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In a typical Richtmyer-Meshkov experiment a fast moving flat 

shock strikes a stationary perturbed interface between fluids A and B 

creating a transmitted and a reflected shock, both of which are perturbed. 

We propose shock tube experiments in which the reflected shock is 

stationary in the laboratory. Such a standing perturbed shock undergoes 

well known damped oscillations. We present the conditions required for 

producing such a standing shock wave which greatly facilitates the 

measurement of the oscillations and their rate of damping. We define a 

critical density ratio Rcritical in terms of the adiabatic indices of the two 

fluids, and a critical Mach number Ms
critical of the incident shock wave 

which produces a standing reflected wave. If the initial density ratio R  of 

the two fluids is less than criticalR  then a standing shock wave is possible at 

Ms=Ms
critical. Otherwise a standing shock is not possible and the reflected 

wave always moves in the direction opposite the incident shock. Examples 

are given for present-day operating shock tubes with sinusoidal or inclined 

interfaces. We consider the effect of viscosity which affects the damping 

rate of the oscillations. We point out that nonlinear bubble and spike 

amplitudes depend relatively weakly on the viscosity of the fluids, and that 

the interface area is a better diagnostic. 
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I. INTRODUCTION AND GENERAL RESULTS 

A most important and useful property of shocks is their stability. Undergoing damped 

oscillations, the first theoretical study of shock stability was by Roberts [1] followed by 

D’yakov [2], Freeman [3], and others – see Wouchuk et al. [4] and Bates [5] for an 

extensive list of references both old and new. Anomalous fluid properties, usually near a 

critical point, can lead to unstable shocks [2,6-8]. The influence of shock stability on 

inertial confinement fusion (ICF) has been assessed recently by 3D simulations [9]. 

In contrast, an interface between two fluids is unstable when impacted by a shock 

wave: the well-known Richtmyer-Meshkov (RM) instability [10,11]. The importance of 

the RM instability in ICF was pointed out some years ago [12] and since then it has been 

and continues to be studied extensively by theory [12-18], simulations [18-23], and 

experiments [24-31]. For a review see Refs. [32] and [33]. 

The stability of the shock wave and the instability of the interface are intimately 

connected by first publications [1,10] on each subject: Richtmyer’s paper contains only 

one reference to prior work, and it is a reference to Roberts’ report (there are no 

references in Roberts’ report). Both were initially classified and subsequently 

declassified. Roberts’ work is less known and referenced while Richtmyer’s work 

continues to grow in readership. This could be due to two reasons: Roberts chose not to 

officially publish his work while Richtmyer did and, second, the stability of the shock 

wave attracts less attention than the instability of the interface which can lead to mixing 

between two fluids. Likewise, early experiments on shock stability were few and far in 

between [34,35] compared with the experiments on interface instability [11,24-31]. We 
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believe there is a third reason for the relative paucity of experiments on shock stability: 

Their relative difficulty arising from the fact that shocks, in general, move faster than 

interfaces. In this paper we propose a method to measure the oscillations of a standing 

shock, meaning a shock that is at rest in the laboratory frame. 

Since traditionally the oscillations are detected by imaging techniques like schlieren 

and PLIF [34,35] (the same applies to the RM interface [11,24-31]), the advantages of 

imaging a standing shock versus a fast moving shock are obvious, a stationary object 

being much easier to image than a moving object. Another and, in our mind, a much 

more important advantage of a standing shock is that, in addition to standard imaging, 

experimentalists can use other diagnostic techniques when the target is at rest. In 

particular, a simple pressure gauge can record pressure oscillations as the standing shock 

oscillates back and forth around the fixed average location. We will illustrate with 

examples. 

Interestingly, the method we propose uses the standard RM instability illustrated in 

Fig. 1 (This is the same as Fig. 1 of Ref. [15]. See also Fig. 1 of Ref. [10]): The incident 

shock, of Mach number sM , travels “down” in fluid A and strikes the A/B interface, 

after which the interface begins to move down and its perturbations begin to grow (there 

are exceptions – see Ref. [15]). Ahead of the interface a transmitted shock also moves 

down in fluid B, while a reflected shock moves “up” in fluid A. 

We use the same notation as in Ref. [15]: In Fig. 1 the velocity iW  of the incident 

shock, the jump velocity vΔ  of the interface, the velocity tW  of the transmitted shock, 

and the upward velocity rW  of the reflected shock are all taken to be positive. As we 

pointed out in Ref. [15], it is possible for the reflected shock to move down in the 
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laboratory frame, in which case rW  will turn out negative. Clearly, if rW  can be positive 

(moving up) or negative (moving down), it can also be zero, i.e., standing. It is this 

reflected shock, perturbed by the initial interface, that we propose to probe 

experimentally. When 0=rW  the shock stays fixed where the interface was originally 

located, while the interface itself moves down and away from it. 

A reader familiar with Ref. [35] will notice a similarity: Briscoe and Kovitz used a 

perturbed solid endwall to reflect an initially flat shock and measured the oscillations of 

the reflected shock as it moved up. We propose a perturbed fluid, instead of a solid 

endwall, that acts like a partial shock absorber and which, under the proper conditions, 

leaves behind a standing reflected shock while it (the absorber) moves away. 

We know of only one experimental and one computational work studying the 

oscillations of one of the shocks in the RM instability. Both studies considered the 

transmitted shock. Aleshin et al.  [36]  studied the shock transmitted into Xe in a He/Xe 

or Ar/Xe system. Interpretation was rather difficult but decaying perturbations were 

observed on the transmitted shock front. The simulations [37] showed qualitative 

agreement with the experiment and went on to consider the air/SF6 system, again 

focusing on the shock transmitted into the SF6 (what we generically call gas B in the A/B 

system). We believe studying the reflected shock in gas A is more interesting because it 

can be made stationary. 

Clearly, the proper conditions are obtained by setting 0=rW . An expression for rW  

was given in the Appendix of Ref. [15] (Eq. (A10)): 

)/1/()/( 232233 ρρρρ −−= uuWr ,             (1) 
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which follows from momentum conservation and is straightforward to derive, 

remembering that all parameters, in particular 2u  and 3u , refer to the laboratory frame. 

As is standard, in the reference frame of the shock the fluid velocities are rWu +2  and 

rWu +3 , hence momentum conservation reads )()( 3322 rr WuWu +=+ ρρ , which gives 

Eq. (1) above. If 0=rW  then 3322 uu ρρ = , again a momentum-conservation equation 

because now the rest frame of the shock is the laboratory frame. 

 It turns out that 0=rW  is allowed in most cases, but not all cases. In most cases, 

starting with a low Mach number sM , the reflected shock moves up, i.e. 0>rW  in our 

notation. As sM  and the downward fluid flow is increased rW  decreases, i.e. the 

reflected shock moves up less and less, as one would expect on physical grounds. At 

some special value of sM , call it critical
sM , the reflected shock becomes stationary, and 

this is the shock that we want. Any further increase in sM  is “overdrive” and the 

reflected shock moves down and rW  becomes negative. However, this does not happen in 

all cases – there are cases, as discussed below, that do not have an critical
sM ; In those cases 

rW  decreases as before but, before reaching zero, it reaches a minimum and then 

increases with increasing sM . Although such cases are relatively rare, we hesitate calling 

them “anomalous” because we see nothing so out of the ordinary. For example we find 

that air/SF6 admits 0=rW , while He/air does not – As sM  increases its rW  has a 

minimum, approximately 50 cm/ms near 5≈sM , and then it climbs back up with 

increasing sM . This is interesting because, as we have pointed out previously, air/SF6 

has approximately the same density ratio and hence the same Atwood number as the 
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He/air system and therefore the RM instability evolves similarly in both systems [38]. As 

before [15], we define ABR ρρ /≡  where BA,ρ  are the initial, preshock densities of the 

fluids and define  )1/()1( +−≡ RRA , also called beforeA  for the Atwood number before 

the shock.  

We find that the existence or non-existence of 0=rW  at finite sM  depends strongly 

on R  and on the compressibilities of the fluids through their adiabatic indices Aγ  and Bγ

. Our results can be summarized by defining a critical density ratio criticalR : 

3)1)(1(
)3)(1(

−+
−+≡

AB

AAcriticalR
γγ

γγ .             (2) 

If the density ratio R  of the system satisfies criticalRR <  then it does admit 0=rW  and 

has an critical
sM . If criticalRR >  then it does not admit 0=rW  and has only a minimum 

0>rW . If criticalRR =  then the system admits 0=rW  only at ∞=sM . Eq. (2) is derived 

in the Appendix of this paper. 

There is a second and perhaps more important motivation for the study of shock 

oscillations: Viscosity. Sakharov proposed measuring the viscosity of a fluid via its 

stabilizing effect on shock oscillations [39,40]. This well-known method is reviewed 

extensively by Miller and Ahrens [41] and interpretation of experiments continue to be 

contentious [42]. Of course viscosity has a stabilizing effect on the RM instability itself 

[43] and, recently, we proposed using that effect as an alternative to Sakharov’s method 

[44]. By measuring both the oscillations of the shock and the evolution of the interface 

one is using both methods to extract viscosity. The importance of viscosity in ICF 

implosions has been recently studied by direct numerical simulations [45,46]. 
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In summary, we are proposing RM experiments in which both the interface amplitude 

and the shock oscillations are measured simultaneously as functions of time. We believe 

this is possible only if 0=rW . One first chooses a system with criticalRR <  and hence 

0=rW  is allowed. Next, one chooses that special Mach number critical
sM  that actually 

produces 0=rW , i.e. a standing reflected shock wave, which greatly facilitates probing it 

with imaging as well as static techniques. While probing the RM interface is challenging 

it has now been mastered by many groups [11,24-31]. Adding diagnostic to 

simultaneously measure the expected oscillations of the reflected shock may require new 

techniques, but we believe that that task is greatly simplified by choosing a standing 

wave. 

In Sec. II we present several examples with and without a standing shock wave. In 

Sec. III we concentrate on a possible air/CO2 experiment and present numerical 

simulations of the interface with the 2-dimensional hydrocode CALE [47]. In Sec. IV we 

study the oscillations of the standing reflected shock wave. In both of those sections 

(Secs. III and IV) we consider two types of interface perturbations: A) a sinusoidal 

interface and B) an inclined interface. While sinusoidal perturbations are by far the most 

common, inclined interfaces with no membranes have been recently produced [28,48]. 

The effect of a reshock generated by the solid endwall of the shock tube is taken up in 

Sec. V. In Sec. VI we briefly consider air/SF6 experiments. Computational and other 

diagnostic techniques are discussed in Sec. VII, and concluding remarks are presented in 

Sec. VIII. In the Appendix we derive Eq. (2). 
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II. Standing Shocks 

In the laboratory frame defined by 0== BA uu  (see Fig. 1) the Mach number sM  

specifies the wave velocity iW  of the incident shock and the material velocity 3u . As in 

Ref. [15] we take the downward direction as positive for all velocities except rW , the 

velocity of the reflected shock, which is positive if moving “up.” All postshock quantities 

like rWpu  , , , 2,12,12,1ρ  and tW  (velocity of the transmitted shock) can be found by using 

conservation of mass and momentum (“Hugoniot relations”) across waves and the 

interface, a procedure that involves solving a transcendental equation (Eq. (A4) in Ref. 

[15]) which, in general, must be done numerically. It is clear, from physical 

considerations, that only rW  may be zero or negative - 3,2,1u  as well as tW  must be 

positive, i.e “down,” a direction selected by the incident shock. 

In Fig. 2 we plot rW  as a function of sM  for four systems: N2/air, air/Xe, H2/air, and 

He/air. As input we have taken densities BA,ρ  and adiabatic indices BA,γ  from Table I, 

following mostly Ref. [49]. One can easily verify that for the first three systems 

criticalRR <  and indeed their rW  curves cross the axis, i.e. 0=rW , at =critical
sM 2.06, 2.88, 

and 5.13 respectively. The fourth system, He/air, has criticalRR >  and it has only a rather 

wide minimum, 50≈rW cm/ms near 5≈sM , after which rW  increases, albeit slowly, as 

shown in Fig. 2 and as we discussed in the previous section. As for other examples which 

do not admit 0=rW  but have only a minimum we mention H2/SF6 and H2/Xe, the latter 

presented as an example in the Appendix. In all cases criticalR  determines whether a pair 
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of gases admits 0=rW  or not, i.e., whether a critical Mach number critical
sM  exists or not: 

A standing shock can be found if and only if criticalRR < . 

Two other systems are worth mentioning: air/SF6 and air/CO2, not shown in Fig. 2 so 

as not to crowd the curves. They have =critical
sM 2.76 and 2.18 respectively. Air/SF6 is 

extensively studied in shock tube experiments [24-31], while air/CO2, somewhat less 

studied [31,50-52], will be considered in detail in the rest of this paper. 

Let us compare and contrast the most commonly used system, air/SF6, at 20.1=sM  

and at 76.2== critical
ss MM . For the (almost standard) 20.1=sM  case the incident shock 

wave moves down at ≈iW  400 m/s. The interface, after being hit by that shock, moves 

down at a mere 70m/s while the transmitted shock moves ahead of it at ≈tW 175 m/s, i.e. 

2.5×  faster. The reflected shock wave moves up about 4×  faster at ≈rW 280 m/s. If the 

experiment were done at 76.2== critical
ss MM , one has  ≈iW 950 m/s, the interface after 

shock moves at a whopping 460 m/s, the transmitted shock a little faster at 500 m/s but, 

most importantly, the reflected shock is at rest, 0=rW . 

We next present the one-dimensional flow conditions for the air/CO2 system whose 

two-dimensional behavior will be studied in subsequent sections at 

18385.2== critical
ss MM . As input we take 0p , the ambient pressure, to be atmospheric, 

205.1== airA ρρ Kg/m3, 839.1
2

== COB ρρ Kg/m3, 402.1=Aγ , and 297.1=Bγ . The 

incident shock is traveling down at 750=iW m/s. To complete the specification of the 

“before” state use standard relations [49] that give 40.5/ 03 =pp , 92.2/3 =Aρρ , and 
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44.1/3 =Acu  ( 343=Ac m/s is the sound speed in ambient air). Note that the flow within 

the singly-shocked air region #3 is slightly supersonic with 058.1/ 33 ≈cu . 

As mentioned above, all “after” variables are easily obtained once Eq. (A4) in Ref. 

[15] is solved. We find 138.1=x . Using this value we find 50.3/1 =Bρρ , 21.3/2 =Aρρ , 

138.1// 3231 == pppp , 68.1/1 =Bcu  ( 267/0 == BBB pc ργ m/s is the sound speed in 

ambient CO2), 36.2/ =Bt cW , which is the Mach number of the transmitted shock, and of 

course 0=rW . This standing shock stands between the slightly supersonic singly- 

shocked air, i.e. region #3 where the pressure 3p  is 5.4×  atmospheric, and the doubly 

shocked air, region #2, which is slightly subsonic with 947.0/ 22 ≈cu and where the 

pressure is 1.138×5.4 0p× , i.e. slightly above 6 atmospheres. The jump velocity of the 

interface, commonly denoted by vΔ , is given by 21uv u==Δ  and is about 450 m/s, 

compared with 630 m/s (= tW ) for the transmitted shock ahead of it. Needless to say, the 

fastest wave was the incident shock at 750=iW  m/s. 

 

III. AIR/CO2: THE INTERFACE IN 2D 

Having described the basic one-dimensional (1D) flow characteristics of the air /CO2 

system, we proceed to consider the evolution of perturbations at the interface using the 

two-dimensional (2D) hydrocode CALE [47]. As always, we first run the code in 1D 

mode to check that it indeed reproduces the 1D characteristics calculated analytically in 

the previous section. 

We expect that such an experiment will measure both the interface and the reflected 

standing shock simultaneously. In this section we study the interface; the reflected shock 
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will be studied in the next section. We start with the interface first because this is by far 

the most common measurement of the RM instability. 

As discussed in the Introduction we are interested in studying the effect viscosity has 

on perturbations appearing on the interface as well as on the shock. We believe such a 

shock tube experiment is an excellent venue to compare and contrast the two methods 

that have been proposed as a measure of viscosity: The RM method focusing on the 

interface [44] and the Sakharov method focusing on the shock [39-42]. For this purpose 

we will study four cases: 

Case A (inviscid): 0== BA μμ ,           (3a) 

Case B: 1=Aμ Pa.s, 0=Bμ ,           (3b) 

Case C: 0=Aμ , 1=Bμ Pa.s,           (3c) 

and 

Case D: 5.0== BA μμ Pa.s,           (3d) 

where Aμ  and Bμ  are the viscosities of fluids A and B, i.e. air and CO2, respectively. The 

pros and cons of each method may be determined by how the perturbations respond to 

variations in viscosity. 

We shall consider two types of perturbations as shown in Fig. 3: The standard 

sinusoidal perturbation (Fig. 3(a)) defined by amplitude η  (initial value 0η ) and 

wavelength λ , and the so-called inclined plane (Fig. 3(b)) defined by the shock tube 

width w  and angle θ . The parameters in our simulations are taken to mimic 

experimental facilities [28,29] where such perturbations have been or can be produced. 

Specifically, 13=λ cm, 43.11=w cm, and o60=θ . The sinusoidal perturbations are 

considered in subsection A and the inclined plane in subsection B. 



 

 

12 

 

 

A. Sinusoidal interface 

The initial interface is taken to be kxy cos0η=  with λπ /2=k , λ =13cm, and 0η  

either small (3mm) or large (3cm). Bubbles, i.e., the penetration depth of the lighter fluid 

(air) into the heavier fluid (CO2 ) are taken to be positive, while the spikes, i.e., the 

penetration depth of the heavier fluid into the lighter one, are taken to be negative. 

Referring to Fig. 3, the bubbles are at =x 6.5 and 19.5 cm, while the spikes are at =x 0, 

13, and 26cm. It is well known that in the linear regime where 1<<kη  bubbles and 

spikes are equal in magnitude but they are different in the nonlinear regime. 

Fig 4 shows the evolution of the bubble and spike amplitudes starting with the small 

initial amplitude =0η 3mm. As usual, one defines 0=t  as the time the incident 

18.2=sM  shock in air strikes the interface. The amplitude is first compressed and then 

grows with time. The compression factor, as given by Richtmyer [10], is 

4.0750/4501/v1 ≈−≈Δ− iW . As expected the inviscid (red) case grows largest; the 

viscous cases (Eqs. 3b, 3c, and 3d) grow less, but all three cases are similar to each other. 

This is due to the choice =+ BA μμ 1pa.s in all three cases and the observation that the 

evolution of )(tη  depends primarily on the sum of the two viscosities [44]. This will not 

be true for the reflected shock, as will be discussed in Sec. IV. We should point out that 

1pa.s is a greatly and artificially enhanced viscosity for air or CO2 done numerically to 

more clearly interrogate the effect of viscosity on the interface and on the reflected shock. 

During the 4ms shown in Fig. 4 the interface moves 450×4/1000 ≈ 1.8m, while the 

initial 3mm perturbations grow to at most 2.6cm (inviscid spike in Fig. 4) for a growth 
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factor 0/ηη  of about 9. This calls for a long shock tube. The total length L  of the test 

section containing CO2 is determined not by the distance the interface moves but by the 

requirement that the much-faster-moving transmitted shock (630m/s) does not hit the 

endwall and return to reshock the interface. One can easily show that 250≈L cm is 

sufficient to avoid a reshock before 4ms. A much shorter test section, 50=L cm, with 

reshock will be considered in Sec. V. 

Keeping everything the same we increase the initial amplitude tenfold to  30 =η cm. 

The result is shown in Fig. 5. The amplitude again compresses by a factor of 0.4, but the 

subsequent evolution is quite different from the previous low-amplitude run: The inviscid 

case, case A, no longer dominates over the viscous cases B, C, and D. After growing for 

about 1ms the bubble begins to decrease and in fact is the smallest of all the bubbles after 

another millisecond. By 4ms the largest spike is case C, in blue in Fig. 5, reaching about 

9cm in magnitude for a growth factor of 3; The smallest spike is case B, in black, at about 

7cm, while cases A and D, red and grey respectively, are about equal at about 8cm. 

We believe this is the first report of a viscous instability growing larger than the 

inviscid case. It appears to be the result of combining three properties: nonlinearity, 

compressibility, and low Atwood number ( 21.0≈beforeA , 25.0≈afterA ). Unlike the linear 

case shown in Fig. 4 where the inviscid growth dominates, here viscosity appears to have 

little effect. This is, however, somewhat deceptive because the inviscid case supports a 

large amount of roll-up while the viscous cases do not. Fig.6 shows the air/CO2 interface 

at the end of the runs, 4ms, for the 4 cases. Although penetration depths, i.e., bubbles and 

spikes, are comparable for the 4 cases, the inviscid case (Fig. 6(a)) does not dominate 
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precisely because it rolls up instead of growing vertically. As far as we can determine it is 

the same roll-up of the spike that causes its bubble to slow down and reverse curvature. 

Comparing the (semi)linear case Fig. 4 with the nonlinear case Fig. 5 we clearly see 

how viscosity has a weaker effect in nonlinear problems, as reported in Ref. [44], and 

how the sum BA μμ + , rather that individual viscosities Aμ  and Bμ , that is the primary 

parameter with the 3 viscous cases B, C, and D yielding similar bubbles and spikes (Fig. 

5) and configurations (Fig. 6). 

 

B. Inclined interface 

From the 26cm-wide shock tube [25,50-51] with a sinusoidal perturbation (Fig. 3(a) 

we turn to an 11.43cm-wide shock tube [28,52] with an inclined interface (Fig. 3(b)). 

Instead of kxy cos0η=  the interface is now linear in x  and given by 

θηθ tan/tan/)2/( 0 xxwy −=−= , wx ≤≤0 ,     (4) 

where 

θη tan2/0 w≡ .      (5) 

For 43.11=w cm and o60=θ  we have 3.30 ≈η cm. 

Since the walls of the shock tube are reflecting, the inclined interface can be 

considered as half of a “V” pattern w2  wide. As shown in Ref. [53] a “V” pattern can be 

Fourier expanded (Eq. (4b) in Ref. [53]) and the fundamental mode carries the lion’s 

share of the expansion, 2/8 π , or about 81%. The remaining infinitely many components 

of shorter and shorter wavelengths make up the remaining 19%. Hence to a good 

approximation the initial interface of Fig. 3(b) can be considered half of a sinusoidal 
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perturbation, )/2cos(0 λπη x , 2/0 λ≤≤ x  having wavelength 86.222 == wλ cm and 

amplitude 3.3tan2/0 ≈= θη w cm. In this approximation the width of the shock tube 

determines the wavelength of the perturbation and θ , the angle between the wall of the 

shock tube and the interface, determines the initial amplitude: Small amplitudes for 

2/πθ ≈ , large amplitudes for .0≈θ  In the laboratory the A/B fluid interface is 

horizontal and the shock tube is tilted at an angle θπ −2/  with the vertical [28,52]. 

Given the above mapping )tan2/,2(),(),( 0 θηλθ www =→  it is not surprising that 

our simulations of this inclined interface yield results qualitatively similar to the large- 0η  

(3cm) case in the previous subsection. We again simulate a flat shock falling on an 

inclined air/CO2 interface leaving behind a standing shock, 18385.2=sM . The evolution 

of the bubble and spike is shown in Fig. 7 which, as anticipated, is similar to Fig. 5 for a 

sinusoidal interface. In both figures viscosity plays a relatively small role because the 

initial amplitude, ~3cm, is large in both cases. In Sec. VI we discuss another diagnostic, 

interface area, which is much more sensitive to viscosity. 

Fig. 8 shows the interfaces for the 4 inviscid/viscous cases as defined by Eqs. (3a)-

(3d). The inviscid case, Fig. 8(a), shows much roll-up, the viscous cases, Figs. 8(b)-8(d), 

practically none. Qualitatively, these results are similar to Fig. 6 and support the 

identification of an inclined plane with half of a full wavelength. 

In addition to o60=θ  we carried out simulations with o87=θ , i.e., a o3  tilt, for 

which 3.0tan2/ ≈θw cm, about 10×  smaller than the o30  tilt. The resulting bubbles and 

spikes were similar to our earlier sinusoidal simulations with 3.00 =η cm shown in Fig. 4 
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and, as in that figure, viscosity played a greater role and the inviscid amplitude grew 

larger than the viscous ones, as is normal. 

 

 

IV. AIR/CO2: THE REFLECTED, STANDING SHOCK IN 2D 

To solve for the interface evolution one must solve simultaneously for all 3 “after” 

perturbed quantities: The interface, the transmitted shock, and the reflected shock. Given 

the initial (“before”) perturbation amplitude −≡ 00 ηη  on the interface, Richtmyer [10] 

gave expressions for the perturbation amplitudes on all 3 of them immediately “after,” 

+= 0t : 

               ),/v1(0
interface
0 iWΔ−=+ ηη                    (6) 

               ),/W1( t0
shock trans.

0 iW−=+ ηη                    (7) 

and 

               )./W1( r0
shock refl.

0 iW+=+ ηη                    (8) 

From Eq. (8) it follows that if 0=rW  then the reflected shock not only stays at the 

location of the “before” interface but also acquires the same amplitude 0η . 

To emphasize the requirement of simultaneity we remind the reader that the same 

CALE calculations which gave the interface evolution presented in the preceding section 

are used here to present the oscillations of the reflected shock just as, we hope, the same 

experiment will capture the interface as well as the reflected shock. It is somewhat ironic 

that the interface, despite the past vast experience with it, will probably prove to be the 
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more challenging measurement because of its large speed (450m/s), compared with the 

reflected shock which is at rest, on average, in the laboratory. 

 

 

 

A. Sinusoidal interface 

For brevity we shall consider only the large amplitude, =0η 3cm, case. As diagnostic, 

perhaps measurement with pressure transducers, either on the wall of the shock tube or 

within the flow, is the simplest method, followed by imaging – See below. Two such 

possible locations are indicated in Fig. 3(a): In the calculations we placed several tracer 

particles (only two are shown in Figs. 3(a) and 3(b)) which are fixed in position and 

which monitor flow parameters like density, pressure, temperature, etc. Their locations in 

Fig. 3(a) are =),( yx (0,-6) and (6.5, -6) in cm, in laboratory coordinates where the 

original perturbed interface, of wavelength 13 cm, lies between =y +3cm and -3cm. 

As we saw in Sec. II, ≈3p 5.40 b and ≈2p 6.15 b (we set =0p 1 b), meaning the 

reflected shock sits between air at pressure ≈ 5.4 b (above) and 6.15 b (below). These are 

averages, i.e., one-dimensional values – The pressure fluctuates substantially, as 

expected. In Fig. 9 we plot the pressure difference pΔ  between the two points shown in 

Fig. 3(a) as a function of time. For clarity the viscous cases B, C, and D are displaced by 

-1, -2, and -3 units respectively. We see that the maximum pΔ ’s are about ½ b, 

decreasing with time, particularly for cases B and D. For each case Fig. 6 showed the 

interface which, at 4ms, is about 180 cm below its original ( 0=y ) location. 
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From Fig. 9 it is clear that, unlike the interface whose evolution is controlled 

primarily by the sum BA μμ + , the reflected shock probes primarily Aμ  (A=air), which is 

not surprising because the reflected shock resides in fluid A. There is some difference 

between cases A and C, which differ only by the viscosity of the CO2, but this difference 

is small and probably undetectable. The similarity of cases B and D also speaks for Bμ  

being a minor player in the behavior of the reflected shock. The difference here is 

primarily due to Aμ =1Pa.s in case B versus Aμ =0.5Pa.s in case D, the smaller viscosity 

leading to slightly larger and longer-lasting oscillation. 

The density fields for cases A and D at t =1ms and 2ms are shown in Fig. 10. The 

pressure fields (not shown) are similar. In both cases the configurations, as indicated by 

the color maps, are quite different between the two times, but of course for case D the 

contrast is less and almost gone by 2ms – see the grey curve in Fig. 9. 

B. Inclined interface 

We now turn to the inclined interface shown in Fig. 3(b) and repeat the above 

procedure, i.e., extract the pressure oscillations in the reflected, stationary shock from the 

same calculation that gave the behavior of the interface (Fig. 7 and 8) as it recedes from 

its original location. 

Fig. 11 shows the pressure difference, as a function of time, between the two 

stationary points indicated in Fig. 3(b) and whose coordinates are =),( yx (0,-4) and 

(11.43,-4) in cm, i.e. both points are on the walls of the shock tube and 4cm below the 

initial interface. As in the sinusoidal case we have chosen points below the interface and 

hence in the initial CO2 because we believe it will not be practical to position detectors on 
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the interface itself which would be optimal. Of course once the CO2 is swept away by the 

incoming shock those fixed points remain in air and are just below the standing shock. 

Our discussion of Fig. 9 applies to Fig. 11 also and will not be repeated. Snapshots of 

the A and D cases at 1 and 2 ms are given in Fig. 12 to be compared with Fig. 10. 

 

 

 

V. RESHOCKED INTERFACE 

 

As mentioned in the previous section a long, 250≈L cm shock tube is needed to 

observe the interface for 4ms without a reshock. In this section we consider a much 

shorter, 50=L cm test section in which the interface is reshocked a mere 1ms after the 

incident shock, i.e., after travelling only 45 cm. We will compare the evolution of the 

interface between the long and short test sections for cases A and D. 

Starting with the inviscid case A and the large ( 30 =η cm) initial amplitude, Fig. 13 

compares the evolution of the reshocked interface with the previous unreshocked 

interface. Needless to say, until 1ms the two evolve identically. At 1ms, Fig. 13 shows 

the bubbles, or the lower part of the interface, flattened by the reshock in the short-test-

section case. The spikes are still identical because the reshock has not yet reached them. 

By 1.3ms the reshock has cleared the spikes also and the whole interface is now 

compressed and highly complex after the reshock, while the unreshocked case evolves 

freely with its spikes wrapping ever more tightly with time (its configuration at 4ms was 
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shown in Fig. 6(a)). Because it was moving from the heavy (CO2) into the light fluid 

(air), by 2ms the reshock has inverted the interface as expected and as seen in Fig. 13. 

The same comparison between long and short test sections for the viscous case D is 

presented in Fig. 14. Because the fluids are assumed to be viscous the evolution is slower 

and the inverted interface at =t 2ms is less convoluted than in Fig. 13, but otherwise the 

processes are totally similar. 

We should point out that for the unreshocked case (left columns in Fig. 13 and 14) the 

interface is moving down at about 450m/s, but in the reshocked case (right columns) the 

interface is practically at rest about 5cm above the endwall, i. e. 45cm below its original 

location, so that in Fig. 13 and 14 the snapshots in the left and right columns are at the 

same times but certainly not at the same positions, except for =t 1ms. 

 

VI. AIR/SF6 

In this section we discuss possible air/SF6 experiments at 76.2== critical
ss MM . The 

1D properties of this flow were already presented in Sec. II. Here, for brevity, we 

concentrate on the sinusoidal interface with =λ 13 cm and =0η 1 cm. 

SF6 is heavier than CO2 and more compressible (see Table 1.) Consequently the 

Atwood number is higher and perturbations at the air/SF6 interface grow faster than in 

air/CO2. It is interesting, though more of a coincidence, that the interfaces in the two 

cases move at almost the same speed: 45 cm/ms for air/CO2 at 18.2=sM  and 46 cm/ms 

for air/SF6 at 76.2=sM . The reason is that the higher density of SF6 counterbalances the 

higher Mach number leading to almost the same vΔ . 
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The main consequence of the low value of 
6SFγ , 1.090 compared with CO2’s 1.297, is 

that the transmitted shock is slow: 50 cm/ms compared with CO2’s 63 cm/ms. This 

implies that the transmitted shock takes a very long time to separate from the interface, 

similar to the He/Freon-22 case discussed in [15]. In Fig. 15 we compare air/SF6 with 

air/CO2. In air/SF6 the transmitted shock is seen in all of the frames while in air/CO2 it is 

seen only in the first frame, at =t 0.5 ms, being too far away to be captured in the rest of 

the frames. At =t 2 ms, for example, the transmitted shock in air/SF6 is only 8 cm away 

from the interface (2× (50-46)=8), while it is 2× (63-45)=36 cm below the air/CO2 

interface. 

Snapshots of the density configuration taken at different times but at the same 

location of the standing shock are shown in Fig. 16. As in Fig. 10 the coordinates of the 

four corners are (0,-30), (26,-30), (26,-4), and (0,-4) in cm, and of course the “camera” 

frame is fixed in space – the great advantage of a standing shock. 

In Fig. 17 we display what we believe is the simplest diagnostic of all, the pressure 

difference between two pressure gauges located at the two points indicated in Fig. 3a. 

The average pressure 2p  is about 15.4 bars, varying between 14.6 and 16.3 bars at those 

two points. From Fig. 17 it is clear that the pressure oscillations are decreasing with time, 

just as the original [1] calculations indicated, albeit for an isolated shock. 

We should add that a similar behavior is seen if, instead of pressure, one monitors the 

temperature: The average value is 830K, and varies between 825K and 845K and, like the 

pressure shown in Fig. 17, the oscillations decrease with time. 

We have repeated all of the above inviscid calculations with excessively large values, 

0.5-1.0 Pa.s, for Aμ  or Bμ  as listed under cases B, C, and D in Eqs. (3b), (3c), and (3d). 
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As expected, the results are similar to the air/CO2 experiment discussed at length in 

previous sections: Viscosity slows down the growth of short-wavelength perturbations 

and causes the oscillations in a perturbed shock to decay faster. 

We emphasize that such large values for BA,μ  were chosen only to illustrate the effect 

of viscosity and do not represent the actual viscosities of gases which are smaller by 

about 5 orders of magnitude. For example [54], 0μ (air) ≈ 1.8e-5 Pa.s, 0μ (CO2) 0μ≈ (SF6)

≈ 1.5e-5 Pa.s, the subscript 0 denoting ambient conditions. The temperatures of the 

shocked gases increase by factors of 2-3, as given by )/()(/ 000 iii ppTT ρρ= . In this 

regime viscosity also increases with temperature and can be estimated either by 

consulting tables or by using Sutherland’s law [54]. We find that postshock temperatures 

for the various gases lie between 480 K and 830 K and the increased physical viscosities 

range from 2.3e-5 Pa.s to 3.8e-5 Pa.s. We repeated our air/CO2 and air/SF6 simulations 

with == BA μμ 5e-5 Pa.s, a generous estimate for the viscosities. The results could hardly 

be distinguished from the inviscid calculations. 

 

VII. COMPUTATIONAL METHODS AND DIAGNOSTICS 

 

As Richtmyer pointed out the shocks are not isolated but communicate with the 

interface. This presented particular challenges to solving even the linearized problem 

numerically [10]. Our numerical simulations, which are fully nonlinear solving the 

Navier-Stokes equations on a grid, presented a challenge we had not encountered 

previously. 
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CALE is an ALE (arbitrary Lagrangian-Eulerian) code [47] ideally suited to track the 

distortions of an interface. One uses a fine conformal grid to capture the initial interface, 

and a coarser resolution away from the interface is usually sufficient to capture the before 

and after shocks. The high-resolution ALE mesh moves mostly with the interface and 

sustains the developing “mushrooms” on it. We used this approach in all our previous 

simulations which focused on the interface only. For the present problem, however, this 

method gives too poor a resolution for the shocks whose oscillations we wish to study. 

Clearly, ALE methods coupled with AMR (Adaptive Mesh Refinement) techniques [55] 

would be ideal as one could then resolve both the interface as well as the shocks at 

different distinct locations, but CALE does not have AMR capability. 

We tried an alternative approach: Running Eulerian, i.e., the grid stays fixed as 

material flows though it, with the mesh again highly resolved near the interface and 

tapering away from it. Since the reflected shock stays at the location of the original 

interface (when 0=rW ), it remains in the highly-resolved area. But now the interface 

was poorly resolved as it moved away. Our final choice was to run Eulerian with a fine 

grid throughout the whole problem at the price of increasing the computational cost. 

Most of our final Eulerian simulations had a grid spacing of 2mm and 0.46mm in the 

horizontal and vertical directions respectively. As a check, we compared the interface 

evolution with the ALE simulation mentioned above and which resolved, as usual, the 

interface quite well; We found good agreement. We also compared the reflected shock 

with the Eulerian simulation mentioned above and which resolved the standing shock 

quite well; again we found good agreement. Since the interface and the shocks 

communicate with each other, and for aesthetic reasons, we chose not to present 
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interfaces from one calculation (ALE) and shocks from another (Eulerian resolved near 

the interface), but to present both from a single calculation (Eulerian resolved 

everywhere) as of course the experiment would be. We repeat that AMR would have 

been much more efficient at providing resolution where it is needed [55]. 

Fig. 18 compares the above mentioned calculation with one where the grid is finer: 

0.5mm by 0.23mm. We ran this finer-zoned problem to 1.12ms. The “mushrooms” are 

more tightly wound in the higher-resolution problem but generally agree with the lower-

resolution run, as does the pΔ  signal. 

We take this opportunity to discuss another metric, the interface area IA , proposed by 

Renoult et al. [56] and Kilchyk et al. [57] as a diagnostic for instability growth, in 

addition to the usual bubble and spike amplitudes. We have used this metric to discuss 

the Boussinesq approximation to RT and RM instabilities [58]. Returning to Figs. 5 and 7 

above, we see that in the nonlinear regime bubbles and spikes can be comparable for 

viscous and inviscid cases A through D, but interface shapes can easily distinguish them, 

as can be seen in Figs. 6 and 8. Obviously, the interface area IA  is a much better measure 

of interface shape than just bubble/spike amplitudes. In Figs. 6 and 8 the inviscid case A, 

having highly evolved mushrooms, is quite different from and has the much higher 

interface area IA  than cases B-D, all viscous. Indeed IA  is a useful diagnostic in addition 

to sb,η . 

In 2D planar problems IA  is a constant multiple of IL , the arclength of the interface, 

and can be calculated by CALE. However a cut-off filter corresponding to experimental 

resolution must be used to make meaningful statements concerning IA  because it is 

poorly defined for inviscid problems and can be a strong function of the numerical 
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resolution used to calculate it. For example, in Fig. 18, our standard resolution gives 

50≈IL cm (per each wavelength) but the higher-resolution gives ≈ 70cm, the extra 20cm 

coming from the more tightly wound vortices in the mushroom. It follows that interface 

areas IA  or lengths IL  must be compared at the same resolution, which we do using our 

standard 2mm×0.46mm grid. 

Fig. 19 shows the excess area ratio (defined below) for the sinusoidal interface, =λ

13cm, =0η 3cm, and for the inclined interface, =w 11.43cm, =θ 60o, in each geometry 

using red for the inviscid case A and grey for the viscous case D. Note the large 

difference viscosity makes, resulting in factors of 4-5. Compare with Fig. 5 (sinusoidal) 

and Fig. 7 (inclined) where viscosity hardly made a difference for the bubbles or the 

spikes (However, linear amplitudes do discriminate – see Fig. 4). The more graphic 

comparison was seen in Figs. 6 and 8 where all diagrams have approximately the same 

overall height but the inviscid case (Fig. 6(a) and 8(a)) have much larger interface areas. 

For example, ≈IL 180cm in Fig. 6(a), almost 4×  longer than ≈IL 48cm in Fig. 6(d), 

because of viscosity. 

The excess area ratio is defined as [58] 

,1)(1
)0(
)()( −=−≡

λ
ηη I

I

I L
A
AtE       (9) 

the second equality holding for 2D, where IL  is the interface length per each wavelength. 

The initial values )0(E  can be calculated analytically and we start with the inclined plane 

because it is the simplest interface. From Fig. 3(b) )0(/sin ILw=θ , hence 

           1csc −= θinclinedE .      (10) 
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For =θ 60o we get ≈−= 13/2)0(inclinedE 0.15. This agrees with the initial, preshock 

values seen in the simulations of Fig. 19. Note that this is the same value for a full “V” 

shape where both w  and IL  are multiplied by 2 leaving Eq. (10) unchanged. 

For a sinusoidal interface kxy cos0η=  and we have 
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From Ref. [59], 
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where I  is the widely tabulated [60] complete elliptic function 
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Combining Eqs. (11)-(13) we get 
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For 10 ≤≤ κ  )(κI  varies between 2/π  and 1. 

For small k0η Eq. (14) can be expanded and we find: 

     4/)( 2
0sinusoidal kE η≈ , 10 <<kη  .           (15) 

The above approximation can be used for our small- 0η , =0η 0.3cm calculation for which 

=k0η 0.145 and we find ≈E 5.26e-3. For large ≈k0η 1.45 as in our =0η 3cm run, tables 

must be consulted [60] and we find ≈+ 2
00 )(1/ kk ηη 0.82, ≈)82.0(I 1.25, and ≈E 0.40, 

which agrees with the initial, preshock value shown in Fig. 19. 
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As Fig. 19 shows, the excess values before the shock, 15.0)0(inclined ≈−E  and 

40.0)0(sinusoidal ≈−E , get substantially compressed by the shock and then grow. The 

compressed values, denoted by )0( +E , can be calculated the same way as above, using 

Richtmyer’s compression factor 5.2/1/v1 ≈Δ− iW  for 0η  (see Eq. (6)). For the inclined 

plane compression by a factor of 2.5 increases beforeθ  from 60o to o
after 77≈θ , hence 

026.0177csc)0(inclined ≈−≈+ oE , a sixfold drop from 15.0)0(inclined ≈−E . Again, our 

simulations (Fig. 19) show this to be correct. For the sinusoidal case, 

58.05.2/45.15.2/)()( 00 === beforeafter kk ηη , 50.0)(1/ 2
00 ≈+ kk ηη , 47.1)50.0( ≈I , hence 

082.0)0(sinusoidal ≈+E , approximately fivefold decrease from 40.0)0(sinusoidal ≈−E , again in 

agreement with the simulations in Fig. 19. Thus when 0η  compresses by a factor 2.5 the 

excess area ratios E  decrease by factors of 5-6 showing that interface area (or arclength) 

is more sensitive to compression. For other shapes one can approximate 2
0 )(~ kE η  in the 

linear regime, hence E  compresses by the factor 2)/v1( iWΔ−  for any shape in this 

regime: when the amplitude compresses 2.5 times E  compresses by 25.6)5.2( 2 = . 

 

VIII. REMARKS AND CONCLUSIONS 

In this paper we have proposed RM experiments in which both the interface and the 

reflected shock are investigated, simultaneously, as opposed to the standard operation of 

measuring the interface only in an RM experiment. By choosing critical
ss MM =  the 

reflected shock is stationary in the laboratory at the original location of the interface and 

this, we believe, will greatly facilitate the analysis of its decaying oscillations. As 
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expected, viscosity damps the oscillations even more, and we illustrated with the air/CO2 

system having a sinusoidal or an inclined interface. 

We conclude with a few remarks: 

1) The air/CO2 experiment discussed in this paper has relatively modest 

requirements. In addition to generating the 18.2=sM  shock in air the shock tube 

must contain the shocked CO2 in which the transmitted shock is moving at 

36.2=tM  - see the discussion in Sec. II. From Fig. 1 it is clear that, in general, 

the highest pressures are encountered in the test section, i.e. )( 21 pp = . For the 

air/CO2 system 1.6/ 01 ≈pp , meaning the test section must withstand at least 6.1 

atmospheres if 10 ≈p atmosphere. Air/Ar is another system with properties 

similar to air/CO2 and hence easily accessible. 

       Air/SF6, the other system discussed in Sec. II and in Sec. VI, requires slightly 

higher sM , about 2.76, to produce a standing shock, but a considerably stronger, 

structurally, shock tube because the transmitted shock, moving at about 500m/s, 

has 73.3134/500/ ≈≈≡ Btt cWM , where 134≈Bc m/s is the very low sound 

speed in ambient SF6. In terms of pressure, 4.15/ 01 ≈pp , more than twice the 6.1 

needed for CO2. Slightly higher containment is required for air/Xe: 17.8. As to 

H2/air, which requires ≈= critical
ss MM  5.13 to produce a standing shock (see Fig. 

2), it generates a very high 0.93/ 01 ≈pp . 

    However, we must point out that a common technique to produce and contain 

high-Mach-number shocks is to partially evacuate the shock tube. For example, 

Vetter and Sturtevant [25] carried out experiments at ~1/4 atmosphere ( 230 =p
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kPa) in which case the 1p  values would decrease proportionately to 1.5, 3.9, 4.5 

and 23.3 atmospheres for air/CO2, air/SF6, air/Xe and H2/air, respectively. 

2) We urge experimentalists to re-assess the utility of using thin membranes to 

separate fluids A and B, whatever they are. Using membranes one can easily set 

up initial interfaces of arbitrary shapes. Many experiments have already used thin 

membranes [11,25-27,36,48,50,63] or soap [29,61-62]. Eretz et al. [63] found 

membranes to have little effect on large, single-scale perturbations. Ideally, one 

would like to avoid the use of membranes as they complicate somewhat the 

analysis of the experiments and their numerical simulation. Several membraneless 

experiments have been reported [24,28,30-31,51-52,56]. However, a highly 

complex procedure is required to generate a membraneless interface, it is usually 

not sharp but diffuse, and of course one can impose only limited shapes on 

membraneless interfaces. 

3) There are advantages and disadvantages for each of the two techniques discussed 

so far that measure viscosity at high pressure, viz. damping of shock oscillations 

[39-41] (Sakharov’s method) or damping of the RM interface growth [44]. The 

advantage of the first, Sakharov’s method, is that the damping depends primarily 

on Aμ , the viscosity of the fluid in which the shock is moving (or is “at rest”). In 

contrast, the second, RM-interface method, is sensitive to the sum BA μμ + , which 

is a disadvantage. As we have shown in this paper one can choose conditions 

whereby the reflected shock is stationary thus greatly facilitating its observation. 

For a given pair of fluids A and B this can be done at only one specific Mach 

number, critical
ss MM = , which is a limitation. However, by changing fluid B one 
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can study shock oscillations at different Mach numbers or pressures. In the 

air/CO2 example chosen in the present work the standing shock was produced in 

air at ,18.2≈= critical
ss MM the pressure on either side of the shock varying 

between 5.4b and 6.1b. Thinking of fluid B as a “shock absorber/reflector,” one 

can replace the CO2 by Xe and, as can be seen in Fig. 2, one again has a standing 

shock in air but now at 88.2≈= critical
ss MM , with pressures of 9.5b and 17.8b on 

either side of the shock. Let us point out that if sM  is not exactly at critical
sM but 

slightly above or below it, then the reflected shock will slowly drift down ( 0<rW

) or up ( 0>rW ). 

        The second method, measuring the interface behavior, is not limited to one Mach 

number, which is an advantage.  Needless to say, the method that we have proposed 

in this paper, viz. measuring both the interface behavior as well as the shock 

oscillations simultaneously, provides more data on Aμ  and BA μμ +  and can be 

thought of as two experiments in one. 

4) For the interface technique we have seen that the interface area is more sensitive 

to viscosity than the more commonly measured quantities bη  or sη . For 2D 

inclined and sinusoidal interfaces we gave Eqs. (10) and (14), respectively, 

measuring effectively the arclength of the initial interface. Those expressions are 

not limited to the linear regime and can be applied (and even simplified) for steep 

inclines or large amplitudes. For example, for very large k0η  we have 

1)1( =→ II  and Eq. (14) reduces to ληπη /4/2 00 =→ kE . However, Eqs. (10) 

and (14) apply only to those two shapes. In the future we hope to pursue 
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analytically or semi-analytically other shapes more representative of the nonlinear 

evolution in RT and RM instabilities. A study of different shapes in the RM 

instability was initiated in Ref. [64] and recent simulations track how different 

shapes evolve into liquid jets [65]. 

5) Finally, we hope to explore the behavior of perturbed shocks in solid state 

materials with strength. With the proper choice of material B as the shock 

absorber/reflector, it should be straightforward to generate a standing shock in 

material A. If A does not melt and retains some of its strength we again expect 

perturbations to damp out as a result of material strength. We have proposed a 

correspondence between strength and viscosity (Eq. (6) in Ref. [44]) that governs, 

approximately, the behavior of perturbations at a shocked solid interface. Whether 

a similar correspondence exists for perturbed shocks remains to be seen in future 

investigations, both calculational and experimental. 

 

ACKNOWLEDGMENTS 

This work was performed under the auspices of the U. S. Department of Energy by 

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 

 

 

APPENDIX: criticalR  

The critical density ratio criticalR  given in Eq. (2) is derived by requiring that the 

reflected shock wave be standing ( 0=rW ) when ∞=sM . 
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As discussed in Ref. [15], the basic flow for the RM instability is specified by the 6 

properties of the system: Aρ , Bρ , Aγ , Bγ , 0p , and 3p  - See Fig. 1. These variables can 

be reduced to 4 by working only with nondimensional quantities which can be taken as 

ABR ρρ /≡ , Aγ , Bγ , and sM . Other “before” quantities such as 3ρ , 3u , etc. can be 

obtained in a straightforward manner. “After” quantities like 2,1ρ , 2,1u , etc. can be found 

once a transcendental equation, Eq. (A4) in Ref. [15], is solved and 32 / ppx ≡  is at hand. 

Since we are focusing on the case where a shock is reflected, 1>x . All the curves in Fig. 

2 and Fig. 20 below are obtained in this manner. 

Fortunately, that transcendental equation is somewhat simplified by going to the 

strong shock limit: Eq. (A15) of Ref. [15] reads 

      [ ] [ ] 2/1
2/1

1
11)1(/)1(

mx
xRx BA +

−+=++ γγ        (A1) 

where )1/()1( −+≡ AAm γγ . This is our first condition. Our second condition is that 

0=rW  and hence 2233 ρρ uu =  as discussed in the Introduction. The strong shock limit of 

the four variables 3,2u  and 3,2ρ  are obtained from Eqs. (A1), (A2), (A6), and (A8) of Ref. 

[15] by letting ∞→03 / pp  and we find: 
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            )1(/2 3
2
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Substituting the above equations in 2233 ρρ uu =  we obtain 
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as our second condition, where R  must be understood to mean criticalR . We now have two 

equations, (A1) and (A6) above, for the two “unknowns” x  and criticalR , and the solution 

is 
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obtained by equating the right-hand-sides of Eqs. (A1) and (A6). With this solution at 

hand one can substitute it in either Eq. (A1) or Eq. (A6) to find 
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which is Eq. (2). 

We illustrate by considering the hydrogen/xenon system. From Table I 0838.0=Aρ  

mg/cm3, 459.5=Bρ mg/cm3, 406.1=Aγ , and 667.1=Bγ , hence 14.65≈R  and 

49.21≈criticalR . Since criticalRR >  it follows that there is no standing shock, i.e.  0>rW  

as can be seen in Fig. 20 where we plot rW  as a function of sM . 

Keeping BA,ρ  and Bγ  fixed and varying only Aγ  (the specific heat ratio of hydrogen) 

one can ask for what value of Aγ  will criticalR  equal R . The answer is “ Aγ ” ≈ 1.282, a 

mere 9% lower than the actual 
2Hγ =1.406. This curve is also plotted in Fig. 20 – it 

approaches 0 as ∞→sM . If “ Aγ ” were even lower, say 1.266, then RRcritical >≈ 3.78  
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and there would be a standing shock and we find 0=rW  at 10≈sM , as shown by the 

lowest curve in Fig. 20. 

He/air is another system with no standing shock (Fig. 2). If He had a lower γ , say 

402.1"" =Heγ  like air, then there would be a standing shock at 28.3≈sM . This sensitivity 

to Aγ  in a shocked A/B system suggest a potential spin-off of the RM instability: The 

condition 0=rW , i.e. the presence or absence of a standing shock wave as one scans over 

sM , can be used as a probe of the equation-of-state, in particular the compressibility of 

fluid A provided, of course, that Bγ  is known. We hope to explore this possibility in 

condensed matter in the future. 
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Figure Captions 

FIG. 1. Parameters for a shock tube to study the Richtmyer-Meshkov instability. A small 

perturbation is assumed at the interface between the two fluids A and B, taken to be at 

rest in the laboratory frame. A shock is traveling down from A towards B and is 
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characterized by its pressure 3p . The initial fluids are characterized by their densities 

Aρ  and Bρ , specific heat ratios Aγ  and Bγ , and a common pressure 0p . After the 

shock strikes the interface two new regions, labeled 1 and 2, are created; regions 0 

and 3 are the same as before. The new densities, fluid velocities, and pressures are 

denoted by 1ρ  and 2ρ , 1u  and 2u , and 1p  and 2p , respectively. The velocities of the 

transmitted and reflected shocks are denoted by tW  and rW , respectively. All eight 

new parameters are determined uniquely by the initial data (see Ref. [15] in which the 

above figure appears as Fig. 1). 

FIG. 2. The velocity rW  of the reflected shock as a function of the Mach number sM  of 

the incoming shock for 4 A/B systems: N2/air, air/Xe, H2/air, and He/air. The sign 

convention follows Ref. [15]: 0>rW  shock moving up, 0<rW  shock moving down 

– see Fig. 1. 

FIG. 3. Two types of perturbations of the air/CO2 interface considered in the paper: (a) 

Sinusoidal with wavelength =λ 13cm and amplitude =0η 3mm (small) or 3cm 

(large); (b) Inclined plane with angle =θ 60o in a shock tube of width =w 11.43cm. 

The dark circles show the fixed locations of pressure gauges to measure the pressure 

in the reflected shock which stays ( 0=rW ) at the location of the original interface. 

FIG. 4. Bubble ( 0>η ) and spike ( 0<η ) evolution for a sinusoidal perturbation shown 

in Fig. 3(a) with a small initial amplitude of 3mm. The four inviscid/viscous cases 

described by Eqs. (3a)-(3d) are presented in red, black, blue, and grey curves 

respectively. 
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FIG. 5. Same as Fig. 4 with a 10×  larger initial amplitude of 3cm. 

FIG. 6. Snapshots of the air/CO2 interface at t =4ms, starting with a large sinusoidal 

initial amplitude 30 =η cm, for the 4 cases A, B, C, and D described by Eqs. (3a)-

(3d). The time evolution of bubbles and spikes was given in Fig. 5. 

FIG. 7. The evolution of bubbles and spikes in the inclined interface with =w 11.43cm 

and =θ =60o. Spikes (bubbles) are defined as the distance between a flat interface 

and the upper (lower) tip of the inclined surface at =x 0 ( =x 11.43cm) in Fig. 3(b). 

The colors refer to inviscid/viscous fluids with the same color scheme as in Figs. 4 

and  5: red, black, blue, and grey correspond to Eqs. (3a), (3b), (3c), and (3d) 

respectively.  

FIG. 8. Same as Fig. 6 for the inclined interface; t =4ms. Note that the width of each 

frame here is 11.43cm, while in Fig. 6 the width, comprising of two wavelengths, was 

26cm. The letters A, B, C, and D refer to the cases defined by Eqs. (3a)-(3d) 

respectively. 

FIG. 9. The pressure difference pΔ  in bars between the two fixed points indicated on Fig. 

3(a), as a function of time in milliseconds. The points are fixed in space at ( yx, )=(0,-

6) and (6.5,-6), where the initial interface is given by )13/2cos(3 xy π= , all distances 

in centimeters. The 4 cases A, B, C, and D refer to fluid viscosities given by Eqs. 

(3a)-(3d). The curves for B, C, and D are shifted down for clarity. At the end of the 

run, 4ms, the interface is some 180cm below and was shown in Fig. 6 for the 4 cases. 

FIG. 10. Snapshots of the density field for case A (upper row) and case D (lower row) at 

t =1ms (left column) and t =2ms (right column). The 26cm×26cm frames are fixed in 
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space and cover the region 0 ≤≤ x 26cm and -30cm ≤≤ y -4cm in a coordinate system 

where the preshock interface is located at y =0 and is sinusoidal: λπη /2cos0 xy =  

with 0η =3cm and λ =13cm – see Fig. 3(a). The pseudo color scale ranges from 3.75 

to 3.95 mg/cm3. 

FIG. 11. Same as Fig. 9 for the inclined interface, Fig. 3(b). the points where the 

pressures are read lie on the shock tube walls, x =0 and x =11.43cm, and 4cm below 

the nominal location ( y =0) of the inclined interface which extends from ≈y 3.3cm to 

≈y -3.3cm. 

FIG. 12. Same as Fig. 10 for the inclined interface. The 11.43cm×11.43cm frames are 

fixed in space and cover the region 0 ≤≤ x 11.43cm and -15.43cm ≤≤ y -4cm. The 

color scale is the same as in Fig. 10. 

FIG. 13. Snapshots of the interface, initially sinusoidal with 0η =3cm, for ∞=L  (no 

reshock, left column) and =L 50cm (reshock at 1ms, right column), where L  is the 

length of the test section containing CO2. This is for the inviscid case A, Eq. (3a). 

FIG. 14. Same as Fig. 13 for the viscous case D, Eq. (3d). 

FIG. 15. Snapshots of inviscid air/SF6 and air/CO2 simulations driven by =sM 2.76 and 

=sM 2.18 shocks respectively. The downward-moving frames are 26 cm×26 cm and 

include the interface between the two gases as well as the density fields in pseudo 

color which ranges from 4 mg/cm3 to 66 mg/cm3 for air/SF6, and from 0.4 mg/cm3 to 

6.6 mg/cm3 for air/CO2. The initial configuration is shown in Fig. 3(a) with =λ  13 

cm and =0η 1 cm for both cases. 
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FIG. 16. 26 cm×26 cm frames fixed in space 4 cm below the initial air/SF6 interface, 

recording density fluctuations 0.5, 1.0, 1.5 and 2.0 ms after shock passage. The initial 

sinusoidal amplitude 0η  was 1cm and the shock had == critical
ss MM 2.76. The pseudo 

color ranges from 6.35 mg/cm3 to 6.65 mg/cm3. 

FIG. 17. The pressure difference pΔ  in bars between the two fixed points indicated on 

Fig. 3(a), as a function of time in milliseconds. The red curves refer to air/CO2 at 

=sM 2.18, the upper having =0η 3 cm (this is the same as in Fig. 9), the lower =0η 1 

cm. The cyan curve also has =0η 1 cm but is for air/SF6 at =sM 2.76. All inviscid 

cases. The curves are shifted for clarity. 

FIG. 18. Comparison of a standard resolution (2mm×0.46mm) run with a higher 

resolution (0.5mm×0.23mm). This is for case A, inviscid. The pΔ  from the standard 

run (red) agrees with the finer run (light blue) which was stopped at 1.12ms. The inset 

shows the interfaces at that time. 

FIG. 19. Excess area parameter )(tE  as a function of time for the inviscid case A (red) 

and the viscous case D (grey). The upper pair of curves (initial value 40.0≈ ) is for 

the sinusoidal interface with λ =13cm, 0η =3cm, and the lower pair (initial value 

15.0≈ ) is for the inclined interface with 43.11=w cm, θ =60o. Snapshots of the 4 

cases at t =4ms were given in Figs. 6(a) and 6(d) (sinusoidal) and in Figs. 8(a) and 

8(d) (inclined). Note the logarithmic scale in this figure and compare with the 

amplitudes shown in Fig. 5 (sinusoidal) and Fig. 7 (inclined). The surface area 

diagnostic )(tE  is much more discriminating than bubble or spike amplitudes. 
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FIG. 20. Velocity rW  of the reflected shock in the H2/Xe system for 3 values of the 

hydrogen adiabatic index 
2Hγ . From Table I the nominal value is 

2Hγ =1.406 which 

leads to criticalRR >  and hence no standing shock is allowed: 0>rW for all Mach 

numbers. If 
2Hγ =1.282 then criticalRR =  and rW =0 at ∞=sM . If 

2Hγ  is lower, say 

1.266, then criticalRR <  and rW =0 at sM =10. 

 

 

 

 

 

 

Table Caption 

TABLE I. Densities and specific heat ratios for gases used in the text. 
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 H2 He N2 Air Ar CO2 Xe SF6 

ρ(Kg/m3) 0.0838 0.1664 1.165 1.205 1.662 1.839 5.459 6.146 

γ 1.406 1.667 1.401 1.402 1.670 1.297 1.667 1.090 
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Fig. 6 



 

 

53 

 

Fig. 7 



 

 

54 

 

Fig. 8 



 

 

55 

 

Fig. 9 
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