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Many physical systems are described by probability distributions that evolve in both time and
space. Modeling these systems is often challenging due to their large state space and analytically
intractable or computationally expensive dynamics. To address these problems, we study a machine
learning approach to model reduction based on the Boltzmann machine. Given the form of the
reduced model Boltzmann distribution, we introduce an autonomous differential equation system
for the interactions appearing in the energy function. The reduced model can treat systems in
continuous space (described by continuous random variables), for which we formulate a variational
learning problem using the adjoint method to determine the right hand sides of the differential
equations. This approach can be used to enforce a reduced physical model by a suitable parameter-
ization of the differential equations. The parameterization we employ uses the basis functions from
finite element methods, which can be used to model any physical system. One application domain
for such physics-informed learning algorithms is to modeling reaction-diffusion systems. We study a
lattice version of the Rössler chaotic oscillator, which illustrates the accuracy of the moment closure
approximation made by the method, and its dimensionality reduction power.

I. INTRODUCTION

Probability distributions that evolve in both space
and time appear in many modeling applications, such as
reaction-diffusion systems [1–4], neural population activ-
ities [5, 6], and fluid dynamics [7], as well as in engineer-
ing fields such as traffic forecasting [8] and navigation of
autonomous vehicles [9]. However, (1) the state space of
such distributions is generally large, and (2) the dynami-
cal systems obeyed by their observables may be unknown
or intractable to solve analytically. These aspects make
modeling spatiotemporal systems a computational chal-
lenge, and limit the interpretability of such models.

Reaction-diffusion systems are a typical example of
these problems. The distribution over system states
obeys a chemical master equation (CME) [10], but the
state space grows exponentially with the number of ran-
dom variables that describe it [11]. Further, the time
evolution of observables is not closed, i.e. the time evo-
lution of lower order moments depends on higher order
ones (similar to a BBGKY hierarchy [12]). Their esti-
mation therefore requires the use of a moment closure
approximation (e.g. [13, 14] and others; see [15] for a
review), or otherwise sampling algorithms such as the
Gillespie stochastic simulation algorithms (SSA) [16], or
related methods for spatial systems [17, 18].

A reduced model is one which approximates both the
true distribution and its dynamics, and should address
the challenges above by: (1) having a smaller state space,
and (2) being more easily tractable or computationally
efficient [15]. Reduced models of reaction-diffusion sys-
tems are widely studied [1, 19], particularly in multiscale
modeling in biology [20]. Recent work [2, 4, 13] has
demonstrated methods based on entropic matching as a
highly general approach to model reduction of reaction
networks.

In this paper, we demonstrate a machine learning
(ML) approach to model reduction using Boltzmann ma-
chines (BM) [21]. We formalize the methods of earlier
work [15, 22], and extend these with the introduction of
latent variables. Our approach also extends work on en-
tropic matching methods to treat spatial systems. We
present examples for spatial chemical reaction systems
that demonstrate the moment closure properties of the
reduced model, and apply the method to learn a spatial
chaotic oscillator.

The area of ML most suited for model reduction of
reaction-diffusion systems are generative models [23],
where it is assumed that data are samples of an unknown
probability distribution, with the goal of estimating this
distribution by a structured approach. This structure
can offer insight into the problem that has not been ob-
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tainable analytically [24], and allows new samples to be
drawn using e.g. Markov Chain Monte Carlo (MCMC)
methods [25]. Typically, a graphical model for the distri-
bution is introduced and learned by determining interac-
tion parameters between random variables. Similar ML
approaches have emerged as a powerful tool for studying
quantum many-body problems [26, 27].

Our approach introduces a differential equation (DE)
model for interaction parameters in the graph. The learn-
ing problem is formulated to determine these DEs by a
maximum likelihood approach. In contrast to ML meth-
ods for learning temporal data such as recurrent net-
works, here prior information about the system may be
used to enforce a reduced physical model by parameter-
izing the functional forms of the DEs.

A further advantage of this strategy is that it offers
a natural description of systems where neither time nor
space are discretized, i.e. the system is described by ran-
dom variables representing space continuously and vary-
ing continuously in time. In this case, a partial differen-
tial equation (PDE) model can be introduced. Spatially
continuous descriptions are beneficial when confined ge-
ometries would introduce error into lattice-based meth-
ods, e.g. when modeling reaction-diffusion systems at
synapses [17].

The algorithmic solution to this learning problem takes
the form of a PDE-constrained optimization problem.
The algorithm and its derivation are closely related to
BM learning, but in this case data samples are trajecto-
ries in space and time, rather than instantaneous snap-
shots or slices. A related framework, graph-constrained
correlation dynamics (GCCD) [15], has a similar learn-
ing goal, but uses spatially aggregated snapshots in time,
and does not consider spatial reduced models.

The outline of this paper is: (1) in Section II we intro-
duce spatial dynamic Boltzmann distributions as reduced
models of reaction-diffusion systems in continuous space,
and formulate their learning problem using the adjoint
method; (2) in Section III we demonstrate the connection
to a restricted Boltzmann machine; (3) in Section IV we
show how hidden layers implement moment closure ap-
proximations, and apply the method to a spatial chaotic

oscillator.

II. SPATIAL DYNAMIC BOLTZMANN
DISTRIBUTIONS

In this section, we introduce the reduced model for a
spatiotemporal distribution and its dynamics in continu-
ous space from [22], and formulate the learning problem
using the adjoint method. We consider the specific appli-
cation of a reaction-diffusion system, but note that the
methods are also applicable to other spatiotemporal sys-
tems.

The state of a reaction-diffusion system at some time
t is described by n particles of species labels α located
at positions x in generally continuous 3D space (each
xi for i = 1, . . . , n is a coordinate in 3D space). Let
the true distribution over system states be denoted by
p(n,α,x, t), whose time evolution can be described using
the Doi-Peliti formalism [46].

To define the reduced model, introduce k-particle in-
teraction functions νk(α〈i〉nk ,x〈i〉

n
k
, t), where 〈i〉nk denotes

any ordered subset of k indexes with each index in
{1, . . . , n}. Given a set of such interaction functions
{ν}Kk=1 up to cutoff order K, define a spatial dynamic
Boltzmann distribution as one of the form:

p̃(n,α,x, t; {ν}) =

1

Z[{ν}]
exp

− K∑
k=1

∑
〈i〉nk

νk(α〈i〉nk ,x〈i〉
n
k
, t)

, (1)

where the sum over 〈i〉nk iterates over unique k-th order
interactions between n particles, and the partition func-
tion is

Z[{ν}] =

∞∑
n=0

∑
α

∫
dx exp

− K∑
k=1

∑
〈i〉nk

νk(α〈i〉nk ,x〈i〉
n
k
, t)

. (2)

Boltzmann distributions are maximum entropy
(MaxEnt) distributions, where each interaction function
νk(α〈i〉nk ,x〈i〉

n
k
, t) controls a corresponding moment

µk(α〈i〉nk ,x〈i〉
n
k
, t), given by:

µk(α〈i〉nk ,x〈i〉
n
k
, t) =

∞∑
n′=0

∑
α′

∫
dx′ p(n′,α′,x′, t)

∑
〈j〉n′

k

δ(x〈i〉nk − x
′
〈j〉n′

k

)δ(α〈i〉nk −α
′
〈j〉n′

k

), (3)

that is, the average number of k-sized tuplets of particles
of species α〈i〉nk at locations x〈i〉nk . Note that α′ and x′

are of size n′.

A. Moment matching

Given a set of training data drawn from p(n,α,x, t)
at some instant in time, the BM learning algorithm de-
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termines parameters in the energy function such that the
instantaneous distribution (1) is the MaxEnt distribution
consistent with the moments in the dataset. To learn a
reduced model of a system that evolves in both time and
space continuously, we seek the distribution that is at
all times the MaxEnt solution. Define as the action the
Kullback-Leibler (KL) divergence DKL between the true
and reduced models, p and p̃, integrated over all times:

S =

∫ tf

t0

dt DKL(p||p̃), (4)

where the Lagrangian is L(t; {ν}) = DKL(p||p̃) for

DKL(p||p̃) =

∞∑
n=0

∑
α

∫
dx

p(n,α,x, t) ln
p(n,α,x, t)

p̃(n,α,x, t; {ν})
.

(5)

Minimizing S is thus equivalent to maximizing the inte-
grated log-likelihood of the observed data given the in-
teraction functions. Other approaches for modeling time
series are discussed in Section III A.

The condition for extremizing the action follows from
the chain rule as

δS =

∫ tf

t0

dt

∞∑
n=0

∑
α

∫
dx

K∑
k=1

∑
〈i〉nk

∆µk(α〈i〉nk ,x〈i〉
n
k
, t)δνk(α〈i〉nk ,x〈i〉

n
k
, t) = 0,

(6)

where

∆µk(α〈i〉nk ,x〈i〉
n
k
, t) =µ̃k(α〈i〉nk ,x〈i〉

n
k
, t)

− µk(α〈i〉nk ,x〈i〉
n
k
, t)

(7)

where µ and µ̃ are averages taken over p and p̃. This ap-
pearance of a difference of moments is the common result
from using the KL divergence in the objective functional.

B. An adjoint method learning problem for spatial
dynamic Boltzmann distributions

Introduce for each interaction function
νk(α〈i〉nk ,x〈i〉

n
k
, t) a functional model:

d

dt
νk(α〈i〉nk ,x〈i〉

n
k
, t) = Fk[{ν}](α,x, t), (8)

with initial condition νk(α〈i〉nk ,x〈i〉
n
k
, t0) =

ηk(α〈i〉nk ,x〈i〉
n
k
), and where {ν} = {νk}Kk=1 denotes

possibly all interaction functions. We use F to denote
a functional, allowing for example a PDE model to be
introduced. Note that the arguments to the left hand
side may also appear on the right, for example through
a spatial derivative term ∇νk(α〈i〉nk ,x〈i〉

n
k
, t).

Introduce vector notation1 ν(α,x, t) and
F [{ν}](α,x, t) for the left and right hand sides

of (8), which contain N =
∑K
k=1

(
n
k

)
entries, one for

every possible (k, 〈i〉nk ) in some order i = 1, . . . , N . To
enforce the constraint (8), define the Lagrangian as the
functional:

L[{ν}, {ζ}](t) = DKL(p||p̃) +

∞∑
n=0

∑
α

∫
dx ζᵀ(α,x, t)

(
dν(α,x, t)

dt
−F [{ν}](α,x, t)

)
, (9)

where we have introduced Lagrange multiplier func-
tions ζ(α,x, t) corresponding to ν(α,x, t), and {ζ} =
{ζk}Kk=1. Since the constraint is satisfied, then the action

is as before S =
∫ tf
t0
dt L[{ν}, {ζ}](t).

Introducing perturbations δν(α,x, t) to the interac-
tion functions gives as condition for extremizing the ac-
tion:

δS =

∫ tf

t0

dt

∞∑
n=0

∑
α

∫
dx δνᵀ(α,x, t)

{
∆µ(α,x, t)− dζ(α,x, t)

dt
− δJ [{ν}, {ζ}](t)

δν(α,x, t)

}
= 0, (10)

1 In this notation, the dot product is: aᵀ(α,x)b(α,x) =∑K
k=1

∑
〈i〉n
k
a(α〈i〉n

k
,x〈i〉n

k
)b(α〈i〉n

k
,x〈i〉n

k
).

where the boundary terms from the integration by parts
in the second term have vanished due to the boundary
condition for the adjoint variables ζ(α,x, tf ) = 0, and
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we have defined:

J [{ν}, {ζ}](t) =

∞∑
n′=0

∑
α′

∫
dx′

ζᵀ(α′,x′, t)F [{ν}](α′,x′, t).
(11)

From (10) we obtain the adjoint system

dζ(α,x, t)

dt
= ∆µ(α,x, t)− δJ [{ν}, {ζ}](t)

δν(α,x, t)
. (12)

Depending on the form of the functional, additional
boundary conditions may be enforced to evaluate the
term on the right. Equations (8,12) can be equivalently
expressed by the Hamiltonian system

dν(α,x, t)

dt
=
δH[{ν}, {ζ}](t)
δζ(α,x, t)

,

dζ(α,x, t)

dt
= −δH[{ν}, {ζ}](t)

δν(α,x, t)
,

(13)

where

H[{ν}, {ζ}](t) = −DKL(p||p̃) + J [{ν}, {ζ}](t). (14)

Given a reduced model for the dynamics (8), equa-
tion (10) gives the necessary condition for extremizing
the action. In a typical model reduction setting, how-
ever, the reduced model is not known beforehand. What
should the form of the model (8) be to extremize the
action (4)? Consider the case where the functional is
specified in terms of some ordinary functions. We next
set up a variational problem for these functions appear-
ing on the right hand side of the differential equation.
Variational problems of this form have been studied pre-
viously: first in the context of optimal control theory
[28, 29], and later didactically in [30].

Let the functional be of the form:

d

dt
νk(α〈i〉nk ,x〈i〉

n
k
, t) = Fk[{ν}, {Fk}](α,x, t), (15)

where the Mk ordinary functions appearing on the right

hand side are F
(s)
k ({ν(α,x, t)}) for s = 1, . . . ,Mk, de-

noted by {Fk} = {F (s)
k }

Mk
s=1. For arbitrary perturbations

δF
(s)
k , extremizing the action gives

δS = −
∫ tf

t0

dt

∞∑
n=0

∑
α

∫
dx

K∑
k=1

∑
〈i〉nk

Mk∑
s=1

δJ [{ν}, {ζ}](t)
δF

(s)
k ({ν(α,x, t)})

δF
(s)
k ({ν(α,x, t)}) = 0. (16)

Equation (16) is the variational calculus form of the
sensitivity equation obtained by the adjoint method when
the functional model is specified in terms of some param-
eter vector [31]. This is particularly clear if we consider
the specific form of (15) as the autonomous ordinary dif-
ferential equation (ODE) system:

d

dt
νk(α〈i〉nk ,x〈i〉

n
k
, t) = Fk({ν(α〈i〉nk ,x〈i〉

n
k
, t)}), (17)

where {ν(α〈i〉nk ,x〈i〉
n
k
, t)} denotes all ν of all possible

arguments appearing on the left hand side. In this
case, (16) becomes

δS =−
∫ tf

t0

dt

∞∑
n=0

∑
α

∫
dx

(

ζᵀ(α,x, t)δF ({ν(α,x, t)})

)
= 0,

(18)

where as before we have used vectors of length N to
denote possible (k, 〈i〉nk ) as before. This resembles the
adjoint method sensitivity equation, where variational
terms δFk and δS replace ordinary derivatives with re-
spect to parameters. This will be pursued further in Sec-
tion III A. From (18) follows the common result that

extremizing the action requires that the adjoint vari-
ables vanish everywhere ζk(α〈i〉nk ,x〈i〉

n
k
, t) = 0. One case

when this is satisfied is if the adjoint system is source
free ∆µk(α〈i〉nk ,x〈i〉

n
k
, t) = 0, i.e. the moment matching

condition is met.
From the Euler-Lagrange equations (12), the adjoint

variables obey:

dζ(α,x, t)

dt
= ∆µ(α,x, t)−Gᵀ(α,x, t)ζ(α,x, t), (19)

where the elements of the N ×N matrix G are

Gi,i′(α,x, t) =
∂Fk({ν(α〈i〉nk ,x〈i〉

n
k
, t)})

∂νk′(α〈i〉n
k′
,x〈i〉n

k′
, t)

, (20)

where (k, 〈i〉nk ) corresponds to index i and (k′, 〈i〉nk′) corre-
sponds to index i′. Appendix A gives the formal solution
to (19) and makes explicit the connection between the
conditions for extrema (18) and (6).

III. DYNAMICS FOR RESTRICTED
BOLTZMANN MACHINES

We next consider a specific case of the formalism of
Section II where the system is described by discrete ran-
dom variables. A Boltzmann distribution on a state
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v = {v1, . . . , vN} of N discrete random variables is of
the form:

p̃(v) =
1

Z
exp[−E(v)], (21)

where Z is the partition function, and the energy func-
tion E(v) is typically defined by a chosen Markov ran-
dom field (MRF). For example, a Boltzmann machine
(BM) [21] is a binary MRF, where binary units update
their state based on a bias and pairwise connections to
other units. A MRF where all variables v are driven
by data is fully visible; otherwise units the N ′ units
h = {h1, . . . , hN ′} which are not driven by data are de-
noted as hidden.

A restricted Boltzmann machine (RBM) [32] is a BM in
which hidden and visible units are organized into layers,
where a layer is defined by the property that there are no
interactions among units in the same layer. For example,
a typical energy function for an RBM is of the form:

E(v,h,θ) = −
N∑
i=1

bivi −
N ′∑
j=1

b′jhj −
∑
{i,j}

Wi,jvihj , (22)

where the summation {i, j} is determined by the graph
edges, and θ is the vector of length K of all interaction
parameters in the graph. This defines a joint distribution
over v and h:

p̃(v,h;θ) =
1

Z(θ)
exp[−E(v,h,θ)]. (23)

Each parameter θk in this MaxEnt distribution controls a
corresponding moment µ̃k, given by µ̃k = ∂ lnZ(θ)/∂θk.

Define a dynamic Boltzmann distribution as one with
time-dependent interaction parameters:

p̃(v,h;θ(t)) =
1

Z(θ(t))
exp[−E(v,h,θ(t))]. (24)

For example, the energy function of the RBM becomes:

E(v,h,θ(t)) =−
N∑
i=1

bi(t)vi −
N ′∑
j=1

b′j(t)hj

−
∑
{i,j}

Wi,j(t)vihj .

(25)

This is a specific case of a spatial dynamic Boltzmann
distribution (1) in the discrete lattice limit. To see this,
assign to every visible unit vi a spatial location xi. By
taking self interaction functions ν1(x, t) = −

∑
i bi(t)δx,xi

in (1), we recover the first term in (25) with vi ∈ {0, 1},
where δx,xi is unity if the coordinates are coincident and
zero otherwise.

Similarly, hidden units can also be represented in con-
tinuous space. Let the species labels αv denote visible
units and βh denote hidden units, and assign to every
hidden unit hj a spatial location yj . The weights between
layers are then obtained by taking pairwise interactions
ν2(α, β, x, y, t) = −

∑
{i,j}Wi,j(t)δx,xiδy,yjδα,αvδβ,βh .

A. An adjoint method learning problem for
restricted Boltzmann machines

Introduce for each interaction parameter θk, k =
1, . . . ,K, in the interaction graph a time-evolution func-
tion Fk forming an autonomous ODE system (analogous
to (17)):

d

dt
θk(t) = Fk(θ(t)), (26)

with initial conditions θk(t0) = θk,0. To obtain from
the variational problem derived in Section II B an ordi-
nary optimization problem for parameters, further con-
sider the paramaterization by the vectors uk of size Mk,
generally unique for every k:

d

dt
θk(t) = Fk(θ(t);uk). (27)

Analogously to the continuous case, define as the ob-
jective function the KL divergence between the true and
reduced models, p and p̃, over all times (analogous to (4)):

S =

∫ tf

t0

dt DKL(p||p̃),

DKL(p||p̃) =
∑
z

p(z) ln
p(z)

p̃(z; {u})
.

(28)

where {u} = {uk}Kk=1. Minimizing S is thus equiv-
alent to maximizing the log-likelihood of the ob-
served data given the parameters, i.e. L({u}; z) =
log p̃(z; {u}). A more common approach is to instead
maximize the conditional likelihood of observations con-
ditioned on the first observation: L({u}; z2, z3, . . . |z1) =
log p̃(z2, z3, . . . |z1; {u}), or similar causal relations. For
Markov chains, this approach is highly successful (lead-
ing to e.g. Kalman filters; see [33] for an introduction).
If a prior is available, Bayesian methods that compute
the posterior p̃({u}; z) ∝ p̃(z; {u})× p̃({u}) can provide
further improvements. The advantage of the current ap-
proach is that a reduced physical model can be enforced
through the parameterization (27). This model can be
based on prior information, such as reaction networks
with known solutions [22]. A second advantage is that
the generalization to spatially continuous systems follows
naturally using PDEs as in (8).

The time integral in S can lead to undesired extrema,
for example for periodic systems where the objective
function may not minimize the KL divergence at each
timepoint. One algorithmic strategy for eliminating these
in practice is to shift the limits of integration during the
optimization, as done in the examples of Section IV A.

Minimizing the objective function defines a PDE-
constrained optimization problem: minimize (28) sub-
ject to the PDE-constraint (27). Define the Lagrangian
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Algorithm 1 Stochastic Gradient Descent for Learning Restricted Boltzmann Machine Dynamics

1: Initialize
2: Parameters uk controlling the functions Fk(θ;uk) for all k = 1, . . . ,K.
3: Time interval [t0, tf ], a formula for the learning rate λ.
4: while not converged do
5: Initialize ∆Fk,i = 0 for all k = 1, . . . ,K and parameters i = 1, . . . ,Mk.
6: for sample in batch do
7: . Generate trajectory in reduced space θ:
8: Solve the PDE constraint (27) for θk(t) with a given IC θk,0 over t0 ≤ t ≤ tf , for all k.
9: . Wake phase:

10: Evaluate moments µk(t) of the data for all k, t.
11: . Sleep phase:
12: Evaluate moments µ̃k(t) of the Boltzmann distribution.
13: . Solve the adjoint system:
14: Solve the adjoint system (31) for φk(t) for all k, t.
15: . Evaluate the objective function:
16: Update ∆Fk,i as the cumulative moving average of the sensitivity equation (30) over the batch.

17: . Update to decrease objective function:
18: uk,i → uk,i − λ∆Fk,i for all k, i.

function (analogous to (9)):

L(t; {u}) =DKL(p||p̃) +

K∑
k=1

φk(t)×(
d

dt
θk(t)− Fk(θ(t);uk)

)
,

(29)

where we have introduced the adjoint variables φk associ-
ated with each θk. Taking the derivative of the objective

function S =
∫ tf
t0
dt L(t; {u}) with respect to a parameter

gives the sensitivity equation (analogous to (18)):

dS

duk,i
= −

∫ tf

t0

dt
∂Fk(θ(t);uk)

∂uk,i
φk(t), (30)

and taking the derivative with respect to θ gives the
ODE system obeyed by the adjoint variables (analogous
to (19)):

d

dt
φk(t) = µ̃k(t)− µk(t)−

K∑
l=1

∂Fl(θ(t);ul)

∂θk(t)
φl(t), (31)

where µk(t′) and µ̃k(t′) are averages taken over to p and
p̃ at time t′, and the boundary condition is φk(tf ) = 0.

Algorithm 1 outlines how this optimization problem
can be solved in practice. The inner loop of an “wake”
and “sleep” phase of sampling are identical to that of
BM learning. Standard algorithmic improvements are
possible, such as the use of accelerated gradient descent
methods such as Adam [34], and using persistent con-
trastive divergence (PCD) [35] to estimate the moments
of the reduced model µ̃k(t′).

Adjoint methods for solving PDE-constrained opti-
mization problems are also called “black-box” meth-
ods [36, 37], since the PDE constraint (27) is eliminated
in the derivation of the sensitivity equation (30). A com-
peting class of methods (sometimes referred to as “all-
at-once” methods) treat the constraint explicitly in the

optimization, and may offer a computational advantage
over this approach. These include sequential quadratic
programming (SQP) and augmented Lagrangian meth-
ods.

Additional constraints or regularization terms can be
included in the optimization, such as conserved quantities
identified from the left null space of the net stoichiometry
matrix. For example, L2 regularization can be incorpo-
rated into the objective function:

S =

∫ tf

t0

dt DKL(p||p̃) + λr

∫ tf

t0

dt

K∑
k=1

(
θk(t)− θk(t)

)2
,

(32)
where θk(t) are some specified functions or otherwise con-
stant, and λr is a regularization parameter. In this case,
the adjoint variables are given by:

d

dt
φk(t) =µ̃k(t)− µk(t) + 2λr

(
θk(t)− θk(t)

)
−

K∑
l=1

∂Fl(θ(t);ul)

∂θk(t)
φl(t).

(33)

B. Finite element parameterization

What choice should be made for the parameteriza-
tion (27) of the right hand sides of the differential equa-
tions? In [22], we considered simple reaction-diffusion
systems from which general forms of approximate mod-
els could be inferred that maintain physical interpreta-
tions. A second approach also explored in [22] is to use
a separate moment closure approximation to derive ana-
lytic solutions for simple reaction systems on 1D lattices,
where the inverse Ising problem is analytically solvable.
The form of (27) can then be taken as either linear or
non-linear combinations of known solutions.
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Here, we take a finite element method (FEM) [38] ap-
proach to the parameterization that is more aligned with
the unsupervised learning problem in a Boltzmann ma-
chine. The space of solutions to the general variational
problem (16), which is some Banach space, is therefore
restricted to the space of finite element method solutions.

An important restriction is that the learning rule (30)
requires C1 finite elements. One choice for such elements
is the Q3 family of finite elements [39], which has the
advantage that basis functions in dimensions higher than
one are easily constructed as tensor products of 1D cubic
polynomials2. For C1 elements that control the value of
the function and its derivative at the endpoints, these
polynomials are just the Hermite polynomials, shown in
Figure 1(d).

We introduce for each time-evolution function in (27)
a domain of hypercubic cells, with 4d degrees of freedom,
where d are the number of arguments to Fk. In practice,
we found it is rarely necessary to have more than d = 3
arguments (see Section IV). For d = 3, each cube has 64
degrees of freedom (8 degrees of freedom at each vertex,
specifying the function value and derivatives). For a cu-
bic lattice of V = L1×L2×L3 cells, there are 8V degrees
of freedom in total, with the parameterization taking the
usual form in terms of the basis functions fl associated
with each degree of freedom:

Fk(θ1, θ2, θ3;uk) =

8V∑
l=1

ulfl(θ1, θ2, θ3). (34)

Note that here, the right hand side of the differential
equation is parameterized (as opposed to the solution
of the differential equation), since the objective of the
learning algorithm is to determine a suitable differential
equation model.

IV. LEARNING REACTION-DIFFUSION
SYSTEMS ON LATTICES

Recall that the state of a reaction-diffusion system at
some time is described by n particles of species α lo-
cated at positions x in generally continuous 3D space.
To make an explicit connection to binary random vari-
ables, we consider a simpler model of particles hopping on
a discrete lattice in the single-occupancy limit. To gen-
erate stochastic simulations of such a system, we adapt
the method of Takayasu and Tretyakov [40] for a lattice-
based variant of the popular Gillespie stochastic simula-
tion algorithm (SSA) [16] as follows: at each timestep:

1. Perform unimolecular reactions following the stan-
dard Gillespie SSA.

2. Iterate over all particles in random order; for each:

2 An alternative choice for tetrahedral meshes is the P3 family of
finite elements.

(a) Hop to a neighboring site, chosen at random
with equal probability.

(b) If the site is unoccupied, the move is accepted.
If the site is occupied, a bimolecular reaction
occurs with some probability; else, the move
is rejected and the particle is returned to the
original site.

The lattice on which particles hop is designated as the
visible part of the MRF. Assign a unique index i to each
of the N sites in the lattice, and let the vector of pos-
sible species be s of size M in some arbitrary ordering
(excluding ∅ to denote an empty site). Spins at a site
i are now multinomial units, represented as a vector vi
of length M where entries vi,α ∈ {0, 1} for α = 1, . . . ,M
denote the absence or presence of a particle of species sα
(an n-vector model in statistical mechanics). The single-
occupancy limit corresponds to the implicit constraint

that the vectors are of unit length, i.e.
∑M
α=0 vi,α = 1,

where α = 0 denotes an empty site. The matrix V of
size N ×M describes the state of the visible part of the
MRF, where each row denotes a lattice site.

Likewise introduce hidden layer species s′ of size M ′,
which may be different from s. Indexing all hidden sites
as j = 1, . . . , N ′, hidden unit vectors are hj of length
M ′. The state of the hidden units is H of size N ′ ×M ′,
with the single occupancy constraint as before.

The dynamic Boltzmann distribution becomes:
p̃(V ,H|θ(t)) = exp[−E(V ,H,θ(t))]/Z(θ(t)), where in-
teraction parameters θ(t) may also be species-dependent.
For example, the energy function for the RBM becomes:

E(V ,H,θ(t)) = −
N∑
i=1

M∑
α=1

bi,α(t)vi,α

−
N ′∑
j=1

M ′∑
β=1

b′j,β(t)hj,β −
∑
{i,j}

∑
α,β

Wi,j,α,β(t)vi,αhj,β .

(35)

A. Learning hidden layers for moment closure

A typical problem in many-body systems is the appear-
ance of a hierarchy of moments, where the time-evolution
of a given moment depends on higher order moments.
Moment closure approximations terminate this infinite
hierarchy at some finite order. In this section, we de-
velop the perspective of the learning problem (30) as a
closure approximation using a simple pedagogical exam-
ple. We note some similarity to previously proposed clo-
sure schemes [14, 15], as well as to entropic matching [13],
although the current approach differs in the objective
function (28) and the formulation for spatially continu-
ous systems in Section II.

Consider a bimolecular-annihilation process on a 1D
lattice of length N , where particles of a single species
A hop and react according to A + A → ∅. The time-
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evolutions of the first two moments are (see Appendix B):

d

dt

〈∑
i

vi

〉
=− 2kr

〈∑
i

vivi+1

〉
,

d

dt

〈∑
i

vivi+1

〉
=2D

〈∑
i

vivi+2

〉

− 2kr

〈∑
i

vivi+1vi+2

〉
+ (kr − 2D)

〈∑
i

vivi+1

〉
,

(36)

where kr is the reaction rate and D the diffusion rate.
The simplest graph to capture such observables is a fully
visible Markov random field with N units, i.e. a 1D Ising
model including interactions up to some order. For ex-
ample, including third order interactions, let:

E(v, b(t), J(t),K(t)) = −b(t)
N∑
i=1

vi

− J(t)

N−1∑
i=1

vivi+1 −K(t)

N−2∑
i=1

vivi+1vi+2,

(37)

where b is the bias, J is the nearest neighbor (NN) inter-
action term, and K is the next-nearest neighbor (NNN)
interaction term. Let the differential equation model be:

ḃ =Fb(b, J,K;ub),

J̇ =FJ(b, J,K;uJ),

K̇ =FK(b, J,K;uK),

(38)

for some parameter vectors u to be learned, where time
derivatives are denoted as ẋ = d/dt. The corresponding
graphical model is illustrated in Figure 1(b). The choice
of the energy function in (37) defines which moments are
explicitly captured by the reduced model. The additional
choice of the form of the differential equations Fγ defines
the moment closure approximation made.

We next show through computational experiments
that the introduction of hidden layers can improve upon
a fully visible closure model:

1. In any closure scheme, moments beyond a certain
order are not captured explicitly by the model, so
that their approximation may be poor. The repre-
sentation power of hidden layers [24] can be used to
incorporate information about which higher order
moments are relevant to the dataset.

2. Two distinct states having the same lower or-
der moments are indistinguishable in the reduced
model (the model is not sufficiently high dimen-
sional). Hidden layers may be able to separate such
states if their connectivity is suitably chosen to rep-
resent relevant higher order correlations, even if the
model remains low order.

3. The number of higher-order terms appearing on
the right of (36) grows with the order on the left.

This problem is compounded if species labels are in-
cluded. Hidden layers and a restriction on the num-
ber of species M ′ allowed to occupy hidden units
may be used to approximate such higher order in-
teractions with fewer parameters.

It is generally difficult to choose the optimal close ap-
proximation, i.e. to know which moments are relevant
to the time-evolution of a given dataset. A key advan-
tage of the present approach is that the connectivity of
the hidden layers may be chosen based on the differen-
tial equations derived from the chemical master equa-
tion. For example, consider to the bimolecular annihi-
lation system (36): if the goal is to accurately model
the mean number of particles, then the right hand side
of (36) shows that the nearest-neighbor moment is rele-
vant to the time evolution. The graphical model of the
reduced system could therefore introduce a hidden unit
for every pair of neighboring lattice sites (N − 1 units in
the hidden layer), with corresponding energy function:

E(v,h, b(t),W (t), b′(t)) = −b(t)
N∑
i=1

vi

− b′(t)
N−1∑
j=1

hj −W (t)

N−1∑
j=1

∑
i∈{j,j+1}

vihj ,

(39)

where b is bias for visible units, b′ is the bias for hid-
den units, and W are the weights connecting visible and
hidden units. Let the differential equation model be:

ḃ =Fb(b, b
′,W ;ub),

ḃ′ =Fb′(b, b
′,W ;ub′),

Ẇ =FW (b, b′,W ;uW ).

(40)

The corresponding graphical model is shown in Fig-
ure 1(a,c).

The time-evolution functions for (38) and (40) are
learned using Algorithm 1 and compared in Figure 2. For
the visible model, cells of size 0.5× 0.5× 0.5 in (b, J,K)
are used, and for the hidden layer model cells of size
0.5× 0.5× 0.05 in (b,W, b′), as shown in Figure 2.

As training data, 50 points (b, J,K) are sampled evenly
over (b, J,K) ∈ [−1, 1]3. Each point corresponds to an
initial distribution (37), from each of which 50 lattices of
length N = 1000 are sampled (top left panel of Fig 2).
The corresponding initial conditions in (b,W, b′) space
are learned separately using the BM learning algorithm
(bottom left panel of Fig 2). Each lattice is simulated for
200 timesteps of size ∆t = 0.01 with reaction probability
pr = 0.01 upon encounters for the reaction A + A → ∅,
as shown in Figure 1(e). These trajectories are pooled for
Algorithm 1. Note that a single set of parameter vectors
{u} in (38,40) is learned, i.e. the parameter vectors are
shared among trajectories from all initial conditions.

For the fully visible model, sleep phase moments are
estimated by running a Gibbs sampler for a single step.
Similarly, for the hidden model, wake and sleep phase
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FIG. 1. Comparison of a fully visible and a latent variable model for capturing local correlations in a 1D lattice. (a) 1D lattice
with one hidden layer (similar to an RBM). Note that in this simplified example, W is a single translation invariant parameter
rather than a matrix as common in RBMs. (b) Fully visible model for a 1D lattice including NN interactions J and NNN
interactions K. (c) An example state of the hidden layer model, where blue indicates the presence of a particle in the visible
layer, and likewise red for the hidden layer. By learning the parameters, the hidden layer can be tuned to capture the presence
of NNs. (d) The basis functions of the Q3 family of C1 finite elements in 1D (Hermite polynomials), used to parameterize the
right-hand sides of (38,40). Basis functions in higher dimensions are constructed as tensor products of the 1D polynomials. (e)
Moments of stochastic simulations for 10 of the 50 initial conditions used for training (each trajectory obtained from averaging
over 50 lattices simulated from the same initial condition).

FIG. 2. Top row: Learned time-evolution functions for the fully visible model (38), using the Q3, C1 finite element parameteri-
zation (34) with cells of size 0.5× 0.5× 0.5 in (b, J,K). Left panel: Training set of initial points (b, J,K) (cyan) sampled evenly
in [−1, 1]. Stochastic simulations for each initial point are used as training data (learned trajectories shown in black, endpoints
in magenta). Middle three panels: the time evolution functions learned, where the heat map indicates the value of Fγ in (38).
Right panel: vertices of the finite element cells used. Bottom row: Hidden layer model (40) and parameterization (34) with
cells of size 0.5× 0.5× 0.05 in (b,W, b′). Initial points are generated by BM learning applied to the points of the visible model.
Note that the coefficients corresponding to the other seven degrees of freedom at each vertex are also learned (not shown), i.e.
the first derivatives in each parameter.

moments are estimated by a single step of contrastive
divergence (CD), i.e. CD-1. The learning rate used in
both models is λ = 1 for 200 optimization steps.

The time integral in the action (28) can lead to unde-
sired extrema, e.g. for periodic trajectories. We use an
on-line algorithm to shift the limits of integration in (30)
as new data is available:

dS

duk,i
=

∫ τ+∆τ

τ

dt
∂Fk(θ(t);uk)

∂uk,i
φk(t), (41)

where ∆τ is fixed, and τ is gradually incremented t0 ≤
τ ≤ tf − ∆τ . In this case, the PDE constraint (27) is
solved from t0 to τ , decreasing the size of the trajectories
early in the training. Further, the adjoint system (31)
only has to be solved backwards from φ(τ + ∆τ) = 0
to φ(τ), which also controls the magnitude of the up-
date steps as the length of the trajectory grows, allowing
a constant learning rate to be used. For the annihila-
tion system, we found that fixing ∆τ = 5 timesteps and
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FIG. 3. (a) NN moment
〈∑

i vivi+1

〉
of the two models. The more compact representation learned by the hidden layer

model (left) captures low range spatial correlations, while the fully visible model (right) shows no apparent organization.
(b) The parameters W and b′ for the hidden layer model for the 50 initial conditions (b is monotonically decreasing for all
trajectories). The learned parameters encode the spatial correlation 2〈vivi+1〉 shown on the right. This shows the moment
closure approximation learned by the reduced model (see text). (c) RMSE in the third order moment 〈

∑
i vivi+1vi+2〉 and

fourth order moment 〈
∑
i vivi+1vi+2vi+3〉, calculated from a set of test trajectories (not shown). Both models reproduce

the observables with reasonable accuracy, however, the error in the hidden layer model is lower due to the more compact
representation learned.

shifting τ → τ + 1 every 2 optimization steps gave fast
convergence.

Figure 2 shows the learned time-evolution functions
and trajectories of the training data. For the visible
model, these show an expected symmetric structure. As
particles diffuse and NN and NNN moments decay, FJ
and FK force J,K → 0 everywhere, while the bias term
tends to negative infinity. The representation learned by
the hidden layer model is more compact. Figure 3(a)
shows the nearest neighbor moment 〈

∑
i vivi+1〉 overlaid

onto the initial conditions, showing an almost monotonic
organization from low to high values by which the model
can distinguish these states (no organization is appar-
ent in the visible model). Figure 3(b) shows the learned
parameter trajectories: b monotonically decreases (not
shown), W asymptotically approaches a negative value,
and b′ either increases monotonically or initially de-
creases before increasing again. This division corre-
sponds to the decay of spatial correlations 2〈vivi+1〉 − 1
(such that 1 corresponds to a fully correlated lattice, and
−1 to a fully anti-correlated lattice), also shown in Fig-
ure 3(b). The two types of trajectories of b′ have a clear
correspondence to two types of trajectories in the corre-
lation function, and the separation is visible in Fb′ in the
negative and positive regimes. We conclude that the mo-
ment closure approximation learned by the model there-
fore captures relevant low range spatial correlations to
approximate the right hand sides of the moment equa-
tions (36) identified from the CME.

To assess the accuracy of the reduced models, we gen-

erate a test set of points (b, J,K) and the learn the cor-
responding points (b,W, b′) as before. These are evolved
in time using the learned DE systems (38,40). De-

fine ε(t) =
√
〈(µ(t)− µ̃(t))2〉 as the root mean square

error (RMSE) between some moments of the reduced
model µ̃ and the stochastic simulations µ, where the
moments are approximated by averaging over 50 sam-
ples. Figure 3(c) shows the RMSE for the third or-
der moment 〈

∑
i vivi+1vi+2〉 and fourth order moment

〈
∑
i vivi+1vi+2vi+3〉. Both models have relatively low er-

ror in reproducing the observables, however, the error in
the hidden layer model is lower than in the visible model.
This is because the representation learned by the hidden
layer model is more compact, in that states initially dis-
tributed uniformly in (b, J,K) space are mapped to an
approximately 1D curve in (b,W, b′) space. Yet higher
accuracies may be possible by further tailoring that pa-
rameterizations of the differential equations from the cu-
bic finite elements used here.

B. Learning the Rössler oscillator

The Williamowski-Rössler oscillator system [41] is a
chemical version of a spiral oscillator in three species.
The original formulation requires additional species that
are fixed at constant concentration. Recent work [42],
however, has developed a volume-excluding version where
these constraints are incorporated into pseudo-first order
reaction rates, eliminating the need for additional reser-
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FIG. 4. Rössler oscillator on a 3D lattice. (a) Snapshots of a
stochastic simulation on a 10×10×10 lattice (A,B,C in pink,
orange, cyan). (b) Moments from a single simulation over 500
timesteps, producing a stochastic version of the characteristic
attractor of the well-known deterministic model. (c) Near-
est neighbor moments in the simulation of (b) show similar
structure. (d) Relaxation to a stationary distribution, indi-
cated by the convergence of the means from averaging over
300 stochastic simulations.

FIG. 5. (a) Graph to learn for the Rössler oscillator. The
lattice on the left corresponds to the visible layer, equivalent
to the 10 × 10 × 10 cube in Figure 4; the right corresponds
to the hidden layer. Gray units in the hidden layer denote
those units which implement periodic boundary conditions to
the visible layer. (b) Connectivity of hidden layer. Each cube
of 8 neighboring units in the visible layer (green circles) is
connected to a single unit (blue triangle) in the hidden layer
(connections shown in red), resembling a body-centred cubic
structure. Biases for the units are not shown.

voir populations. We follow this approach, such that the
reaction system for species A,B,C is:

A
k1−⇀↽−
p1

2A, A+B
p2−→ 2B, A+ C

p3−→ ∅,

B
k2−→ ∅, C

k3−⇀↽−
p4

2C,
(42)

where the unimolecular reaction rates used are k1 =
30, k2 = 10, k3 = 16.5 (arbitrary units), and the probabil-
ities for bimolecular reactions are p1 = 0.1, p2 = 0.4, p3 =
0.24, p4 = 0.36. We simulate this system on a 3D lattice
of size 10 × 10 × 10 sites in the single occupancy limit

FIG. 6. (a) The first 100 timesteps of the mean number
of A,B,C in the Rössler oscillator system. (b) Interac-
tion parameters for a MaxEnt model constrained on the mo-
ments in (a) given by equation (46). (c) The learned tra-
jectory of (44) in (bA, bB , bC)-space, with initial condition
(− ln(2),− ln(2),− ln(2)). The bias parameters have been
tuned to control both the means and spatial correlations, to-
gether with the weights (not shown). Gray scale value indi-
cates bC component for clarity, scaled from dark (min(bC)) to
light (max(bC)). Initial point is shown in cyan, and endpoint
in magenta. (d) Vertices of the finite element cells of side
length 0.1 used to parameterize the differential equations (45).

as before. Figure 4 shows snapshots of such a stochastic
simulation. Panel (b) in particular shows the character-
istic shape of the Rössler oscillator, with further struc-
tures evident in higher order moments shown in (c). A
snapshot of the spatial waves that occur during transi-
tions between A,B and C-dominated regimes is shown
in panel (a).

The time evolution of the mean number of particles
in A,B,C, denoted by µα, is related to the number of
nearest neighbors, denoted by ∆αβ , as follows (see Ap-
pendix B for derivation):

d

dt
µA = k1µA − κ1∆AA − κ2∆AB − κ3∆AC ,

d

dt
µB = κ2∆AB − k2µB ,

d

dt
µC = −κ3∆AC + k3µC − κ4∆CC ,

(43)

where κ1, κ2, κ3, κ4 are the reaction rates for the bi-
molecular reactions specified by probabilities p1, p2, p3, p4

above. As previously, this system is not closed, such that
two close initial states in Figure 4(b) will diverge over
their long term time-evolution. The challenge for the la-
tent variables in the reduced differential equation model
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FIG. 7. Learned time-evolution functions (45) in (bA, bB , bC)-
space (see Figure 6(d) for the vertices used), and the resulting
trajectory in black (see Figure 6(c)).

is to incorporate relevant higher order correlations to sep-
arate states which are close in their lower order moments.

As in Section IV A, let the visible part of the graph
be the lattice of Figure 4(a). For the hidden layer, we
choose a connectivity that coarse-grains the visible lat-
tice by one unit in each spatial dimension as shown in
Figure 5. Note that the hidden layer is also of size
10 × 10 × 10 units that implement periodic boundary
conditions. The visible layer of the graph is multinomial
in one of {A,B,C,∅}, and similarly the hidden layer in
{X,Y, Z,∅}. The corresponding energy model is:

E(V ,H,θ(t)) =

−
∑
i

∑
α∈{A,B,C}

bαvi,α −
∑
j

∑
α∈{X,Y,Z}

bαhj,α

−
∑
{i,j}

(
WAXvi,Ahj,X +WBY vi,Bhj,Y +WCZvi,Chj,Z

)
,

(44)

where H refers to the hidden layer, and the sum over
{i, j} implements the connectivity shown in Figure 5, and

γ̇ = Fγ(bA, bB , bC ;uγ) (45)

for γ ∈ {bA, bB , bC ,WAX ,WBY ,WCZ , bX , bY , bZ}. The
right hand side of the differential equation is parameter-
ized (34) by cubic C1 finite elements as before. To reduce
the complexity of the model, we have purposefully omit-
ted interactions WAY ,WAZ ,WBX ,WBZ ,WCX ,WCY .
With this choice, the latent species X coarse grains the
visible species A, and similarly for Y,B and C,Z. Note
that all differential equation models share the same do-
main in (bA, bB , bC) space. While the biases hA, hB , hC
are the Lagrange multipliers corresponding to the con-
straints for the number of particles of each species,

through the energy function (44) both biases and weights
together also control all spatial correlations of the model.

Stochastic simulations are generated from an initial
state with bA = bB = bC = − ln(2), WAX = WBY =
WCZ = WXY = WY Z = 0, and bX = bY = bZ =
− ln(1/7). By setting the initial weights to zero, this
is the MaxEnt state given that the number of particles is
µA = µB = µC = 200, since with zero weight:

µα = 1000× ebα

1 +
∑
β=A,B,C e

bβ
(46)

for α ∈ {A,B,C}, and where the factor 1000 results
from summing over all visible sites. With zero weight,
the choice for the initial hidden layer bias is free - by
choosing to set it to − ln(1/7), we are setting the tar-
get sparsity to approximately half of that of the visible
layer with approximately 100 particles of each species as
given by (46). Simulations are run for 500 timesteps of
size ∆t = 0.01. Figure 4(d) shows the relaxation of the
distribution to equilibrium [43].

For training, we use Algorithm 1 with learning rate
λ = 0.05 for the weights and λ = 0.8 for the biases for
10000 optimization steps. To estimate the wake phase
moments, we sample p̃(H = 1|V ) for each sample in a
batch size of η = 5, where V is a data vector. To es-
timate the sleep phase moments, we alternate between

sampling p̃(H(r) = 1|V (r)) and p̃(V (r) = 1|H(r−1)) for
r = 1, . . . , 10 steps, starting from a random configuration

V (0). Alternatively, we also found fast convergence using
k = 10 steps of CD, as well as using PCD. To reduce the
noise in the estimates, we use as is common raw proba-
bilities instead of multinomial states for the hidden units
when estimating both the wake and sleep phase moments.

As before, we use the online variant (41) of Algorithm 1
where the limits of integration are shifted during train-
ing, with window size ∆τ = 10, and τ is gradually incre-
mented τ → τ +1 every 100 optimization steps. To learn
smooth trajectories and avoid jumps in the learned dif-
ferential equation model, each timestep is divided into 10
substeps when solving the differential equations (44,45).

Figure 7 shows the learned time evolution functions for
the Rössler oscillator over the first 100 timesteps. The
side length of the cubic finite elements used was 0.1 on
all sides, centered at the initial condition, as shown in
Figure 6(d). We compare the learned trajectories to a
simplified MaxEnt model in Figure 6(a)-(c). Panel (a)
shows the mean number of particles over the first 100
timesteps, as in Figure 4(d). Panel (b) transforms these
points to the parameters (bA, bB , bC) of a simple MaxEnt
model constrained on these lowest order moments as
given by (46). Panel (c) shows the learned model (45),
where the biases now control both the means and spatial
correlations together with the weights. The trajectory no
longer resembles a periodic trajectory, having learned to
separate close states in panel (b).

The agreement between the stochastic simulations and
reconstructed observables is shown in Figure 8(a). At
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FIG. 8. (a) Example of correlations learned by the reduced model compared to stochastic simulations, obtained by sampling
over 100 samples. Top row: mean number of A,B,C particles. Bottom: neighboring pairs of (B,B), (C,C), and (A,B). Short
range spatial correlations relevant to the moment equations (43) are reasonably approximated due to the chosen connectivity.
(a) Sampled state V from the learned model (top left), and the activated hidden layer probabilities p̃(H|V ) at timepoint 20.
After training, the hidden layers coarse grain nearest neighbors in the visible layer.

each timepoint, 100 samples are drawn from the reduced
model by running 25 steps of CD sampling, starting from
a random configuration. Nearest neighbors, which deter-
mine the time evolution of the means in (43) are rea-
sonably approximated, primarily due to the connectivity
chosen in Figure 5.

Figure 8(b) shows a sampled state V from the learned
model, and the activated hidden layer probabilities
p̃(H|V ) at timepoint 20. With the learned parameters,
the hidden units coarse grain nearest neighbors in the
lattice, as needed to approximate the right hand side
of (43). A deeper network such as a deep Boltzmann
machine (DBM) may approximate yet higher spatial cor-
relations, and can therefore be used to close differential
equation systems depending on higher order moments.

V. DISCUSSION

We have presented a learning problem for spatiotempo-
ral distributions that estimates differential equation sys-
tems controlling a time-varying Boltzmann distribution.
The ability to estimate a reduced physical model makes
the method interesting for many modeling applications,
including chemical kinetics as presented here. Mapping
to a differential equation model can likewise be useful
for engineering applications, allowing constraints to be
efficiently introduced into BM learning as discussed in
Section III A.

The moment closure approximation presented in Sec-
tion II is broadly applicable due to the use latent vari-
ables that can be trained to capture relevant higher order
correlations, rather than deciding a priori what correla-
tions to include as in typical closure schemes. Minimizing
the KL divergence between the reduced and true mod-
els at all times is closely related to entropic matching,

but differs by the introduction of a differential equation
system. We also make the connection to spatially con-
tinuous reaction systems explicit.

The finite element parameterization is similar to the
unsupervised learning setting of RBMs in the sense that
it is independent of the system under consideration. For
deeper architectures such as DBMs as discussed in Sec-
tion IV B, recycling the same time-evolution functions
across multiple layers may be effective, similar to convo-
lution layers in convolutional neural networks. Factor-
ing weights has also been used effectively in deep learn-
ing [44], and may similarly reduce the computational bur-
den here. The main advantage of the current DE for-
malism, however, is to use a parameterization (26) that
enforces a physically relevant model.

We have illustrated the advantage of using latent vari-
ables in the learning problem, as opposed to a fully visi-
ble model. In the fully visible model of Section IV A, two
and three particle correlations are explicitly captured. In
the competing hidden layer model, we use a locally con-
nected RBM (as opposed to fully connected layers) to
control the range of correlations captured through the
connectivity of the hidden layer. This has the advantage
that the representation learned by the hidden layers is
easily interpretable as it coarse-grains the visible layer.
Further, the local connectivity used can be inferred from
the moment equations derived from the CME. Deeper
networks with multiple hidden layers can be constructed
in this fashion to learn hierarchical statistics, with the
ability to infer long range spatial correlations that may
become relevant over long timescales.

A popular alternative class of generative models to
RBMs are variational autoencoders (VAEs). An adap-
tation of the proposed method may be possible for these
models - however, the main advantages of the current
RBM framework is that the form of the energy function
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can be used interpret the reduced model [22], and that
the distribution over the latent variables is not chosen as
in VAEs (typically a standard normal distribution), but
rather learned from data.

A closely related problem to model reduction is the
problem of data assimilation, where noisy measurements
and an incomplete model for the dynamics are combined
to estimate the true state of the system and unknown
parameters in the model [45]. Model reduction methods
complement the data assimilation problem by replacing
the physical model with a reduced one which can increase
the efficiency of data assimilation methods.

We view the present work as progress toward linking
models across scales in biology [20]. Reaction-diffusion
systems illustrate many of the common problems in this
field. While much machinery (CME or field-theoretic
methods) exists to formulate problems for observables,
their solution is non-trivial in most applications. Even
without analytic challenges such as moment closure, the
numerical solution of PDE systems is difficult for sys-
tems with high spatial organization, or where interactions
with other scales (e.g. molecular dynamics) or physics
(e.g. electrodiffusion) become relevant. Learning reduced
models in the form of spatial dynamic Boltzmann distri-
butions may abstract many of these non-trivial interac-
tions.
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Appendix A: Formal solution for the adjoint system

The connection between (6) and (18) can be made
more explicitly. A differential equation system for the
perturbations δνk(α〈i〉nk ,x〈i〉

n
k
, t) in (6) can be derived by

linearizing the differential equation around a particular
solution [22, 30]. For the autonomous system (17), this
leads to the linear ODE system:

d

dt
δν(α,x, t) = δF (α,x, t)+G(α,x, t)δν(α,x, t) (A1)

with some given initial condition δν(α,x, t0) = δη(α,x).
Here we have used the vector notation introduced in Sec-
tion II B.

Let the homogenous part of this system

d

dt
δν(α,x, t) = G(α,x, t)δν(α,x, t) (A2)

have solution given by the non-singular fundamental ma-
trix A(α,x, t). Then (A1) has as formal solution

δν(α,x, t) =A(α,x, t)

(
δη(α,x)

+

∫ t

t0

dt′ A−1(α,x, t′)δF (α,x, t′)

)
,

(A3)

which substituted into (6) gives:

δS =

∫ tf

t0

dt

∞∑
n=0

∑
α

∫
dx ∆µᵀ(α,x, t)A(α,x, t)

(
δη(α,x) +

∫ t

t0

dt′ A−1(α,x, t′)δF (α,x, t′)

)
= 0, (A4)

where ∆µᵀ(t) is the vector with components (7). Ap- plying integration by parts on the term in parentheses to
move the integral over time gives

(
δη(α,x) +

∫ tf

t0

dt′ A−1(α,x, t′)δF (α,x, t′)

)(∫ t

t0

dt′ ∆µᵀ(α,x, t′)A(α,x, t′)

) ∣∣∣∣∣
tf

t=t0

−
∫ tf

t0

dt

∫ t

t0

dt′ ∆µᵀ(α,x, t′)A(α,x, t′)A−1(α,x, t)δF (α,x, t),

(A5)

where the adjoint functions ζ(t) can be identified as:

ζᵀ(α,x, t) =

∫ t

t0

dt′ ∆µᵀ(α,x, t′)A(α,x, t′)A−1(α,x, t).

(A6)

By choosing the adjoint functions to satisfy the boundary
condition ζ(α,x, tf ) = 0, the boundary term in (A5)
vanishes and we obtain the previous result (16).
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Appendix B: Derivation of moment equations from
the chemical master equation

The moment equations (36,43) can be derived from the
chemical master equation using the Doi-Peliti [46] formal-
ism and its equivalent generating function representation.
We demonstrate this for the Rössler system (43).

For notational convenience, we do not consider the
single occupancy limit here. The state of the system
is described by the N × M matrix V ′ with entries
vi,α ∈ {0, 1, 2, . . . }, where N = 10× 10× 10 rows denote
lattice sites, and M = 3 columns denote occupancies of
species {A,B,C}.

Define the N ×M single-entry matrix eij with entries
zero everywhere except at index (i, j) where it is one. The
creation and annihilation operators âi,α and ai,α create
and destroy particles of species α at unit i:

âi,α
∣∣V ′〉 =

∣∣V ′ + ei,α〉 ,
ai,α

∣∣V ′〉 = vi,α
∣∣V ′ − ei,α〉 . (B1)

The operators corresponding to reactions in the Rössler
system (excluding diffusion) are then:

A→ 2A : k1

N∑
i=1

(âi,A − 1) âi,Aai,A,

2A→ A : κ1

∑
〈ij〉

(1− âj,A) âi,Aai,Aaj,A,

A+B → 2B : κ2

∑
〈〈ij〉〉

(âi,B − âi,A) âj,Bai,Aaj,B ,

A+ C → ∅ : κ3

∑
〈〈ij〉〉

(1− âi,Aâj,C) ai,Aaj,C ,

B → ∅ : k2

N∑
i=1

(1− âi,B) ai,B ,

C → 2C : k3

N∑
i=1

(âi,C − 1) âi,Cai,C ,

2C → C : κ4

∑
〈ij〉

(1− âj,C) âi,Cai,Caj,C ,

(B2)

where
∑
〈ij〉 sums over all neighboring sites without dou-

ble counting,
∑
〈〈ij〉〉 sums over all neighboring sites with

double counting, and we specify the species {A,B,C}
instead of an index α = 1, . . . ,M for clarity in the sub-
scripts. Here we place new particles resulting from fission
reactions with rates k1 and k3 at the same site - in the
single occupancy limit, they must be placed at a neigh-
boring site. For bimolecular reactions with rates κ1 and
κ4, we make the in this case ambiguous choice to place
new species at site i versus j. The time evolution op-
erator W for the Rössler system is the sum of all terms
in (B2).

The system state and the ladder operators admit an
equivalent generating function representation:

∣∣V ′〉→ N∏
i=1

M∏
α=1

z
vi,α
i,α ,

âi,α → zi,α,

ai,α →
∂

∂zi,α
.

(B3)

An observable 〈X〉 with generating function represen-
tation Xz according to (B3) evolves as:

d〈X〉
dt

=

(
XzW

N∏
i=1

M∏
α=1

z
vi,α
i,α

)∣∣∣∣∣
z=1

, (B4)

where W is now the sum of terms (B2) in the generating
function representation (B3). From the number operator
âk,βak,β which counts the number of particles of species
β at position k, the time evolution of the mean number
of particles of species β is then

dµβ
dt

=

(
N∑
k=1

zk,β
∂

∂zk,β
W

N∏
i=1

M∏
α=1

z
vi,α
i,α

)∣∣∣∣∣
z=1

, (B5)

which can be directly evaluated to give the moment equa-
tions (43). For a review on field theoretic methods for
reaction-diffusion systems, we refer to Mattis and Glasser
[47]. The formalism can also describe systems in contin-
uous space [46] where it has a similar generation function
representation [22].
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