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We perform experiments to investigate the relaxation of a highly deformed elastic filament at a
liquid-air interface. The dynamics for filaments of differing length, diameter and elastic modulus
collapse to a single curve when the time-dependence is scaled by a time scale τ = 8πµL4

o/B. Even
though the time τ is obtained by comparing the linear bending and viscous forces, we find that
it also controls the relaxation in the highly nonlinear regime of our experiments. The relaxation,
however, is completed in a very small fraction of the time τ due to a prefactor that changes with
the tension in the nonlinear regime. Nonlinear numerical simulations show that the force due to
tension along the filament is comparable to the bending force, producing a net elastic restoring force
that is much smaller than either term. We perform particle image velocimetry at the liquid-air
interface to support the results of the numerics. Finally, we find that when the filament is initialized
in asymmetric shapes, it rapidly goes to a shape with symmetric stresses. This symmetrisation
process is entirely non-linear; we show that the symmetric curvature state minimizes energy at
arbitrarily large deformation.

I. INTRODUCTION

Highly deformed slender elastic filaments are to be found across several decades of length scales starting from
crops and tree canopies in wind [1], aquatic plant stems in flowing streams [2], propelling flagellae of organisms [3–7],
stereocilia inside ears [8, 9], to suspensions of fibres [10–12] (see ref. [13] for a recent review). The most heavily studied
of these examples is the driven dynamics of flagella [14, 15], where the balance is between forces due to bending, which
tend to straighten the filament, and viscous drag, which acts to damp the motion.

Unless they are held in that state by external or internal forces, filaments will relax from a highly bent state to their
equilibrium, stress-free state. For a filament with bending modulus B and length Lo, the bending energy per unit
length is Bκ2, quadratic in the local curvature κ. This leads to bending moments and forces per unit length ∼ BL−3o

that are linear in the displacement from the unstressed conformation of the filament [16]. Balanced against the drag
force per unit length 8πµLo/τ from a fluid of viscosity µ, we obtain a characteristic time scale for dynamics over the
length of the filament: τ = 8πµL4

o/B. However, when the deformations are large, another source of stress becomes
significant: in order to satisfy the constraint of constant length, a gradient of tension appears along the filament. This
tension is a nonlinear function of the geometry [17]. Previous work has concentrated on bending alone, and the role
of this nonlinearity is largely unexplored. The goal of this work is to understand the relaxation of a highly-deformed
filament from its high elastic-energy state, with full consideration of the nonlinear effects of the geometry.

We perform experiments to study the relaxation to a straight configuration of an initially highly deformed elastic
filament. The dynamics are restricted to a two-dimensional plane by placing the filament at the interface of a viscous
fluid. The filament is initially deformed by holding its ends in place with two fine needles at the interface. When
these are removed, it relaxes towards a straight, unbent shape. Fig. 1(a) shows the initial deformed state and several
intermediate steps in this relaxation process. We vary the parameters of this system – the length, diameter and
material of the filament – to understand the time-dependence of this process. In order to probe internal variables
such as the tension, we solve a numerical model [11, 17] to compute elastic forces in the filament. This model includes
a fully nonlinear treatment of the elasticity of the filament, but a simplified description of the hydrodynamic drag.
We also perform Particle Image Velocimetry to visualise the flow-field around the filament and validate the results of
the theoretical model.

II. EXPERIMENTAL METHODS

The filaments we use are made of a elastomer, vinyl polysiloxane (VPS), which was prepared with two different
Young’s moduli, E (of 240kPa and 800kPa) whose densities are 1020kg/m3, 1180kg/m3. The precursor material is
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FIG. 1: (a) Superimposed images of the filament taken at intervals of 1 sec. The two needles at the bottom of the
image are used to release the filament from its initial configuration. (b) The thick white line over the filament (seen
as the cyan outline) is the Bezier fit. We plot below this the corresponding curvature computed with this fit. Here

the position vector is r(s) and the unit vectors n(s) and t(s) in the normal and tangential directions.

injected into a capillary tube which defines the diameter d of the filament. Once the polymer cures, the filament is
extracted from the tube and cut to the desired length Lo. All deformations of the elastomer are fully reversible.

This filament is placed on the surface of a cylindrical dish of glycerol. The ends of the filament are held, then
released by needles attached to a tweezer mechanism mounted on a translational stage. The density of glycerol =
1216kg/m3, and the air-glycerol surface tension = 64mN/m; thus the interface is not significantly deformed by gravity.
The depth of immersion of the rods is determined by the contact angles with glycerol, which were determined to be
102.4° and 94.6° respectively for the stiff and the soft VPS. Thus approximately half the filament’s surface area is
submerged. The filament stays on the interface and the dynamics are fully 2-dimensional. No twist occurs in the
experiments. The high viscosity (µ = 1.412Pa.s at 100% concentration) keeps the dynamics in the stokesian regime;
the Reynolds number Re = ρud/µ ≈ 10−2−10−3 immediately after release, when the filament is moving at its fastest.
As shown in fig. 1(a), at no time in the relaxation process does any part of the filament come close to self-contact (or
to the walls of the dish), so capillary forces can be neglected.

We track the filament shape as a function of time using a Nikon D5000 camera at a resolution of 4288px× 2848px
and a frame rate of 1fps. As shown in fig. 1(b), from the images we extract r(s, t), the position vector of the filament
centerline along the arc length s, using the following procedure. We first separate the filament from the background,
and then reduce these pixels to a set of equally spaced points.

In order to accurately take higher order derivatives with respect to material coordinates, we make a Bezier fit to
these points. This is a unique polynomial fit of O(ln) to a given set of n points in r(s) = B{x(l), y(l)}, l being the
parameterisation of the Bezier curve. As l goes from 0 to 1, s goes from 0 to Lo, but note that the two are not linearly
related. The analytical form of the fit allows us to calculate κ(s) (fig. 1(c)) as a continuous function. The curvature
is given by

κ(s) =
x′y′′ − y′x′′

(x′2 + y′2)3/2
,

where the primes denote differentiation with respect to l. We also compute the elastic energy Eel(t) [= (1/2)
∫ Lo

0
Bκ2(s)ds]

from the curvature profiles extracted from the images.

III. EXPERIMENTAL RESULTS

Since the elasticity of the filament is determined by its bending modulus B = Eπd4/4, we vary d and E to study
the dependence of the relaxation time on these filament parameters. We also vary Lo; since the distance between the
needles holding the filament in its initial configuration is fixed the initial average curvature, and the relative initial
separation between the ends, both vary. From the sequence of images that characterize the shapes of the relaxing
filament, we extract two relevant physical quantities. One observable is the non-dimensional end-to-end distance,
L(t)/Lo (see fig. 1), as a function of time. We also report the elastic energy Ēel(t), normalized by that of a filament
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of length Lo rolled into a circle: 2Bπ2/Lo. These quantities are plotted in the insets of fig. 2(a, b)), for two different
values of Young’s modulus, and for several values of the length Lo. It is apparent that the relaxation time increases
monotonically and strongly with Lo and decreases with increasing E.

As shown in the main fig. 2(a, b), all the data for length and elastic energy collapse on a single scaled curve. The
time has been scaled in each case by τ = 8πµB−1L4

o. Even though we are in a very nonlinear regime, these curves
collapse when plotted in terms of t/τ . We remark that the time scale τ has been obtained merely by balancing viscous
and bending forces in the linear regime. In all the data in fig. 2 we have chosen the origin of time t = 0 as the instant
where non-dimensional elastic energy, Ēel = 0.4 but the data collapse even at negative times thus defined. Moreover,
upon choosing just Ēel(t = 0) as 0.4, the respective end-to-end distances automatically collapse at the initial time. The
value of 0.4 is arbitrary and the scaling works well for any other origin of time. We note that most of the relaxation
is accomplished when the nondimensional time is very small, that is, t/τ ∼ 2× 10−2 rather than t/τ ∼ O(1).

We also vary the bending modulus through its strong dependence on d, the diameter of the filament. We choose
two different diameters, d = 1.04mm and 0.57mm with Young’s modulus fixed at E = 240kPa, at several different
lengths. The data in the insets of fig. 2(c, d) track the measured relaxation dynamics and show that the smaller
diameter relaxes slower. Once again, the relaxation dynamics collapses when data obtained by varying Lo and d are
plotted against the scaled time, t/τ as shown in fig. 2(c, d). The slowest and the fastest dynamics span a factor of 27
variation in time scale τ .

There are two major findings in our experiments. First, the time scale τ used to collapse the data is taken from
the balance of forces in the linear regime, even though most of the dynamics we probe are in the deeply nonlinear
regime, where curvature ∼ L−1o . Second, the time-scale of relaxation is about two orders of magnitude smaller than
τ . A deeper understanding of this puzzle requires us to quantify the dynamics in the nonlinear regime. The nonlinear
regime is governed by the internal tension, which is not accessible in our experiments. We thus turn to a numerical
simulation of the fully nonlinear equations discussed below.

IV. NONLINEAR DYNAMICAL EQUATIONS

The dynamical equation for an elastic filament (see [17, 18] for more details) can be derived by a variational
formulation. The mechanical energy of bending as well as a constraint term to enforce length conservation yields an
elastic energy of:

Eel =
B

2

∫ Lo

0

κ2(s)ds+

∫ Lo

0

T (s)

2
{|t(s)|2 − 1}ds (1)

where t(s) ≡ rs is the tangent vector and the tension, T (s), enters as a Lagrange multiplier ensuring inextensibility.
The elastic force inside the filament is obtained from the corresponding Euler-Lagrange equations:

fel = −Brssss + ∂s[T (s)rs]. (2)

The boundary conditions are: rss(0) = rss(Lo) = 0 corresponding to zero moment and rsss(0) = rsss(Lo) = 0,
T (0) = T (Lo) = 0, corresponding to zero force at the free ends. In an over-damped situation, the viscous force
balances the elastic force:

8πµ∂tr = −Brssss + ∂s[T (s)rs]. (3)

After non-dimensionalising r by Lo, and t by an arbitrary time scale τ1, the equation of motion is:

µ̄∂tr = − rssss︸ ︷︷ ︸
F1

+ ∂s[T (s)rs]︸ ︷︷ ︸
F2

. (4)

The non-dimensional parameter µ̄ = 8πµLo
4/(Bτ1) is the ratio of viscous force to bending force. Note that when

we set τ1 = τ , we get µ̄ = 1, and the above equation becomes parameter-free. Using the inextensibility constraints,
∂s|t2| = 0 and ∂t|t2| = 0, the equation for tension reads as:

(∂ss − |rss|2)T (s) = −(3|rsss|2 + 4(rss · rssss)). (5)

Equations (4) and (5) constitute the basic equations for the mechanics of the filament. There are two approximations
in these equations for the dynamics of the filament centreline. First, the hydrodynamic interaction between points
on the filament is neglected. Second, the drag force due to the motion of the filament is assumed to be isotropic. We
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FIG. 2: (a) Normalised elastic energy, Ēel and (b) non-dimensional end-to-end distance, L(t)/Lo for two different
values of Young’s modulus, E (240kPa and 800kPa) and different lengths (Lo varied from 4.1cm to 7.3cm for

240kPa and from 4.6cm to 7.8cm for 800kPa). The insets show the data as functions of dimensional time, whereas
the main figures are plotted in terms of scaled time t/τ . (c), (d) Similar plots to that of (a), (b) for two different

diameters, d− 0.57mm, 1.04mm (E = 240kPa) and Lo varied between 4.6cm− 7.2cm for the former and
3.3cm− 6.3cm for the latter. The solid lines in all the subfigures indicate results obtained by solving eqs. 4, 5

numerically, and scaled by a factor of 4.2 in time, as discussed later in the text.

have checked computationally that the anisotropic drag, as used in Quennouz et al. [10], has negligible effect on the
dynamics. This is because the motion of the filament is predominantly in the direction normal to it. We therefore
proceed by using an isotropic drag coefficient, which does not depend on the length and diameter of the filament.
Furthermore, in our experiments, we do not have an independent measure of the drag at the interface (which will
depend on wetting properties among other things), and so in the theoretical computations of drag, we use the value
of the bulk viscosity of the liquid. An effective viscosity at the interface contains an unknown factor to be determined
experimentally.

V. NONLINEAR SIMULATION

We solve numerically these fourth-order, nonlinear equations with our simplified model for the hydrodynamic drag.

A. Numerical method and validation

As in [18] we solve the tension equation as well as the equation of motion by discretizing the filament into inter-
connected rods of length ds while conserving the total length using penalisation. We use a TDMA scheme to calculate
T (si) using the value of r(si) at discrete arc-lengths, si. A skew-finite difference is used for implementing the boundary
conditions in higher-order derivatives.

Fig. 3(a) shows the evolution of the computed filament shape, compared to an image from the experiment. More
quantitatively, we go back to fig. 2(a, b), where we show Ēel(t) vs t/τ and L̄(t) vs t/τ computed by setting µ̄ = 1. The
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FIG. 3: (a) Shape of the filament for various time instants in the simulation super-imposed on each other, with an
experimental image, seen in white, in the background. (b) Evolution of curvature, κ(s) vs s for different times. κ(s)
is always positive and decays monotonically with time. (c) The decay of the maximum value of curvature compared
with that of experiments (◦) without any fitting parameter in the numerics. All quantities are non-dimensionalised

using Lo and τ as scales.

time-evolution of the shape agrees well with the experimental data. The evolution of L̄(t) (see eq. 9 in the appendix)
depends only on the gradient of T (s) at the boundary. The fast evolution of L̄(t) at early times is a consequence
of T (s) having a gradient of large magnitude at the boundary. However, the simulation result is scaled from the
experimental data by a factor of 4.2. As discussed earlier, the filament is only half submerged in the fluid. A factor
of about 2 arises from this, and explains in part the difference between simulations and experiment. The remaining
discrepancy could be due to (i) neglect of hydrodynamic interaction (ii) neglect of capillary effects, and potentially
most importantly (iii) our use of the bulk viscosity of the liquid in the model even though the drag occurs at an
interface. The effective viscosity at the interface is expected to be less than in the bulk, as glycerol is hygroscopic.
We emphasize that the idealizations in the numerical model are in the treatment of drag, and not in the elasticity of
the filament.

Indeed, fig. 3(b) shows that the computed curvature is always positive along the filament. The maximum of the
curvature as a function of time is shown in fig. 3(c), where it is compared to the experimental data. As discussed
earlier, the time evolution of experiment and numerical computation have the same functional form, but the time
scale observed in the numerics is faster.

B. Tension

Having validated our model, we now move to computed quantities that are not accessible in the experiments. As is
clear in figure 3, the curvature is not uniform, and therefore the filament should not be expected to open uniformly.
In fig. 4(a) we show the tension, T (s) computed using eq. 5. The relationship between curvature and tension is not
linear and depends on higher derivatives of curvature. Consequently, unlike the curvature, which is always positive,
the tension changes sign from compressive in the central region to tensile near the free ends. Force balance along the
tangential direction thus requires that the viscous drag force be a function of arc-length.

In order to test whether the tension distribution observed in the simulation results are supported by experimental
observations of the viscous drag on the filament, we use Particle Image Velocimetry (PIV) to measure the velocity field
at the interface. We make a suspension of hollow glass spheres of 10µm average diameter in the fluid and illuminate
the interface with laser sheets (Wicked Lasers < 500mW and wavelength ≈ 532nm). The motion of the particles
from the recorded images is tracked using open-source package, PIVLab [19]. The resultant velocity field for the
relaxation is plotted in fig. 4(c). As the filament begins to relax, two symmetric pairs of vortices are formed. Tension
in the system has contributions only from the tangential projection of the stress tensor. Now using eq. 4 we can write:

rs · t̂ ∂sT (s) = µ̄∂tr · t̂ + rssss · t̂

T (s) =

∫ s

0

(rssss · t̂ + µ̄rt · t̂)ds

This quantity goes to zero at the position where net bending force is balanced by viscous dissipation. Comparing the
PIV field and fig. 4(b) we observe that this location is close to the point where vorticity changes sign. This location
moves towards the ends of the filament as it relaxes, consistent with the simulation results.
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FIG. 4: (a) Tension, T (s) vs s at various time instants. The profile of tension changes shape as it decays, which is
evident from the fact that the position where it crosses zero travels towards the ends in time. (b) x-component of

force due to bending (F1), tension (F2) and the resultant viscous force (their sum) from eq. 3 for the filament
configuration shown at the bottom right. The contribution from bending force and that of tension are very similar
in magnitude but opposite in sign, so a small viscous force (as seen) is sufficient to balance them. The filament in

the inset is colored based on T (s) and the dots show the position where T (s) goes to zero. (c) Velocity field obtained
by PIV where a pair of vortices is formed on each side of the filament. The tension in the filament vanishes near the

location where the sign of vorticity changes. Scales in units of cm.

To separate the contributions of the bending force, F1, and the tension arising from length conservation F2, we
plot in fig. 4(b) x-component of these individual terms on the right side of eq. 3. The bending force (F1) and force
due to tension (F2) are comparable in magnitude, though opposed in sign, even for the highly deformed regime. The
algebraic sum of these forces is balanced by a viscous term that is much smaller in magnitude than each of these
terms.

Viewed in the light of these results, it is evident that ignoring the tension term in the large deformation limit not
only leads to non-conservation of length but leads to a significant overestimation of the dissipation due to viscosity.
Second, as we see from the energy functional, T ∼ B/L2

o, the nonlinear tension term (F2) has the same scaling as the
bending term (F1). In other words, τ is the single time scale in the problem, even in the nonlinear regime but with
a small coefficient due to tension. We recall that the filament relaxes much faster experimentally than the time scale
τ , i.e., the balance between the two terms leads to a small numerical prefactor.

VI. ASYMMETRIC INITIAL CONDITIONS

All the results we describe above are for initial shapes that are symmetric about the midpoint of the filament
(κ(Lo/2− s) = κ(s)). If the filament is released from an asymmetric, highly deformed shape, we find experimentally
that it first deforms into a symmetric shape, then relaxes along the sequences of symmetric shapes we have previously
shown. This is shown in fig. 5(a, b) via the evolution of Ēel(t) and L̄(t). The images of filaments shown label the initial
condition in each of three data sets displayed. We have chosen t = 0 to be the point where there is no experimentally
discernible asymmetry. For t > 0 the relaxation follows the same path in all cases.

In the linear regime, contributions from tension becomes negligible and the relaxation time of a Fourier component
varies only with wavelength, and any initial asymmetry would be preserved. Thus we emphasize here that the
collapse into a symmetric shape is a consequence of being in a deeply nonlinear regime. The linear regime of our
problem is similar to another curvature-driven problem – that of the relaxation of a perturbed liquid-air interface
[20, 21] – in that they flow to attracting set of shapes at long times. We show this explicitly by simulating five
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different asymmetric initial-conditions each with a straight portion attached to a semi-circular portion as in fig. 5(e).
The total length of the filament for all the initial conditions is held fixed while the diameter, b of the semi-circular
section is varied. We quantify the asymmetry in terms of the difference in curvature on either side of the midpoint:

φ =
∫ Lo/2

0
|κ(Lo/2 − s) − κ(s)|ds. φ takes a value of 0 for a completely symmetric shape and positive values for

different levels of asymmetry. We plot φ(t) in fig. 5. In all cases, the filament first rapidly becomes symmetric and
then relaxes more slowly to a straight line. The straight section first curves in order to attain overall symmetry, thus
showing that tension must play a role, as there is no bending force on the straight section. The time-scale to reach
the symmetric shape increases monotonically with b. (see fig. 8 of appendix to see the movement of T (s) along the
filament to regions of zero bending force.)

We make an energy argument to show that the energy of the symmetric state is a minimum with respect to
asymmetric perturbations. Let us assume a smooth symmetric profile for curvature, κ̂(s) = κ̂(−s). We perturb the
curvature, κ̂(s), while maintaining the boundary conditions, with a function −ε(s) in s ∈ [−Lo/2, 0] and with ε(−s)
in s ∈ [0, Lo/2] . The total elastic energy becomes:

Eel =
B

2

[ ∫ 0

−Lo/2

(κ̂(s)− ε(s))2ds+

∫ Lo/2

0

(κ̂(s) + ε(−s))2ds
]

=
B

2

[ ∫ Lo/2

−Lo/2

κ̂2(s)ds+

∫ Lo/2

0

(ε2(−s) + ε2(s))ds

]
≥ B

2

∫ Lo/2

−Lo/2

κ̂2(s)ds

It is thus evident that for a given curvature, a symmetric shape has minimum energy. This shows that asymmetric
perturbations about an arbitrarily large-deformation state will be relaxed to a symmetric state. To emphasize the
fact that it is a symmetric stress or curvature, rather than a symmetric shape, that is attained, we show an example
in fig. 5(c, d) where r(s) is not symmetric but κ(s) is. These initial conditions also relax along a stress-symmetric
sequence of shapes. The fast relaxation of the asymmetric stress state to a symmetric one is to be expected because
the effective length of the portion of the filament under tension is shorter at early times, and changes with time as
the tension gets distributed everywhere in the filament.

VII. CONCLUSION

We have found that the dynamics of the relaxation process may be collapsed over the whole range of the dynamics
by a single time scale arising out of balancing viscous drag and bending force. This time-scale has been previously
recognized [[10],[15],[7]] from the governing equations, but we show here that the observed relaxation time in the
nonlinear regime is much shorter than this time scale, presumably because the tension in the filament and nonlinear
bending lead to a shape-dependent prefactor to the time scale. A qualitative explanation for this is currently lacking,
but we can show that the relaxation as measured by the end-to-end distance, for instance, is governed by large tension
gradients (see eq. 9, and data in fig. 4).

We are developing this experimental setting to measure interfacial viscosity by measuring the relaxation of a filament
with known elastic properties and geometry. As an example, we are currently studying the time-dependence due to
water absorption of the interfacial viscosity of glycerol. Alternatively, once the drag at an interface is calibrated
for a known elastic rod, this setting can be used to infer the bending modulus of a filament. The preference for
symmetric shape of the filament over asymmetric shapes would make the experiment robust to small variations in
initial conditions.

VIII. APPENDIX

A. Expression for L(t)

The evolution of vectors at the boundary of the filament can be written as:

µ̄∂tr|0 = −rssss|0 + [rs∂sT (s)]|0 (6)

µ̄∂tr|L = −rssss|L + [rs∂sT (s)]|L (7)
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FIG. 5: (a) Evolution of elastic energy and (b) L(t)/Lo for the two asymmetric initial conditions shown in the
legend from experiments, compared with the symmetric case (Lo = 6.5cm,E = 240kPa, d = 1.1mm). We see that

the curves merge quickly and the decay beyond that time becomes identical. (c, d) Evolution of a rod with
symmetric κ(s) about s = 0.5 which relaxes to a straight configuration along a symmetric path. (c) consists of

superimposed images from experiment while (d) is from numerics for the same initial condition. (e) Non-dimensional
parameter φ(t) which quantifies the asymmetry in a given configuration. This is plotted for different initial

conditions with different values of b, where b is the diameter of the semi-circular section shown above the plot. b
here is varied between 0.0625 and 0.1875. We see that a configuration with smaller b symmetrises faster.

For symmetric initial conditions that we use in experiments, we can write:

rssss|0 = rssss|L
∂sT (s)|0 = −∂sT (s)|L

Now using these the vector connecting the ends evolves as,

µ̄∂t(r|0 − r|L) = ∂sT (s, t)|0[rs|0 + rs|L] (8)

µ̄∂tL̄(t)ex = 2∂sT (s, t)|0 cos(θ(t))ex (9)

where θ(t) is the angle between the tangent vector at s = 0 and the horizontal. This shows that the end-to-end
distance depends only on the gradient of tension at the boundary and bending is eliminated from the equation.

B. Independence of height of glycerol

One might be concerned that the relaxation dynamics would be affected by the depth of the glycerol in the container.
In our experiments, the filament is placed at the glycerol-air interface. We report here the minimum height of glycerol
required in the beaker for the filament relaxation dynamics to be not affected by the volume of glycerol in the container.
Fig. 6 shows the relaxation for four different height: h = 0.6cm, 1.1cm, 2.3cm, 3.3cm. We see that for height greater
than 0.6cm, the dynamics remain the same. Thus in all our experiments, a height greater than 3.3cm is used.
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FIG. 6: (a) Energy, (b) end-to-end distance for different heights of glycerol. We do not see any significant effect
except at the shallowest height of 0.6cm.

FIG. 7: Ēel and L(t)/Lo vs t/τ for a filament with one end clamped and the other end deformed. L(t) is obtained by
mirroring the image about the normal at the hinged end. The effective length calculated by combining the mirrored
image and the normal relaxation is represented by Lo. Blue circles correspond to relaxation of the symmetric initial

configuration described earlier.

C. Effect of hydrodynamic interaction

The model used to simulate the filament neglects the hydrodynamic interaction between different points along the
filament as mentioned in the main text. But these interactions are present in the experiments and thus to see if the
relaxation is radically modified by these interactions, we perform the following experiment. We clamp one end of the
filament and deform the other end and let it relax from this configuration. The relaxation is mirrored about the normal
at the fixed end and the effective length of this combined filament is Lo. Now L(t) is calculated for this combined
picture that consists both the mirrored part and the actual relaxation. Fig. 7 shows Ēel vs t/τ and L(t)/Lo vs t/τ for
three different lengths and we see that the collapse is spread. The blue rounds are that of the symmetric relaxation
from earlier experiments. Though this does not conclusively quantify the effect of hydrodynamic interaction, we see
that τ is not exorbitantly modified.
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FIG. 8: (a, c) Two arbitrary asymmetric initial conditions relaxing to symmetric states with (b, d) showing similar
behaviour from numerics. (d) We see that the tension, T (s) moves towards regions of zero bending force and

becomes symmetric. Even after symmetrising, the tension is still of finite amplitude, indicating that the system is
still non-linear.
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universal self-similar attractor for the levelling of thin liquid films,” Soft matter 10, 8608–8614 (2014).


	Relaxation of a highly deformed elastic filament at a fluid interface
	Abstract
	 Introduction
	Experimental methods
	Experimental results
	Nonlinear dynamical equations
	Nonlinear simulation
	Numerical method and validation
	Tension

	Asymmetric initial conditions
	Conclusion
	Appendix
	Expression for L(t)
	Independence of height of glycerol
	Effect of hydrodynamic interaction

	Acknowledgments
	References


