends to reveal insight that invalidates or conflicts with previous 
models. The various assumptions built into these models also tend to be difficult to 
validate experimentally making it difficult to know which model (if any) is accurate.  
 
Of primary importance in establishing a fundamental understanding, is designing 
experiments that provide a good testing ground for theoretical ideas. Because of the broad 
interest in this field, many different experimental techniques exist that study simplified 
systems with this purpose in mind. Noteworthy examples include coalescence between 
droplets held on capillaries observed with laser interferometry [15], thin film studies in a 
Sheludko-type cell [16], buoyancy driven coalescence [17,18], flow induced coalescence 
in a 4-roll mill device [4,19], and in a modified atomic force microscope (AFM) [20]. In 
this work, a new instrument called a Cantilevered-Capillary Force Apparatus (CCFA) [21] 
is used to measure the time required for coalescence of two, 100 – 250 μm sized droplets 
in a quiescent fluid. The only other experimental data on coalescence time that is similar 
to the data collected in the present work was collected using a modified AFM [12,13,20], 
but those data sets are rather limited for testing scaling predictions and are not directly 
comparable because the fluids used were much less viscous and the time scales for 
coalescence were three orders of magnitude smaller than in the present study.  
 
In the CCFA, the droplets are held on the tips of two opposing capillaries as shown in 
Figure 1. One advantage of using this technique is that the force of interaction can be 
precisely controlled and/or measured during the collision as explained in section 2. 
Another advantage of this experimental setup is that the conditions for coalescence are 
qualitatively similar to the phase separation process that determines the shelf-life of an 
emulsified product. While “on the shelf,” freely suspended droplets interact through a 
constant force due to buoyancy (provided that they are large enough to overcome thermal 
motion). The magnitude of this force depends on the size of the droplets, the density 
difference between the two fluids, and the orientation of the interaction relative to gravity.  
 

 
Figure 1. Image of two droplets held by capillaries in an axisymmetric configuration (1). 
The droplets can be pressed together with a constant force (2) until they coalesce (3).  

 
Because the CCFA is a new technique, a portion of the materials and methods section is 
devoted to describing how it functions during a typical experiment. This includes a brief 
description of a buckling-type instability that limits the maximum force that can be 
applied between the droplets. In addition to studying coalescence, it is also possible to 
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measure the interfacial tension of the system under study as described in section 3.1. 
Sections 3.2 and 3.3 are used to present existing theoretical predictions from the literature 
and compare them to measurements of the drainage time performed in the CCFA. In the 
process of making the drainage time measurements it was also observed that the 
distribution of measured drainage times becomes surprisingly large for the largest 
droplets studied. The observation and a possible explanation are discussed in section 3.4.  

2. Materials and Methods 

2.1. Instrument and Fluid System 
A schematic representation of the CCFA is shown in Figure 2 and a full description of the 
instrument can be found in a previous paper [21]. Briefly, the CCFA consists of two 
capillaries in which one of the capillaries acts as a force transducer. The capillary that 
acts as a force transducer is bent to a 90° angle and has a mirror attached near the end. A 
laser is reflected off of the mirror to monitor the deflection of the cantilever with a typical 
resolution of ~10 nm in this study. The time resolution of the measured deflection can be 
adjusted within the range allowed by the data acquisition card used (National Instruments 
USB-6009) and was set to 100 Hz for all measurements in this study. This results in an 
uncertainty of ± 0.01 s for each time measurement. The spring constant of the cantilever 
depends on the length, which changed slightly whenever the apparatus was dismantled 
for cleaning (about once per week). In each case, the spring constant was carefully 
calibrated and for the majority of the data presented in this paper was 46.8 ± 0.9 mN/m.  

 

 
Figure 2. Schematic representation of the Cantilever-Capillary Force Apparatus (CCFA). 

 
The second capillary (referred to as the “rigid capillary”) is able to move forward and 
backward at controlled velocities ranging between 0.1 – 600 μm/s. The position of the 
rigid capillary is controlled with a resolution of a few nanometers when moving in a 
single direction and a repeatability of ~1 μm when reversing directions. The relatively 
poor repeatability when reversing directions is a consequence of a small amount of play 
in the mechanical connection between the positioning stage and the metal arm holding 
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the rigid capillary. Both capillaries can be submerged in a liquid (suspending fluid) inside 
the device, and are connected to reservoirs of the fluid used to supply the droplet fluid.  
 
A comparison of the CCFA to similar instruments, including advantages of using the 
CCFA for the present experiments can also be found in a previous paper [21]. Briefly, the 
process of creating and positioning droplets for interaction in the CCFA is trivial in 
contrast to devices such as the AFM and the Integrated Thin Film Drainage Apparatus 
(ITFDA) [22]. In the CCFA it is possible to easily produce two equal-sized droplets with 
a radius from ~10 μm to greater than 200 μm, within 1 μm of the desired size (the 
measurement error is estimated to be ≤ 300 nm). In addition, the spring constant can be 
measured with ~1 – 2% uncertainty, compared with 10 – 20% in an AFM and around 
20% in the ITFDA. Finally, the droplets are pinned to the edges of the capillary so that 
the contact angle is free to change, which is important for producing similarity to two 
freely suspended droplets. Producing droplets with pinned contact lines for two droplets 
should be straight forward in the ITFDA (though attempts to do so have not been 
published), but in an AFM it requires careful, chemical functionalization of circular 
patches on the cantilever and opposing substrate.  
 
In this study, 1000 cS polydimethylsiloxane (PDMS, =ρ  971 kg/m3, UCT Specialties) is 
used as the droplet fluid to generate two “equal” size droplets with a radius between 50 – 
125 μm, at the tips of the capillaries. As noted above, the size of each droplet is matched 
so that they are equal to within 1 μm. An effective radius is then computed as 

21

212
RR
RRR

+
=  [7], which corresponds to the radius which produces the average capillary 

pressure of the two droplets. The same two capillaries were used for all coalescence 
experiments and they had an inner diameter of 50 ± 3 μm (New Objective TT150-50-50-
N-5). The CCFA chamber was filled with 650 cP polybutadiene (PBD, ρ = 900 kg/m3, 
1,530 – 2,070 Mn, Sigma Aldrich) as the suspending fluid. The interfacial tension of the 
system was measured using both the pendant drop method, and the CCFA to be ~4 mN/m. 
The temperature in the laboratory was maintained at approximately 22°C for all 
experiments. 
 
Coalesced droplets were removed from the tips of the capillaries by gently stirring the 
chamber fluid, and fresh droplets of PDMS were pushed out of the capillaries using 
hydrostatic pressure for each coalescence experiment. Before every experiment it is 
ensured that the volume of the droplets is constant with time by adjusting the hydrostatic 
pressure while monitoring the growth rate. The growth rate is monitored via real-time 
analysis in Matlab of images taken through an optical microscope. 

2.2. Constant Force Interaction  
To produce a constant force interaction between two droplets, it would be possible to use 
feedback control to maintain a set force, but this adds unnecessary complexity to the 
interaction and experimental procedure. Instead, a simpler way to achieve an 
approximately constant force interaction is used in the present experiments. Here the 
rigid capillary is simply moved forward a certain distance until the droplets are under 
compression and then held at that position until coalescence takes place. Before moving 
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the droplets together, they are held stationary with the center-to-center distance equal to 
2.5 times the droplet radius. From this initial separation an experiment to measure the 
drainage time is started. Data from a typical experiment are shown in Figure 3a to 
illustrate the procedure.  
 
As indicated by the dashed line in Figure 3a, the rigid capillary is moved forward at a 
constant velocity until the droplets are pressed together and held at this position until 
coalescence is observed. Some discussion is required regarding the transient force 
measured as the droplets are being moved together (from ~3 seconds to ~10 seconds in 
Figure 3a). The relatively high viscosity of the suspending fluid causes the drag force 
acting on the cantilever, due to the motion of the rigid capillary, to be significant. This 
drag force results in a much larger deflection of the capillary than what would be caused 
by the interaction of the droplets alone.  
 

 
Figure 3 (a) Typical force curve for a constant force interaction. The dashed blue line 
shows the position of the rigid capillary (right y-axis). The black line shows the force as a 
function of time (left y-axis). The sharp downturn in the force curve at around 52 s 
signals coalescence. (b) Drainage time as a function of the capillary number (1 – 136 
μm/s) for 06.031.0 ±=F  ( eqR  = 75 μm; 1794 ±=F  nN). Note than the open symbols 
correspond to the full experiment time including the initial approach period, while the 
solid symbols are the actual drainage times. 

 
Fortunately, this additional drag force and the magnitude of the approach velocity have 
minimal impact on the drainage time. Bazhlekov et al. [23] found in numerical 
simulations that above a minimum velocity, increasing the velocity further has negligible 
impact on the drainage of the film and that the initial constant velocity portion of the 
collision is “without influence” on the ultimate drainage. To confirm that this is the case, 
the drainage time was measured as a function of the velocity of the rigid capillary for a 
given droplet size and applied force. For evaluating the results, the operating parameters 
(velocity, force, and radius) are nondimensionalized, resulting in a capillary number Ca  
and a dimensionless force parameter F : 
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Here μ  is the viscosity of the suspending fluid, V  is the velocity of the rigid capillary, γ  
is the interfacial tension, F  is the magnitude of the applied force when it becomes 
constant with time, and R  is the initial radius of the undeformed droplets. The 
dimensionless force parameter can be thought of as a generalization of the capillary 
number.  
 
The drainage time draint  in this paper is defined as starting from the time the rigid 
capillary stops moving (at ~4.5 seconds in Figure 3a) until coalescence occurs. 
Coalescence is signaled in the measurements by a rapid decrease in the measured force, 
seen at ~52 seconds in Figure 3a. As predicted by Bazhelkov et al. [23], Figure 3b shows 
that with increasing velocity, the drainage time (solid symbols) becomes essentially 
independent of approach velocity. In this case, for 06.031.0 ±=F , the drainage time 
stops increasing when the value of the capillary number exceeds about 10-3 (> 6 μm/s). 
This is also consistent with the experimental results of Zdravkov et al. [24].  
 
The drainage time could be defined in other ways. For example, in previous work from 
our group, the drainage time was defined as beginning from the instant when the center-
to-center separation of the two droplets is equal to twice their undeformed radius. This 
condition is physically meaningful because if the droplets were non-deforming, that is 
exactly the point at which they would touch (coalesce), resulting in 0drain =t . However, 
as shown by the open symbols in Figure 3b, at larger velocities the time spent while the 
capillary is moving movet  (starting at ~3 s in Figure 3a), becomes insignificant compared 
to the drainage time. This means that any refinement in the convention for setting t=0, to 
include all or part of movet , would produce a very small change in the reported drainage 
times.  
 
Because of the relative insensitivity of the drainage time to the approach velocity, there is 
some flexibility in choosing the velocity for the experiments. In the present study, the 
velocity was selected such that the capillary number associated with the initial motion 
was proportional to F  so that the deformation of the droplets induced by motion will be 
proportional to the deformation due to the statically applied force. In all cases, the 
velocity was high enough that Ca > 10-3 and in the most extreme case for the data 
collected in this study, 12.5move =t  s when 66.27drain =t  s. 
 
A final point of consideration is the assumption of an axisymmetric geometry in the 
development of the theory and interpretation of the measurements of drainage time. The 
axisymmetric orientation of the droplets and capillaries depends on the axisymmetry of 
the capillaries and their alignment, but also on the force applied to the droplets. It is 
observed that when the droplets are compressed beyond a certain point they 
spontaneously “slide” out of axisymmetry as depicted in Figure 4. Initially the droplets 
are stable to non-axisymmetric perturbations until a critical compression is reached 
(Figure 4b). Above this critical compression the axisymmetric configuration becomes 
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unstable and the droplets will adopt a non-axisymmetric configuration (Figure 4c) [25]. 
In order to preserve the axisymmetry of the experiments, care was taken to apply only 
forces small enough that this instability did not occur.  
  

 
Figure 4. Depiction of two droplets held by capillaries interacting under a compressive 
force. (a) Before contact. (b) Under symmetric compression. (c) After the critical force is 
reached and a non-axisymmetric configuration is more stable. 

 

3. Results and Discussion 

3.1. Interfacial Tension 
For performing and interpreting measurements of the drainage time it is important to 
know the interfacial tension of the fluid-fluid system. One of the advantages of using the 
CCFA for these measurements is that the interfacial tension can easily be determined by 
measuring the force required to stretch a single droplet held between the tips of the 
capillaries as shown in Figure 5a. The stretching force can be related to the interfacial 
tension by the well-established theory of capillary bridges (see, for example, the text by 
Myshkis et al [26]). The exact solution of the Young-Laplace equation for a droplet 
between two capillaries was derived by Howe (translated and repeated by Gillette and 
Dyson [27,28]), which yields analytical formulae for the force on the capillaries (albeit in 
terms of unwieldy parameters). Recently, Kusumaatmaja and Lipowsky [29] gave a 
linear approximation to the force exerted by a liquid bridge, valid for small deformations 
from equilibrium ( F = 0), repeated here for reference (equation (45) in [29]): 

( )
θ

θθθ
π

γ 2cos1
coscotcscln

+
−+

−=k . (2) 

Here k  is the effective spring constant of the droplet and θ  is the equilibrium contact 
angle of the droplets defined as follows, assuming that / 2R D> : 

⎟
⎠
⎞

⎜
⎝
⎛+=

R
D
2

arccos
2
πθ . (3) 

Equations (2) and (3) provide an explicit analytical formula that is very convenient for 
measuring the interfacial tension. The results of stretching one droplet of radius R  are 
plotted in Figure 5a where the reference length 0L  corresponds to the equilibrium 
distance between the capillaries when the force is zero. Here the sign convention is taken 
such that a repulsive force is positive and an attractive force is negative. The slope of the 
linear portion of the curve in Figure 5a at small perturbations from 0L  was taken as the 
experimental value of the effective spring constant of the droplet. The effective spring 
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constant was measured as a function of the radius of the droplet R  divided by the mean 
diameter D  of the two capillaries ( 1D  and 2D ) for a range of droplet radii and compared 
to the prediction from equation (2). The value of the interfacial tension measured by 
solving the Young-Laplace equation for the full stretching curve in Figure 5a (solid line) 
with the interfacial tension as a fitting parameter was 3.94 mN/m. Using this value of the 
surface tension directly in equation (2), Figure 5b shows good agreement between the 
measured, effective spring constant and the theoretically predicted value (without any 
additional fitting) for a wide range of droplet sizes. Given that each data point 
corresponds to a new droplet it can be concluded that the value of the interfacial tension 
is very consistent from one experiment to the next. 

 
Figure 5. (a) Force as a function of the stretched distance for a droplet of PDMS in PBD 
( R = 71.1 μm; 1D = 62 μm; 2D = 55 μm). The interfacial tension from fitting the data is 
3.94 mN/m. (b) Effective spring constant of the droplet divided by the measured 
interfacial tension as a function of the droplet radius divided by the capillary diameter. 

3.2. Prediction(s) of Drainage Time 
As described in the introduction, numerous researchers over the last 50 years have 
worked on this problem. Because of this, several theoretical predictions exist that provide 
a scaling relationship for the drainage time as a function of droplet radius and interaction 
force. Unfortunately, none of these predictions for the drainage time has yet been 
convincingly validated by comparison with numerical simulations or experimental results. 
The more popular among these models are based upon writing an expression for the 
drainage rate of suspending fluid out of the film separating the droplets. The film is 
expected to drain and grow thinner until a critical film thickness ch  is reached at which 
point Van der Waals forces act to quickly rupture the film according to the following 
scaling [30,31,32]: 

3
1

6
1

~ AF
R
hc . (4) 

Here F  and A  are the dimensionless force and dimensionless Hamaker constant defined 
along with the dimensionless drainage time τ  as follows: 
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Here dt  is the drainage time, γ  is the interfacial tension, R  is the undeformed droplet 
radius, F  is the applied force on the droplets (assumed to be constant), and HA  is the 
Hamaker constant. For this system HA  has a value of 21106.3 −×  J. 
 
Using the criterion for the critical film thickness in equation (4) along with a few 
prominent thin film drainage models from the literature, the experimental data can be 
compared to the respective predictions. A very early model derived by several different 
authors [17,33] is still widely used in the literature. Chesters presented a review of this 
model applied to droplets with both tangentially mobile and immobile interfaces 
(numbers 1 and 2 in Table 1) [1]. The key assumptions built into these early models are 
that the thin film between the droplets is of uniform thickness and that the pressure 
gradient in the radial direction is constant across the film. It has been acknowledged that 
the assumption of uniform thickness [33] is not strictly physical because the thin film is 
known to be thinnest at the outer edge of the film, due to the formation of a dimple in the 
droplets near the center of the film. Recently, Frostad et al. (2013) made an observation 
regarding the pressure gradient driving the drainage of the thin film that extends the 
model to account for this non-uniform thickness [34]. One of the advantages to the model 
developed in [34] is that it directly accounts for the transition from a uniform film to a 
dimpled film. The analysis of Frostad et al. is partially repeated here to illustrate how the 
drainage models are used to predict the drainage time. 
 
All of the models mentioned in the previous paragraph begin with a rate equation for the 
thickness of the film such as that given by Frostad et al. [34]: 

a
uh

dt
dh −~ . (6) 

Here h  is the minimum film thickness (with respect to position), t  is time, u  is the 
average velocity of the fluid in the thin film at the location of the minimum film thickness, 
and a  is the radial extent of the thin film. By balancing the force applied on the droplets 
with the force due to the capillary pressure multiplied by the thin film area, the radial 
extent of the thin film is found to scale as: 

2/1~ FRa . (7) 
 
The scaling for the velocity in the film depends on the mobility of the interface. In the 
absence of Marangoni effects due to surface active compounds, or other mechanisms that 
would inhibit motion of the droplet interfaces, the effective mobility depends on the 
viscosity ratio according to: 

( )11~ O
h

l
kuu c

p ≥⎟
⎠
⎞

⎜
⎝
⎛ + λ

λ
. (8) 

Here pu  is the pressure driven component of the velocity, k  is an ( )1O  constant, and cl  
is the length scale over which the pressure varies from the value in the center of the film 
to the value in the bulk fluid. According to the analysis of Frostad et al. cl  scales as 
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hRlc ~ , while in previous models it is assumed to scale as alc ~ . For very large 
values of the viscosity ratio or in the presence of a sufficient concentration of surface 
active compounds (which may either lead to Marangoni stresses or significant interfacial 
viscosities), the droplet interfaces are essentially immobile. In that case, the velocity in 
the film scales with the pressure driven component of the velocity pu : 

c
p Rl

hu
μ
γ 2

~ . (9) 

On the other hand, equation (8) shows that when ( )1~ Oλ  and the interfaces are mobile, 
the scaling of the velocity changes because 1/ <<clh  [34].  
 
For the case when the interfaces are immobile, substituting equations (7) and (9) into (6) 
and integrating yields: 

d
c

t
FRh

R
h
R

2/1
0

~
λμ

γ− . (10) 

Assuming that the critical film thickness ch  at which rupture occurs is much smaller than 
the initial film thickness 0h  and using equation (4), the result is: 

[ ]2
1

4
3

4
7

4
1~ −−

Hd ARFt μγ , (11) 
or in dimensionless terms: 

2
1

4
1~ −AFτ . (12) 

This is listed as prediction number 5 in Table 1. The same procedure outlined in 
equations (6) - (12) can be followed using the alternate scaling for cl , ( alc ~ ) to arrive at 
the prediction of the earlier model (listed in Table 1 as prediction number 1). On the other 
hand, when the interfaces are mobile such that the thin film velocity is predominantly of 
the plug-flow type, the length scale of the pressure gradient cl  drops out. In this case, 
because the scaling for cl  does not influence the model, the prediction of Frostad et al. 
and earlier models give the same result (number 2 in Table 1).  
 
In addition to the these basic thin film models, a few authors have made predictions for 
the scaling behavior of the drainage time based on numerical models including the 
detailed shape of the thin film. Nemer et al. (2006) use an asymptotic approach to predict 
the rate of film thinning for mobile interfaces at very long times [35]: 

22 2
;;~ 3

4

R
at

a
hRhh mm μ

γττ ≡≡− . (13) 

Converting to the same dimensionless variables used in this paper gives the prediction 
listed as number 3 in Table 1. Chen et al. (1984) developed a model for a non-uniformly 
thinning film that includes the effect of Van der Waals forces on the drainage process for 
immobile interfaces [36]. Their prediction is listed as number 4 in Table 1 for the case 
when the Van der Waals force is non retarded ( m = 3 in their paper, where m  is the 
exponent for the distance dependence of the disjoining pressure). Still other predictions 
can be found in the literature, but the selected set is a reasonable representation of the 
variety that exist. In the next subsection experimental results are presented for 
comparison. 
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Table 1. Various predictions from the literature for the scaling behavior of the 
drainage time. 

 Source Non-Dimensional Dimensional 
1. Charles & Mason (1960) [17] 3

2
3

2~ AFτ  67.067.13
2

3
5~ FRFRtd ≈  

2. Chesters (1991) [1] 3
1

3
1~ −AFλτ  33.033.13

1
3

4~ FRFRtd ≈  
3. Nemer et al. (2006) [35] 12

5
24

13~ −AFλτ  54.029.124
13

24
31~ FRFRtd ≈  

4. Chen et al. (1984) [36] 2
1

2
1~ −AFτ  5.05.12

1
2

3~ FRFRtd =  
5. Frostad et al. (2013) [34] 2

1
4

1~ −AFτ  25.075.14
1

4
7~ FRFRtd =  

 Experimental Data - 035.0053.01.078.1~ ±± FRtd  
 

3.3. Experimental Drainage Time Data 
The dependence of the drainage time on the droplet radius and applied force was studied 
in the CCFA by varying the force while holding the radius constant, and varying the 
radius while holding the force constant. As mentioned in the introduction, all experiments 
were performed such that the capillary number corresponding to the initial constant 
velocity motion to bring the droplets together exceeded 10-3 and is proportional to the 
dimensionless force. The measurements show that the drainage time increases very 
slightly with increasing force, but increases much more strongly with increasing radius.  
The data can be reduced to a scaling relationship by fitting the data to a power-law as 
shown in Figure 6: 

035.0053.01.078.1~ ±± FRtd . (14) 
 

 
Figure 6. Drainage time as a function of applied force (a) and droplet radius (b). The 
symbols represent the data and the solid lines represent a power-law fit to the data with 
slopes and 95% confidence intervals of (a) 0.066 ± 0.016, 0.079 ± 0.032, and 0.014 ± 
0.048 with respect to increasing radius and (b) 1.85 ± 0.14 and 1.71 ± 0.08 with 
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increasing force. 

 
Comparing the data to the theoretical predictions in Table 1 a couple of observations can 
be made. First, all of the models predict a dependence on the applied force that is stronger 
than what is observed experimentally. The authors were not able to resolve this 
discrepancy in the present work, but this trend is suggestive of a common problem in the 
models. Although the authors can only speculate on the source(s) of the problem, one 
suggestion is that the condition for rupture of the film (due to Van der Waals forces) is 
critical to producing the correct prediction and merits further consideration. Another 
observation is that models that are based on immobile interfaces (numbers 1, 4 and 5 in 
Table 1) tend to have a stronger dependence on the droplet radius than the models with 
mobile interfaces (numbers 2 and 3 in Table 1).  
 
Given that the data exhibit a strong dependence on the droplet radius, this would suggest 
that the present system may contain surface active contaminants that immobilize the 
interface. It was believed initially that there should be no surface active compounds 
present in this system, but it is very difficult to guard against trace amounts of 
contamination. In general it is difficult to find a system of two immiscible fluids that are 
known to be completely free from surface active contaminants. Needing to anticipate the 
effect of unknown surface active compounds makes it even more difficult to establish a 
working model for predicting drainage time.  
 
Of the models that were reviewed for this study, the model of Frostad et al. gives the best 
agreement with the data in that the dependence of the radius matches the data and that it 
predicts the weakest dependence on the applied force. This is somewhat encouraging, but 
it is clear that further work is needed. It is worth reiterating that the experimental data 
collected in this study confirm that power-law relations can be used to describe/predict 
the time scale for coalescence, which further motivates additional theoretical effort.  

3.4. Stochasticity of Drainage Time 
An interesting complexity of the coalescence process is that while thin film drainage is a 
deterministic process, the rupture of the film is due to an instability which is inherently 
stochastic [32]. The total drainage time measured in an experiment therefore depends on 
both of these processes. The variability of the drainage time draintΔ  that is measured will 
depend on the distribution of times (or film thicknesses) accessible to the rupture 
mechanism of the film relative to the total drainage time draint . If the magnitude of the 
variability in the stochastic process is much smaller than the drainage time draindrain tt <<Δ  
then any observed variability in the measurement can be attributed to experimental error. 
On the other hand if the variability in the stochastic process is of the same order of 
magnitude as the drainage time then variability will be observed in the measurements that 
is larger than what could be attributed to experimental error. Such behavior was 
qualitatively observed in the course of the present work and similar unreported 
measurements of the drainage time. To partially quantify this observation, the distribution 
of drainage times measured for 50 experiments each, at three values of the droplet radius 
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are shown in Figure 7. In each case the applied force was the same within experimental 
error at ~105 nN. 

 
Figure 7. Histogram showing the distribution of drainage times at R = 50, 100, 150 μm 
for 50 repeated measurements at the same applied force and velocity. Inset to each plot is 
a summary of the mean values and standard deviations of the droplet radius, applied 
force, and measured drainage times from all 50 measurements in each case. 
 
For droplets with a radius of around 50 and 100 microns, the variability in the drainage 
time measurements are approximately the same with a variation of ~5 - 10%. This 
similarity in the level of variation suggests that is it largely experimental error due to 
small systematic differences from one experiment to the next, such as small differences in 
the droplet radii, applied force, or alignment of the capillaries. For droplets with a radius 
of 150 microns however, the variability is quite large and the distribution is 
comparatively flat over a wide range for the same number of measurements. This larger 
variability is further accentuated by the fact that the time drainage time is the longest of 
the three cases and the time spent moving the droplets together is only 0.98 seconds 
compared to the average drainage time of 166 seconds. This suggests that the variability 
in the stochastic process has become comparable to the total drainage time. In other 
words, it is possible that for larger droplets, the time required for the film to drain to the 
critical film thickness in a deterministic fashion may be prematurely shortened by random 
finite amplitude perturbations in the film. Such finite amplitude perturbations are possible 
due to simple environmental vibration even when using a vibration damping table. The 
question then is how much of the drainage process is cut short due to a perturbation of a 
given magnitude. 
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This question can be partly addressed by an appeal to the models presented in subsection 
3.2. Equation (6) for the rate of change of the film thickness as a function of time can be 
rewritten for the critical thickness ch  at which rupture occurs using equation (4) as: 

12/16/52/1
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~~ −− −→⎟
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⎞
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⎛− FA

dt
dhF
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. (15) 

This equation can then be inverted to give the rate of change in the drainage time with 
respect to changes in the critical film thickness: 
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It is clear from this relation that the length of time by which the drainage time can be 
shortened due to a finite perturbation of the film thickness of a given magnitude dh , 
increases with the radius of the droplets. This is consistent with the observations and 
provides a qualitative explanation. For the purposes of comparing the deterministic part 
of the theory to measured drainage time, large droplet radii were avoided in the data 
presented in the previous subsection to avoid further complication to the interpretation.  
 
It can be seen however that for the largest droplets in Figure 6 that a slightly increased 
variation in the data is observed. At much larger droplet radii such as those in the early 
experiments of Charles and Mason [17] and others, the drainage time is found to be a 
stochastic quantity where distributions rather than values of the drainage time are 
measured. The present findings therefore suggest that there is a physical mechanism to 
explain why measured drainage times would appear to be deterministic in one study, but 
stochastic in another.  

4. Conclusion 
Drainage time data were collected for the coalescence of two droplets pressed together 
with a force that is approximately constant with time. Data for droplets with a radius 
smaller than 125 μm are consistent with a deterministic process leading to film rupture, 
and were found to display power-law relationships between the drainage time and the 
experimentally varied parameters: droplet radius and interaction force. Data for the 
largest droplet size studied (150 μm radius) showed a high degree of variability, 
qualitatively consistent with a stochastic process leading to film rupture. A qualitative 
explanation for why this high level of variability should appear for larger droplets was 
offered based on a thin film drainage model.  
 
The experimentally measured scaling of the drainage time for the deterministic cases was 
compared to several predictions from the literature, but none of these models showed 
complete quantitative agreement. A common shortcoming in all of the models was 
identified, namely that the predicted dependence on the applied force is too strong in 
every case. In addition, all models except for that by Frostad et al. [34] predict a 
dependence on the droplet radius that is too weak. Nevertheless, the fact that the 
experiments demonstrate clear power-law trends, shows that further work is needed to 
advance theoretical models to the point of successfully predicting the time scale of 
coalescence.  
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