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Elastic capsules flowing in small enough tubes, such as red blood cells in capillaries,
are well-known to line up into regular, single-file trains. The stability of such trains
in somewhat wider channels, where this organization is not observed, is studied in a
two-dimensional model system that includes full coupling between the viscous flow and
suspended capsules. A diverse set of linearly amplifying disturbances, both long-time
asymptotic (modal) and transient (non-modal) perturbations, are identified and ana-
lyzed. These have a range of amplification rates, and their corresponding forms are
wave-like, typically dominated by one of five principal perturbation classes: longitudi-
nal and transverse translations, tilts, and symmetric and asymmetric shape distortions.
Finite-amplitude transiently amplifying perturbations are shown to provide a mecha-
nism that can bypass slower asymptotic modal linear growth and precipitate the onset
of nonlinear effects. Direct numerical simulations are used to verify the linear analysis
and track the subsequent transition of the regular capsule trains into an apparently
chaotic flow.
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1 Introduction

Red blood cells or similar elastic capsules suspended in sufficiently small vessels or tubes are well-

known to flow in single-file trains down the center of the vessel, each assuming a bullet-like1, 2 or

sometimes asymmetric slipper-like3–7 shape. Such a regular formation would seem viable in larger

tubes or vessels, yet this is not observed for long times, presumably because it is unstable. What

is observed instead is a significantly disturbed flow, in which capsules or blood cells appear to flow

chaotically relative to each other in addition to their predominantly streamwise advection.2, 8–10

This empirical behavior has been reproduced in detailed numerical simulations,11–14 such as those

visualized in figure 1. It is well-known that purely viscous flows can display chaotic streamlines, such

as in two-dimensional mixing configurations15, 16 and certain three-dimensional bounded flows.17–19

Further, viscous N -body systems can also display chaos. A free-space Stokeslet model suggests

N = 3 is sufficient,20 and chaos has indeed been observed for three rigid spheres suspended within

a rotating cylinder.21 So, it is not surprising that this transition can occur; we consider specifically

when and how it manifests for flexible capsules in a model channel.
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(a) Empirically stable (b) Unstable

Figure 1: Empirical stability example for red blood cells using methods of Zhao et al.
11 Both configurations were

equally perturbed, but the N = 8 cell train in (a) seems to persist indefinitely, whereas the more dense N = 12 case
in (b) undergoes a rapid transition. This shows a sensitivity to packing fraction in addition to diameter sensitivity
discussed in the text.

The source of this instability is unknown, particularly in how it might be affected by capsule

properties or flow configurations, which can be altered, for example, by disease in red blood cells.

In addition to the basic role of blood cells in transport through the microcirculation,22, 23 many

important microcirculatory flows are potentially sensitive to this change in character: the cell-free

layers that form near vessel walls,24–26 the margination of leukocytes or platelets,27–31 intravenous

drug-delivery of particles and capsules for which both cross-stream transport and the thickness of

the near-wall cell-free layer can be important,32 the hemodynamic forces that mediate angiogenisis33

and development,32, 34, 35 and tumor growth in cancer.36 Capsule-train stability is potentially even

more important for microfluidic devices designed to manipulate the flow of cells or engineered

capsules in order to perform sorting or other processing.37–42 In such devices, it is seemingly easiest

to develop processing procedures that operate on ordered trains rather than chaotic and disperse

arrangements.

We focus on the character of the transition between the orderly flow, typically seen in the

narrowest tubes or vessels,1, 43 and its apparently chaotic counterpart, typically seen in less confined

configurations.44, 45 Our goal is to identify factors mediating its transition, the rate at which

disturbances amplify, and the character of the most amplifying disturbances. A two-dimensional

flow of uniformly spaced capsules, which empirically displays this threshold behavior, is analyzed as

a model system. While there is no expectation that this model provides a quantitative description

of any particular three-dimensional configuration, such as true blood cells, it is more amenable to

extensive analysis. We shall see that it displays a rich range of behaviors that are suggestive of

the potential diverse behaviors possible in similar systems. The specific configuration is introduced

in section 2. The numerical methods used, both for constructing the linearization and for the

corresponding direct numerical simulations (DNS), are summarized in section 3.

To analyze stability of the capsule trains, both eigensystem and singular-value analysis of the

linearized system are use to predict asymptotic and transient behavior of perturbations, respectively.
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The formulation for this is outlined in section 4, following a similar approach to that used to analyze

shear-flow instability at larger Reynolds numbers.46–49 Here, these methods are adapted to the fluid–

structure coupled system in the viscous-flow limit. Direct numerical simulations for specific cases

confirm both the predicted transient and asymptotic amplification rates and show the subsequent

nonlinear evolution of the system away from the ordered configuration.

The present analysis is in the same spirit as stability analyses of settling lines of spheres in

free space50, 51 or near a wall,52 which is analytically tractable in the limit of infinitesimal spheres,

though often by neglecting interactions beyond nearest neighbors. While similar in character to

these simpler configurations, the present study includes all viscous-flow interactions, including

the coupled elastic stresses in the deformable capsule membranes. This complexity necessitates

some reliance upon numerical methods, though the stability results themselves are relatively clear.

Similar non-modal stability analysis has been used to study rheologically complex flows,53 but does

not appear to have been used to analyze the behavior of confined particle suspensions, such as we

consider here with flexible capsules. Observational studies of one-dimensional droplet arrays have

also been conducted which display some superficial similarities to our study of elastic capsules;54–56

however, it appears that fundamental differences between droplets and capsules, specifically the

presence of an elastic membrane, seemingly limit a qualitative connection.57

Amplification rates and corresponding most-amplifying disturbances for relatively wide and

narrow channels with both large and small capsule-packing fractions are summarized in section 5.

These perturbations are examined in regard to transition to nonlinear behavior in section 6, which

includes DNS simulations of their evolution into an apparently chaotic flow. Small disturbances

that are particularly subject to transient growth—the nominally ‘most dangerous’ disturbances as

often discussed for boundary layers58–60—are shown to lead to nonlinearity and chaos as much as

1000 times faster than the most asymptotically unstable disturbance. For efficient design of devices

and methods that maintain organization by avoiding instabilities, it is essential to consider such

disturbances, as has also been recognized in other flows.61–65 Ad hoc random perturbations of

the same displacement amplitude grow still much more slowly, suggesting that the specific most

amplifying disturbances are of principal importance. Capsule-train stability is shown sensitive to

capsule flexibility in section 7, where we also investigate the deformation energy that accompanies

the different disturbances.

2 Model microchannel

The model capsule–flow system is shown in figure 2. A streamwise-periodic channel of length L

and width W contains N capsules suspended in a viscosity µ Newtonian fluid flowing with mean

speed U . Each capsule has area A = πr2o and a zero-stress perimeter lo = 1.6 × 2πro, such that

its biconcave equilibrium geometry is similar to the cross-section of a resting red blood cell. The
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Capsules:
area A = πr2

o

perimeter lo = 3.2πro
(b) Empirically stable

(c) Empirically unstable

(d) Transition of (c) to apparent chaos

Figure 2: (a) The model channel flow with mean flow U containing N capsules of area A = πr2o and perimeter
lo = 1.6× 2πro. (b) An empirically stable single-file train in a narrow W = 4ro channel, (b) an empirically unstable
train in a W = 10ro channel, and (d) its transition into an apparently chaotic flow.

capsules are initialized in their at-rest equilibrium geometry and uniformly spaced along the channel

centerline in a one-dimensional train with packing ratio

φ ≡
Nro
L

, (1)

which is varied from dilute φ = 0.2 to nearly jammed φ = 0.7. Most results are presented for the

relatively narrow W = 10ro and relatively wide W = 40ro channels visualized in figure 3. Channel

lengths are varied from L = 10ro to 500ro, with numbers of capsules correspondingly varied from

N = 2 to 100. Results will show that an apparent asymptotic large-L behavior is achieved for

N & 20, which motivates particular focus on cases with N = 30. We restrict our investigations

to this ordered and regular capsule train, such as might be generated by more narrowly confining

upstream geometries. No attempt is made to identify stable states that might exist in wide channels,

such as apparently seen in some staggered arrays of immiscible droplets.54

Each capsule is defined as an elastic shell that resists tension with linear modulus T and bending

with linear modulus M. Thus, for arc-length coordinate s(so) and stress-free reference coordinate

so, the membrane tension τ and bending moment b are

τ = T

(

ds

dso
− 1

)

and b = Mκ, (2)

where κ is the curvature. Though these are linear relations, we emphasize that the net traction on
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(a) φ = 0.2,W = 10ro (b) φ = 0.7,W = 10ro

(c) φ = 0.2,W = 40ro (d) φ = 0.7,W = 40ro

Figure 3: Base configurations.

the fluid due to the capsule membranes includes all geometric nonlinearity as

∆σ =
∂tτ

∂s
+

∂

∂s

(

∂b

∂s
n

)

, (3)

where t is the membrane unit tangent and n is its outward directed unit normal. We note that

this specific model has been used in previous capsule model systems.28, 66 Although it neglects

some nonlinear contributions to the full Helfrich strain energy,67 results haved confirmed that these

terms are unimportant in flows with still more significant strains.66

Matching the suspending fluid, the fluid within the capsules is also taken to be Newtonian with

viscosity µ. Red blood cells are thought to have an elevated cytosol viscosity,68, 69 though it has

been shown that a matched viscosity model reproduces phenomena in two dimensions28, 66, 70 and

provides quantitative agreement for the suspension effective viscosity in three dimensions.3, 44 This

simplification has reproduced many of the qualitative features of actual red-blood-cell flow in three

dimensions, including the F̊ahraeus–Lindqvist effect, the margination of larger stiffer capsules, the

blunted mean velocity profile, and the non-monotonic depenence of the effective viscosity on vessel

size.44, 71

The relative flexibility of the capsules is quantified with a capillary-number-like parameter,

Ca ≡
µUr2o
M

, (4)

which can be interpreted as a ratio of a capsule relaxation time to advection time. For most

results, we take Ca = 15.2; the relative importance of flexibility this parameterizes is investigated
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in section 7. The tension modulus is relatively large compared to the bending modulus,

r20T

M
= 50, (5)

which provides a large tensile stiffness to model the near incompressibility of many capsule mem-

branes. Baseline configurations are obtained by simulating the flow without perturbations for time

t = 5 roµ/T , which is sufficient for the capsules to each assume the steady flow-deformed geometries

seen in figure 3.

3 Numerical methods

The Reynolds numbers of cell-scale blood flow, or similar capsule suspensions in microfluidic devices,

is small Re . 0.01,3 so inertia is neglected in the present study, which enables a boundary integral

formulation of the flow equations.72, 73 To evaluate velocities, we use the same particle-mesh-Ewald

(PME) algorithm generalized for Stokes flow74 as used in previous studies.28, 66 It is built upon

periodic-space Green’s functions,75 with the no-slip condition at the channel walls enforced via a

penalty method.28 Consistent with the neglect of fluid inertia, the mass of the capsule membranes

is likewise neglected. As such, the membrane position x(t) is simply advected as3

dx

dt
= u

(

x(t)
)

, (6)

where u(x) is the local velocity calculated from the boundary integral equation. The time depen-

dence of u comes only through the membrane geometry x(t). Although the constitutive model

and viscous flow equations are themselves linear, in considering (6) it is important to recognize

that u(x) still includes nonlinearities associated with the geometric factors contributing to the

surface tractions (3). These expressions are evaluated numerically using Fourier methods,28 with

each capsule discretized by n = 25 collocation points except when noted. The full list of M = nN

total collocation points is represented by the notation ~x ≡ {x
(1)
1 , x

(1)
2 , . . . , x

(M)
2 }. Nonlinear oper-

ations are computed with four times this amount to counter aliasing errors.3, 11 A second-order

Runge–Kutta scheme is used to integrate (6) in time, which is crafted for the collocation points as

d~x

dt
= ~u(~x) or, equivalently

dx
(α)
i

dt
= u

(α)
i (~x) for

i = 1, 2
α = 1, . . . ,M

, (7)

with time step ∆t = 0.001µro/T .

As they evolve and interact, capsules can come into near contact. Although the boundary

integral formulation is unrestricted in this regard by any underlying volume (area) filling mesh dis-

cretization, accumulation of even small numerical errors can lead to erroneous interactions between
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nearby capsules, particularly if the inter-capsule spacing becomes comparable to the capsule surface

collocation point spacing. In the long DNS simulations of subsequent behavior, this is countered by

introducing a regularizing short-range repulsion between membrane collocation points. We employ

the same formulation as past efforts,28, 66 with forces zero beyond distance 0.2ro. However, this force

is not part of the stability analysis, so the principal results of this study are wholly independent of

it.

Similarly, in the course of long simulations the area of the capsules can also change via the

accumulation of small numerical errors, though this happens slowly since area is a low-order moment

of the capsule shape and therefore well resolved. Still, a weak variational correction is used to

preserve constant capsule areas indefinitely.28 This also is only included for the DNS simulations,

so the stability results are likewise independent of it.

4 Stability analysis formulation

4.1 Measure of configurational stability

Since the goal is to describe the geometric disruption of capsule trains, the measure describing

the growth of instabilities is based on the membrane displacement from its unperturbed uniformly

advecting baseline configuration. For perturbations applied at time t = 0, this is

ε(t) = x(t)− xb(t), (8)

where xb(t) represents the corresponding unperturbed case described in section 2. The overall

disturbance amplitude is quantified by

‖ε‖ =

∫

all C
(ε · ε)1/2 dl, (9)

where C are the capsule membranes. This measure is not unique, and no unique measure is ex-

pected to exist for so complex a system,47 though it is appropriate for our objectives since x fully

describes the system state and ε directly describes the geometric disruption we study. In essence,

it matches the corresponding metrics used previously for the stability of settling spheres.50, 52 This

measure obviously does not correspond to a mechanical energy, as is available for finite-Reynolds-

number incompressible fluid flow, and thus lacks the additional conservation properties such an

energy-based measure would embody. The capsules do store strain energy, but any measure that

includes it would also introduce an additional challenge in that strain energy is invariant to capsule

translation or rigid-body rotation. Such constant-energy perturbations, which we anticipate might

be hydrodynamically important for seeding instabilities (and indeed are in cases), do not corre-

spondingly perturb the strain energy. Thus, we do need to be mindful that equal ‖ε‖ disturbances
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do not necessarily correspond to equal mechanical energies. This is revisited in section 7, where

the elastic energies corresponding to most amplifying perturbations are considered.

4.2 Linearization

Since ~u(~x) couples all the capsule and wall collocation points, which therefore includes signifi-

cant nonlinearity due to geometric factors, direct linearization of (7) is challenging. However, it

is straightforward and equally effective to construct a corresponding linearized system through

numerical evaluation of u(x) in (7). Expanding (7) for small positional perturbation ~δ yields

∂(~x+ ~δ)

∂t
= ~u(~x+ ~δ) =

∂~x

∂t
+A(~x)~δ +O

(

‖~δ‖2
)

, (10)

where A thus includes the first-order coupling for the present ~x configuration due to perturbation
~δ. In practice this is constructed by systematically perturbing the system and evaluating the

velocity. Specifically, each column of A is calculated by perturbing one of the collocation points

α ∈ {1, . . . ,M} in one of the coordinate directions i ∈ {1, 2} and calculating ~u(~x+ ~δ). Since only

the (i, α) component of the 2M -length vector list ~δ in (10) is perturbed (by δ),

δ
(β)
j =

{

δ for j = i and β = α,

0 otherwise
, (11)

which provides the i–α column of A as

A
(αβ)
ij =

u
(β)
j (~x+ ~δ)− u

(β)
j (~x)

δ
for j = 1, 2 and β = 1, . . .M. (12)

Repeating this for all collocation points and both coordinate directions yields all columns of A. The

translation of the baseline train of capsules due to the mean flow is common to the perturbed and

unperturbed ~u in (12), so it does not contribute to A. It is confirmed that results are independent

of the δ = 10−5ro used here.

Generating the full 2M × 2M matrix A in this way requires about the same computational

effort as 2M numerical time steps of the flow solver and would be prohibitive in many numerical

flow solutions. For the particular configurations we consider, periodicity of the domain and the

identical character of all the capsules can be exploited to reduce this to 2M/N . An advantage of the

boundary integral discretization is that only the surfaces of the capsules are discretized so this is

not an insurmountable calculation. The use of high-resolution Fourier methods further reduces the

number of points necessary to accurately represent the membranes and thus describe the stability

through A. The largest case presented here has 2M = 105, which is comparable to the number of

time steps of a typical direct numerical simulation of this system.
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With A, the evolution of any sufficiently small perturbation ~ε is governed by the linear system

∂~ε

∂t
= A~ε, (13)

with matrix-exponential solution

~ε(t) = ~εo expAt , (14)

for initial condition ~ε(0) = ~εo. The expAt factor thus describes its temporal behavior.

4.3 Eigensystem

The matrix A is real and non-symmetric (AAT 6= ATA), as can be anticipated by the character

of the vector Green’s function of the Stokes operator, so in general it will not have a full set of

orthogonal eigenvectors. Eigenvalues for a typical configuration are shown in figure 4. Nearly all of

their real components are negative, as expected for a predominantly viscous system, though 75 of the

1000 total in this example do have positive real components, indicating asymptotic instability. The

most amplifying is real-valued and corresponds to a tilting perturbation we analyze subsequently.
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−0.1

0

0.1

0.2

roµ/T × Re(λ)

r o
µ
/
T

×
Im

(λ
)

−0.1 −0.05 0 0.05

−4

−2

0

2

4

×10−2

roµ/T × Re(λ)

r o
µ
/
T

×
Im

(λ
)

Figure 4: Eigenvalues of A for W = 40ro and φ = 0.7 with N = 20 capsules.

Though it is not diagonalizable, the eigensystem of A does dictate the t→ ∞ behavior of small

perturbations, so long as they do not trigger significant nonlinear interactions before this behavior

is realized.46 Here we consider its behavior for this reason, in addition to using it as a point of
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reference with respect to predicted transient growth, which we consider in the following subsection.

With ~λ(A) representing the 2M eigenvalues of A, the nominal spectral abscissa of the system is

its most amplifying component:

α ≡ max
{

Re
[

~λ(A)
]}

. (15)

The corresponding most amplifyied eigenvalue and its associated eigenvector are defined as λα and

~sα, respectively. For t→ ∞, an initial perturbation ε(0) = ε̂ sα will evolve as

ε(t) = ε̂sα expλαt. (16)

4.4 Non-modal analysis

Following a common reasoning,47, 76 a t → 0+ amplification bound is defined by the numerical

abscissa,

η ≡ max

{

Re

[

~λ

(

A+AT

2

)]}

, (17)

which recovers η = α for normal A. This is the maximum initial amplification of any perturbation,

though this growth rate will not necessarily persist.

In addition to the short-time growth rate, of particular interest is the form of the most am-

plifying perturbation and the most dangerous growth at later times. This is determined via a

singular-value decomposition,

expAt = UΣVT, (18)

where the ordered singular values ~σ(t) form the diagonal matrix Σ, and U and V are matrices con-

structed of orthonormal left and right singular vectors, respectively. Though non-normality couples

the linear disturbances, their maximum time-dependent evolution can be tracked by reevaluating

(18) as a function of time,

G(t) ≡ ‖expAt‖ = max
j,β

σ
(β)
j (t). (19)

The corresponding instantaneous maximum growth rate is then,

ζ(t) ≡
d logG(t)

dt
. (20)

For t→ ∞, this should converge to the eigenvalue associated with the least stable eigenvalue ζ → α,

and for t → 0+ it converges to the maximum transient amplification ζ → η. If ζ(t) > α for any

range of t, transient growth can outpace asymptotic eigensystem growth in that range.
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4.5 Character and verification of the linear system

The evaluation of A and its analysis is intricate, so it is important to verify that it indeed represents

a linearization of the full system. This also serves to introduce the basic behavior we will see in

most of the results. For verification, linear predictions based on A are compared with full DNS

calculations for small perturbations. For φ = 0.2 and W = 10ro, we compare the predicted growth

of ‖~ε‖ for ε̂ = 10−10ro perturbations against the DNS for different initial conditions. Before

nonlinear effects manifest, which is avoided with ε̂ so small, agreement should be limited only by

the accumulation of numerical approximation errors. For numerical evaluation, ‖ε‖ from (9) is

approximated as

‖~ε‖ =
1

M

M
∑

i=1

√

[

ε
(i)
x

]2
+

[

ε
(i)
y

]2
. (21)

Two main verification comparisons are made in figure 5. For the initial perturbation ε̂~vη, the

predicted cumulative amplification based on ‖expAt‖ is compared with the corresponding DNS

and shown to agree (curves B and C). We also see that both match the t → 0+ prediction based

upon ζ(t → 0), and that for t > 0 they are indeed bounded by this. The second comparison is for

the t → ∞ behavior, based on α for initial condition ε̂~sα and a corresponding DNS. These also

agree (curves D and E in the figure) in that they overlap at long times, with relative amplification

difference less than 5 percent at t = 10 roµ/T and less than 2 percent at t = 100 roµ/T . Note that

their good agreement at all times, not just for t → ∞, indicates that in this case ~sα itself is not

strongly coupled with other linear disturbances.
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(A) ε̂~vη exp ζ(t)t

(B) ε̂~vη expAt

(C) ε̂~vη i.c., DNS

(D) ε̂~sα expαt

(E) ε̂~sα i.c., DNS

Figure 5: Perturbation amplification in time: (A) The transient growth based on maximum time dependent ampli-
fication ζ(t) from (20) for initial perturbation ε̂~vη; (B) direct evaluation of the matrix exponential expAt from (14)
for ε̂~vη, which matches (C) from the corresponding DNS; and (D) expαt for ε̂~sα from (16), which matches the large
t behavior of (E) from the the corresponding DNS.
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Figure 6: Evolving maximum growth rate ζ(t) analyzed in figure 5.

In figure 6, we see that at short times ζ(t) significantly exceeds α, confirming the small t

behavior of figure 5. At later times, we likewise confirm that ζ → α, as it should. Despite the

long-time behavior, we anticipate that for finite perturbations, the rapid transient growth might be

a significant mechanism leading to nonlinear saturation and subsequent disruption of the capsule

train. This is considered in section 6. In the following section we examine the character of the most

amplifying disturbances.

5 Stability results

We consider transient amplification in the following section 5.1 and long-time asymptotic ampli-

fication in section 5.2 for the four base flows visualized figure 3. Additional configurations are

introduced in section 5.3 to map the boundaries between different disturbance-form regimes. The

narrow channels of these configurations are insufficient to preserve the regularity of the capsule

trains, so for comparison we also introduce a very narrow channel with W = 4ro in section 5.4.

In this case, the capsule train persists, seemingly indefinitely, and we characterize its apparent

stability.
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5.1 Transient amplification

Figure 7 shows the initial transient amplifications η from (17). In all four cases, η depends, at

least weakly, upon the channel length, with an apparent asymptotic long-L power-law behavior for

sufficiently large L. For all cases, the power laws provide good fits for N & 20 capsules, suggesting

that in this limit the discrete character of the capsules per se becomes relatively unimportant, as

might be expected for 20 capsules per wavelength of the disturbances. An implication is that an

effective medium model and continuous dispersion relation might afford a reasonable description of

the response, though we do not pursue this here. The apparent non-integer power laws in figure 7

suggests the existence of an anomalous dimension,77 though its specific form has not been found.

For both φ and larger L, the narrow channels are significantly more amplifying. However, this

behavior is different in shorter channels. For small L, the proximity of the walls appears to be

less important, and we see about a factor of five more significant transient amplification for the

more densely packed channels, irrespective of width, suggesting that capsule–capsule interactions

themselves are most important in this limit. Still, the amplification rates for shorter channels are

much smaller than those in most of the longer channels.

101 102

101

102
∼ L2.24

∼ L2.13

∼ L1.98

∼ L0.19

L/ro

η
r o
µ
/
T

W = 10ro, φ = 0.2
W = 40ro, φ = 0.2
W = 10ro, φ = 0.7
W = 40ro, φ = 0.7

Figure 7: Numerical abscissa η from (17) for different lengths L for the channels of figure 3. The straight lines are
power-law fits.

With such different behavior in the amplification rates, it is not surprising that the corre-
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(a) φ = 0.2,W = 10 ro — Asymmetric deformation
A B

A

(b) φ = 0.2,W = 40 ro — Longitudinal translation
A

A B

(c) φ = 0.7,W = 10 ro — Asymmetric deformation
A B

A B

(d) φ = 0.7,W = 40 ro — Symmetric deformation
A B

Figure 8: Most transiently amplifying (non-modal) disturbances for the baseline cases with N = 30 of figure 3:
– – baseline ~x and perturbations visualized as — ~x + aε̂~vη with aε̂ = 3.5. These relatively large amplitudes aid
visualization, though some of the features appear exceptionally sharp due to geometric nonlinearity. The A and B

labels indicate the specific magnified capsules.

sponding t → 0+ most amplifying disturbances visualized in figure 8 show diverse structures. The

φ = 0.2 wide channel case visualized in figure 8 (b) shows a longitudinal displacement wave, with

each capsule displaced in the streamwise direction without obvious change of shape. As such, the

overall disturbance appears as a compression–expansion wave of the capsule spacing. The other

disturbances visualized in figures 8 (a), (c) and (d) appear primarily as distortions of individual

capsules, although consistent with the L-dependences of figures 7, these also manifest as wave-like

perturbations correlated across all the capsules. They are asymmetric for the narrow channels in

figures 8 (a) and (c) and symmetric in figure 8 (d). Similar long-wavelength disturbances are most

amplifying for capillary instability of low-Reynolds-number core-annular flows,78, 79 though we do

not pursue any possible correspondence to this configuration herein. We note that such distur-

bances that distort individual capsules are hard to visualize. For genuinely small ε̂, for which the

linear approximation is quantitatively accurate, they would be imperceptible if plotted as ~x+ ε̂~vη.

For visualization, they are therefore artificially increased by a factor a as ~x + aε̂~vη, which makes

them visible but unfortunately also distorts their shapes, which leads to a kinky appearance due

to geometric nonlinearities. These visualizations should be construed as showing the approximate

direction and relative amplitude of the membrane perturbation, not strictly the membrane shape.
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Motivated by these visualizations, we quantify the disturbances with low-order moments of each

capsule shape C. These are selected to emphasize their main apparent characteristics:

xc =
1

lo

∫

C
εx dl (22)

yc =
1

lo

∫

C
εy dl (23)

Mx =
1

lor2o

∫

C
ε3x dl (24)

My =
1

lor2o

∫

C
ε3y dl (25)

Mxy =
1

loro

∫

C
εxεy dl, (26)

where x is the streamwise and y is the cross-stream coordinate, as labeled in figure 2. Third-

order rather than second-order moments are used for Mx and My to preserve the sign of the

perturbation. The relative values of (22) through (26) are plotted for all capsules in figure 9.

These confirm predominance of particular moment contributions for the different cases, as might

be anticipated from the visualizations. Their wave-like character again suggests that a continuum

model might afford a natural way to analyze the behavior of the dominant transient disturbance

(and its asymptotic analog—see figure 12) if an effective material model or averaging procedure

could be deduced. This is not attempted here.

5.2 Asymptotic amplification

The maximum asymptotic amplification rates α, corresponding to the same four cases of figure 3,

are shown in figure 10. These growth rates are all slower than the corresponding η, typically by

over a factor of 10. Again, for sufficiently long L, the more narrow channels also show length

dependence, though with different powers than for η. However, the wider channels do not, at least

for up to the 100 capsules considered. This is true even when the channel length is many times

its width. The more narrow W = 10ro channels are most amplifying for all L. For φ = 0.2, its L

dependence is similar to the transient behavior η ∼ L2, though for φ = 0.7 it is less sensitive to L,

with α ∼ L3/4 rather than matching η ∼ L2.

Given these diverse asymptotic amplification rates, we again anticipate different characters

for the corresponding disturbances visualized in figure 11. Both the wide channels (figures 11 b

and d) show a predominantly tilting disturbance, in which all the capsules collectively tilt. The

uniformity of this tilt rate is confirmed to be Mxy dominant in figures 12 (b) and (d). Their lack

of a streamwise wave-like structure (constant Mxy) is consistent with the α ∼ L0 behavior seen for

both these cases. In contrast, both the narrow channel configurations show a wave-like transverse
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Figure 9: Disturbance metrics (22) thru (26) for all j = 1, . . . , N capsules for N = 30 applied to the most amplifying
transient disturbances visualized in figure 8. All metrics are plotted for all cases, normalized by the largest value of
any.
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Figure 10: Spectral abscissa α from (15) for different for cases of figure 3. The straight lines are power-law fits.
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A

(a) φ = 0.2,W = 10 ro — Transverse translation
A

A

(b) φ = 0.2,W = 40 ro — Uniform tilt
A

A

(c) φ = 0.7,W = 10 ro — Transverse translation
A

A

(d) φ = 0.7,W = 40 ro — Uniform tilt

A

Figure 11: Most asymptotically (t → ∞) amplifying modal disturbances for the baseline case with N = 30 visualized
in figure 3: – – baseline ~x and — perturbations visualized as ~x + aε̂~sα with aε̂ = 3.5. The selected magnified in
capsules are labeled accordingly.

displacement, also different from the corresponding most amplifying transient disturbances though

still sinuous. These are My dominant, as seen in figures 12 (a) and (c).

5.3 Disturbance regime boundaries

The diverse most transiently and asymptotically amplifying disturbances seen in figures 8 and 11

suggest a more complete mapping of the configuration parameters to identify boundaries between

these regimes. These are illustrated in figure 13 for ranges of φ and W , where the nominal dis-

turbance character is based on the maximum values of the (22) through (26) metrics. Only the

non-uniform tilt in figure 13 (b) was not directly observed in our four focus cases. It shows an

obvious L-periodic wave-like variation to the uniform tilt seen in figure 11 (b) and (d).

5.4 An empirically stable, narrow-channel configuration

Figure 14 shows that in this case the capsules bend into a two-dimensional analog of the bullet-like

shapes seen in blood cells, and empirical observations from long-time DNS simulations suggest

indefinite persistence of this single-file flow, even when perturbed. (In this case N = 35 was
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Figure 12: Disturbance metrics (22) through (26) for all j = 1, . . . , N capsules for N = 30 applied to the most
amplifying transient disturbances visualized in figure 11. All metrics are plotted for all cases, normalized by the
largest value of any.
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Figure 13: Character of the most amplifying disturbances for a range of channel widths and packing fractions as
labeled.
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used to resolve the more significant capsule deformations.) We analyze this case for comparison.

Despite the empirical stability, linear analysis suggests both transient amplification (η = 0.28) and

asymptotic instability (α = 0.0018), though these are at least seven times smaller than those seen

for the wider channels (figure 7 and 10). Similar to wider channels, the corresponding ~vη show

asymmetric distortion reflected by My (figures 14 b and d), whereas the ~sα shows a capsule-to-

capsule varying mix of tilt and asymmetric distortion, which is strongest for a particular capsule

(j = 7 in figure 14 c and e).

The amplifications of different disturbances are shown in figure 15. While DNS simulations

initialized with ε̂~vη and ε̂~sα do indeed initially reflect the predicted linear growth, as they must,

it does not persist, presumably due to nonlinear effects. The upper-bound ζ(t) growth is not

realized and the ~sα disturbance likewise saturates also due to nonlinear effects associated with tight

confinement. The approximately constant ‖~ε‖ reached in this case at long times is consistent with

a persistent tilt of the membrane from its initial orientation, though the capsule returns to the

same bent shape. Thus, although this case is linearly unstable, significant linear amplification is

not realized, and might not be expected given the obviously limited range of permissible motions

for such tightly confined capsules.

6 Transition to disordered flow

An important potential consequence of the relatively fast predicted transient growth seen in most

cases is that it can significantly reduce time to the onset of significant nonlinear effects. A specific

example is shown in figure 16 for φ = 0.7, W = 40ro. The DNS simulation with initial perturbation

ε̂ = 0.001ro (curve D in the figure) shows brief transient growth, but it does not lead directly to

obvious nonlinear behavior. Instead, the growth nearly ceases, because only a small portion of

~ε is associated with the disturbances that are amplified in this transient regime. It is only after

t & 1000roµ/T that it again amplifies significantly, and then at a rate consistent with the t → ∞

asymptotic α-curve (C). Before this occurs, it remains bounded by the ζ(t) prediction (curve B).

In contrast, for a still small but larger ε̂ = 0.01ro, the initial condition ε̂~vη perturbation leads to

nonlinearity much earlier, about 103 times faster than would the t → ∞ mechanism for ~sα, even

with the initial condition ε̂~sα. Both the ε̂~vη and ε̂~sα initial conditions show nonlinear saturation

well before a corresponding ad hoc perturbation constructed as random ε̂δyc displacements of the

capsule centroids. This ad hoc perturbation saturates 100 times more slowly still (curve G).

The subsequent DNS transition to an apparently chaotic flow for φ = 0.7 and W = 40ro is

visualized for three different initial perturbations in figure 17. We see that the ε̂~vη initial condition

has a different development from the eigenvector ε̂~sα or ad hoc ε̂δyc disturbances. Its L-scale wave-

like structure persists and amplifies before it breaks down into an apparently chaotic flow. The

other initial perturbations lead to choppier variations in the capsule train, with shorter features in

20



(a) Baseline

(b) Transient disturbances ~x+ 3.5~vη (c) Asymptotic disturbance ~x+ 3.5~sα
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(d) Disturbance metrics for ~vη (e) Disturbance metrics for ~sα

Figure 14: (a) The baseline configuration for an empirically stable case with W = 4ro, φ = 0.5 and N = 7. (b) The
t → 0+ most amplified transient, and (c) the asymptotically most amplified disturbances. (d–e) The corresponding
disturbance metrics (22) thru (26). The exaggerated displacements cause these to look unphysical, as discussed in
section 5.1 in regard to figure 8.

21



10−1 100 101 102 103 104 105

10−2

10−1

A B

C

D

tT /roµ

‖ε
(t
)‖
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(A) 0.01ro~vη exp ζ(t)t

(B) 0.01ro~sα expαt

(C) 0.01ro~vη i.c., DNS

(D) 0.01ro~sα i.c., DNS

Figure 15: Disturbance amplification for the empirically stable narrow channel case, visualized in figure 14 (a). The
DNS track (curves C and D) the corresponding linear amplifications (curves A and B) only for short times.
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(B) 0.001ro~vη exp ζ(t)t
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(E) 0.01ro~vη i.c., DNS

(F) 0.01ro~sα i.c., DNS

(G) 0.01roδyc i.c., DNS

Figure 16: Disturbance amplitude evolution for the wide–dense configuration (W = 40ro and φ = 0.7) with
ε̂ = 0.001ro and 0.01ro for initial conditions and predictions as labeled. The ∆t ≈ 103T /roµ labels the approximate
difference in time for onset of nonlinear for transient versus eigenvalue estimates for ε̂ = 0.01ro (see text).
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∗ = 98 t
∗ = 8900

t
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∗ = 108 t
∗ = 9400

t
∗ = 0.400 t
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∗ = 10000

Figure 17: Transition to disordered flow for the ε̂ = 10−2ro cases of figure 16. For plotting the initial configuration,
the exaggeration factor is aε̂ = 3.5. The walls are not shown; they can be seen for the baseline configuration in
figure 3 (d). The times shown t∗ = tT /roµ were selected to illustrate the development qualitatively.

the streamwise direction. In these cases, the capsule columns seem to first come apart at specific

points, before they develop an apparently chaotic behavior, much more slowly than the ~vη case.

The relatively narrow W = 10ro with φ = 0.2 (figure 3 a), shows a qualitatively similar

amplification for the same three types of initial conditions (figure 18), though all of the growth

rates are substantially faster, as anticipated based on figures 7 and 10. In this case, nonlinear

saturation is accelerated only by a factor of 100 for the ε̂ = 0.01ro initial disturbance ε̂~vη relative

to ε̂~sα. The weaker 0.001ro~vη perturbation also appears to reach an amplitude consistent with the

onset of nonlinear effects within the simulation time shown. The upper-bound exp ζ(t)t curve is

again consistent with this accelerated saturation.

Unlike the nonlinear breakdown for the densely packed wider channel of figure 17, figure 19

shows that the three initial conditions in this narrower case have qualitatively similar progression

to a relatively disorganized state. The capsules retain an approximately single-file structure but

with the capsules oriented at a range of angles with significant changes of streamwise spacing,

as has been observed in similar configurations in both two80 and three81 dimensions. Unlike the

W = 40ro, φ = 0.7 case, this configuration does not, at least for the times simulated, show
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(G) 0.01roδyc i.c., DNS

Figure 18: Disturbance amplitude evolution for the wide–dense configuration (W = 10ro and φ = 0.2) with
ε̂ = 0.001ro and 0.01ro as labeled. The ∆t ≈ 102T /roµ labels the approximate difference in time for onset of
nonlinear for transient versus eigenvalue estimates for ε̂ = 0.01 (see text).

significant overturning or passing of the capsules, presumably because of some combination of the

greater confinement for W = 10ro and less crowding for φ = 0.2.

7 Elastic stiffness

As discussed in section 4.1, the displacement-based measure used to quantify amplification does not

have a one-to-one correspondence with a mechanical energy, with the consequence that different

perturbations for the same ‖~ε‖ can have different strain energies. We consider this here, and more

generally the effect of capsule stiffness, by changing Ca. We consider capsules with up to Ca = 117,

starting from the Ca = 15.2 introduced as the basic case in section 2, which increases flexibility by

decreasing M by a factor of about 7.7. The tension modulus is adjusted correspondingly per (5).

The consequence of these changes on the initial transient and asymptotic amplification rates

is relatively small over this range, as seen in figure 20. The asymptotic growth rates are nearly

unchanged; only the wide–dense (W = 40ro, φ = 0.7) case shows a decrease at small M. The tran-

sient amplification is more sensitive, as might be expected given that these disturbances generally

showed more distortion of the capsule shapes. Still, they only decrease by less than a factor 10, with
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Figure 19: Transition to disordered flow for the ε̂ = 0.01ro cases of figure 18. For plotting the initial configuration,
the exaggeration factor is aε̂ = 3.5. The walls are are not shown; they can be seen for the baseline configuration in
figure 3 (a). The times shown t∗ = tT /roµ were selected to demonstrate nonlinear disruption.

similar effects on the eventual breakdown. Though we do not simulate smaller or larger Ca because

it is computationally more challenging and less relevant to the capsule regimes of interest, we can

anticipate that significantly stiffer or more flexible capsules will necessarily respond differently.

The ζ(t) amplification, shown for the wide and dense case (W = 40ro, φ = 0.7) in figure 21, is

altered by the capsule stiffness, but not fundamentally changed. The delays observed for larger Ca

reflect changes in the strain energy of the corresponding disturbances. To quantify this, we define

strain energy

ψ =
T

2

∫

all C

(

ds

dso
− 1

)2

dl +
M

2

∫

all C
κ2 dl, (27)

and following (8) we define a perturbation value ψ′(t) ≡ ψ(t) − ψb. Figure 21 (b) shows that for

stiffer capsules (smaller Ca), the energy of the most transiently amplified initial disturbance for

that time, which we designate ~vζ(t), is nearly constant. However, at a later time, it drops to a value

near that of ~sα. For increasingly flexible capsules, this switch occurs increasingly close to the time

when asymptotic amplification is predicted to become significant. In all cases it is clear that the

transient disturbances carry significantly more strain energy than the asymptotic ones, indicating

that mechanical coupling within the capsules is a key factor only in transient amplification.
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Figure 20: Effect of capsule stiffness on α and η.

8 Summary and conclusions

The primary conclusion is that both asymptotic and transient linear amplification of small distur-

bances can upset single-file trains of flexible capsules when they are not tightly confined. This was

confirmed by direct comparison with corresponding nonlinear simulations. Analysis of their growth

rates anticipates that transiently amplifying finite, though still small (e.g. ε̂ = 0.01ro), disturbances

can significantly accelerate transition to an apparently chaotic flow. Both transiently and asymptot-

ically most amplified disturbances reach this condition well before the ad hoc random disturbances

considered, which implies that some sort of stability analysis is necessary to predict transition times

in, say, a noisy environment. Interestingly, despite empirical observations of apparently indefinite

persistence, capsule trains in a highly-confining very narrow channel were also found to be linearly

unstable. However, in this case nonlinear effects become active at relatively small displacement

amplitudes and preserve the regular train formation.

An implication for the design of devices that process flexible capsules is that channel geome-

try and packing fraction both significantly affect the most amplifying disturbances. Qualitatively

different most-amplifying disturbances were found to grow at very different rates in different cases.

Since the very narrowest channels provide the most obviously persistent capsule trains, it was par-

ticularly unexpected that the relatively narrowW = 10ro channel was significantly more amplifying

than the corresponding wider W = 40ro channel. Yet, despite this amplification, for small packing

fractions (φ = 0.2) nonlinear effects did not lead to a chaotic seeming flow in the times simulated.

Perturbations grew rapidly, but only developed into an irregular single-file arrangement, not the
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Figure 21: The W = 40ro, φ = 0.7 case: (a) The predicted disturbance amplitude for different membrane stiffnesses
based on: · · · · · · η, — ζ(t), and – – α; and (b) the relative strain energy of the transiently most amplified mode
~vζ(t) at time t —. For reference, also shown in (b) are the energy of the corresponding to · · · · · · ~vη and – – ~sα.
Note, neither plot displays the evolution of the system in time. Rather, they show the maximum possible linear
amplification amplitude and corresponding strain energy for an ε̂ = 0.001ro disturbance at that time. The strain
energy can change abruptly as different disturbances become the nominally most dangerous at specific times.
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more complicated overturning and passing seen for the more dense configurations.

There are three simplifications in the model configuration studied that warrant additional discus-

sion. The most obvious concerns how well these observations reflect three-dimensional capsule flow.

While the two-dimensional model reproduces the same basic phenomenology of three-dimensional

systems, and has the advantage of requiring little computational effort to explore large ranges of

parameters, it is not expected to provide a quantitative model of real systems. Numerical tools to

do this are available,3 though subsequent analyses will likely be restricted to a narrower range of

parameters. The present study likewise neglects inertia. Though this is undoubtedly a reasonable

approximation for many phenomena at these conditions, Reynolds numbers might not always be

so small as to preclude the accumulation of nonlinear effects at longer times. However, given the

reliance of the present analysis on the boundary integral description of the flow, including inertia in

detail would necessitate a substantial redesign of the numerical approach. The third simplification

is the matching of the interior capsule viscosity to that of the suspending fluid. It is understood

that larger interior viscosities, such as in blood cells, can make them more prone to tumbling, which

becomes effecively solid-body motion in the inifinite-interior-viscosity limit. We have not investi-

gated this for simplicity, though there is no expectation of any fundamental changes for modest

variations of interior viscosity.

Finally, it is unfortunate that the neglect of inertia (and kinetic energy), which makes flow in the

viscous limit relatively tractable analytically, precludes a convenient and unique mechanical energy

instability metric, such as that available for higher-Reynolds-number incompressible flows. As such,

some most-amplifying disturbances have seemingly negligible strain energy, whereas others have

significantly more. However, the basic behavior of the instabilities are insensitive to the stiffness

of the capsules, so the qualitative response is unchanged by the initial strain energy. The transient

amplification is increased for stiffer capsules, as expected, and the switch-over to the long-time

asymptotic behavior is likewise accelerated, but qualitatively unchanged. The long-time asymptotic

stability is relatively insensitive to capsule stiffness for the range considered, presumably because it

hinges mostly on the linear flow and the capsule–capsule interaction mechanics it mediates. There

is an abrupt switch between the short-time behavior, for which the most dangerous perturbations

carry relatively large strain energy, and the asymptotically most unstable modes, which do not.
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