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Although many efficient heuristics have been developed to solve binary optimization problems, these typically
produce correlated solutions for degenerate problems. Most notably, transverse-field quantum annealing—the
heuristic employed in current commercially-available quantum annealing machines—has been shown to often
be exponentially biased when sampling the solution space. Here we present an approach to sample ground-state
(or low-energy) configurations for binary optimization problems. The method samples degenerate states with
almost equal probability and is based on a combination of parallel tempering Monte Carlo with isoenergetic
cluster moves. We illustrate the approach using two-dimensional Ising spin glasses, as well as spin glasses on
the D-Wave Systems Inc. quantum annealer chimera topology. In addition, a simple heuristic to approximate
the number of solutions of a degenerate problem is introduced.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-i

I. INTRODUCTION

Quantum annealing [1–9] and, in particular, quantum an-
nealing machines have ignited an ever-increasing interest in
algorithms used in statistical physics to solve hard combina-
torial industrial optimization problems, as well as related ap-
plications. While there has been an extensive body of work
attempting to discern if the D-Wave Systems Inc. special-
purpose quantum annealing machine can outperform algo-
rithms on conventional CMOS hardware [10–14, 14–32],
there have only been few studies [13, 33–36] attempting to
characterize the sampling ability of quantum annealing. Ini-
tial studies [35, 37] suggested that transverse-field quantum
annealing with stoquastic drivers result in biased solution dis-
tributions for degenerate problems. However, more recently,
it was shown [36] that even with high-order drivers the sam-
pling bias can only be removed in special cases.

Many industrial applications rely more on a broad solution
pool then on the minimum of the cost function, with some
prominent examples being propositional model counting and
related problems [38–40], SAT-based probabilistic member-
ship filters [41–44], machine learning applications [45, 46],
or simply estimating the ground-state entropy of a degener-
ate system. In addition, having multiple solutions to a given
problem might allow for the inclusion of constraints in a post-
processing step. Here we demonstrate that Monte Carlo meth-
ods paired with cluster updates can result in algorithms that
asymptotically sample ground-states fairly.

Classical Monte Carlo heuristics based on thermal anneal-
ing are known to almost uniformly sample all ground-state
and low-lying excited state configurations [47, 48]. Stud-
ies on three-dimensional diluted Ising antiferromagnets in a
field and three-dimensional Ising spin glasses show that par-
allel tempering Monte Carlo [49] is more efficient than simu-
lated annealing [50] at finding spin-glass ground-state con-
figurations with near-equal probability [47, 51]. Isoener-
getic cluster moves (ICM) [52], related to Houdayer’s cluster
updates [53], introduced for Ising spin glasses significantly
speed up thermalization on quasi-two-dimensional topolo-

gies, such as D-Wave’s Chimera graph. The combination
of low-temperature parallel tempering (PT) Monte Carlo and
the rejection-free isoenergetic cluster moves (PT+ICM) allow
for a wide-spread sampling of search space and help escape
local minima separated by large energy barriers. Here we
demonstrate that isoenergetic cluster moves paired with par-
allel tempering Monte Carlo (i.e., PT+ICM) enhance the fair
sampling of ground-state configurations for spin-glass prob-
lems better than the previous PT gold standard. We illus-
trate the approach using two-dimensional Ising spin glasses
on a square lattice, as well as the Chimera graph. Higher-
dimensional problems can be embedded in lower-dimensional
graphs where PT+ICM is more efficient via, e.g., minor em-
bedding [54, 55].

The paper is organized as follows. In Sec. II we introduce
the a quality metric for fair sampling, as well as a detailed de-
scription of a fair-sampling algorithm using ICM. Following
that, we present numerical results in Sec. III for both PT, as
well as PT+ICM, and introduce an algorithm to approximate
the number of degenerate states for highly-degenerate prob-
lems. We conclude with a discussion of our results.

II. MODEL AND ALGORITHM

To illustrate the improved sampling of PT+ICM over PT,
we start with an Ising spin-glass model on a nonplanar
Chimera graph [56]. Its nonplanar topology makes finding
ground states of random Ising spin glasses worst-case NP-
hard. The Hamiltonian for the spin-glass model is given by

H = −
N∑
i<j

Jijsi sj , (1)

where si ∈ {±1} are Ising spins and the couplers Jij are
drawn for this study from three discrete distributions, namely
{±1,±2,±4}, {±5,±6,±7} and {±1}). The couplers are
selected based on the range of ground-state degeneracy we
can handle with our high-performance computing cluster, i.e.,
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the less symmetries between the different coupler values, the
smaller the ground-state degeneracy.

A. Assessing optimal sampling

Suppose n is the total number of times that ground states
are found for an instance with ground-state degeneracy G.
The probability distribution for finding any particular ground-
state configuration follows a binomial distribution. For the-
oretically perfect sampling, if p = 1/G is the probability of
finding a state and q = 1 − p is the probability of failure in
a given trial, then the expected number of successes in n tri-
als is e = np and the variance of the binomial distribution
is σ2 = npq. Therefore, the theoretical relative standard de-
viation given by sampling a finite set of random uncorrelated
numbers Qth is given by

Qth = σ/e =
√
(1− p)/np =

√
(G− 1)/n. (2)

Assuming that the states are uncorrelated (which is a safe
assumption for large G), an algorithm is said to be optimal
(sampling fairly) if the numerical relative standard deviation
of the frequency of ground-state configurations Qnum deter-
mined experimentally is close or equal to the theoretical value√
(G− 1)/n (or Qnum/Qth = 1). In practice, Qnum for any

algorithm is almost always greater than the theoretical value
Qth, due to a limited number of measurements via e.g., lim-
ited computing resources.

B. PT+ICM for fair sampling

Our implementation of PT+ICM for sampling purposes can
be summarized as follows:

1. Run NT replicas of the system at a range of temper-
atures {T1, T2, ..., TNT

}, with each set consisting of
M = 4 copies of the system at the same temperature,
thus 4×NT copies of the system with the same disorder
are randomly initialized.

2. Nsw iterations are performed, each iteration consisting
of one Monte Carlo sweep, a parallel tempering update,
and an isoenergetic cluster move (for the lowest Nhc

temperatures).

3. For the first Nsw/2 iterations, keep track of the lowest
energies for the 4 replicas at the lowest temperatures.

4. After Nsw/2 iterations, the lowest energies E1, E2,
E3, and E4 for the 4 replicas with the lowest temper-
atures are compared, and if E1 = E2 = E3 = E4,
the ground-state energy has been found with high con-
fidence. Once this is the case, configurations at this en-
ergy are recorded, as well as their frequency for the re-
maining Nsw/2 updates.

There is no guarantee that any solution obtained by this
heuristic method is the true optimum, or that we have found

TABLE I: Parameters of the simulation: For each instance class and
system size N , we compute Nsa instances. Nsw = 2b is the total
number of Monte Carlo sweeps for each of the 4NT replicas for a
single instance, Tmin [Tmax] is the lowest [highest] temperature sim-
ulated, and NT and Nhc are the number of temperatures used in the
parallel tempering method and in the isoenergetic cluster algorithm,
respectively.

Topology Couplers N Nsa b Tmin Tmax NT Nhc

2D {±1,±2,±4} 144 360 24 0.05 3.05 35 35
2D {±1,±2,±4} 256 360 24 0.05 3.05 35 35
2D {±1,±2,±4} 576 322 24 0.05 3.05 35 35
2D {±1,±2,±4} 784 232 24 0.05 3.05 35 35
2D {±1,±2,±4} 1024 370 24 0.05 3.05 35 35
Chimera {±1,±2,±4} 128 360 24 0.05 3.05 35 20
Chimera {±1,±2,±4} 288 360 24 0.05 3.05 35 20
Chimera {±1,±2,±4} 512 360 24 0.05 3.05 35 20
Chimera {±1,±2,±4} 800 360 24 0.05 3.05 35 20
Chimera {±5,±6,±7} 800 976 24 0.10 1.55 30 23
Chimera {±1,±2,±4} 1152 223 24 0.05 3.05 35 20

all configurations that minimize the Hamiltonian. However,
we choose to make sure each configuration achieves a min-
imum number of 50 hits in order to increase our confidence
that all accessible ground states have been found. The simu-
lation parameters are shown in Table I.

III. NUMERICAL RESULTS

To test whether PT+ICM can sample ground-state configu-
rations with near-equal probabilities, we multiply the numeri-
cal relative standard deviationQnum by

√
n and plotQnum

√
n

as a function of the ground-state degeneracy G − 1. Note
that Qth

√
n is the square root of the ground-state degeneracy

G − 1, and therefore the function Qth
√
n =

√
G− 1 is a

straight line in logarithmic scale for both the horizontal axis
(G− 1) and the vertical axis (Qth

√
n).

Figure 1 shows Qnum
√
n and Qth

√
n as a function of

the ground-state degeneracy G − 1 for different spin-glass
instances on a Chimera graph. As mentioned in the pre-
vious paragraph, the quantity Qnum

√
n is almost always

greater than Qth
√
n due to limited computational resources

[57]. However, an algorithm samples optimally if the data
from the numerical relative standard deviation are close to
the theoretical line. It is clear that the data for PT+ICM
(blue/darker color) are closer to a straight line than the data for
PT (red/lighter color), and the discrepancy between PT+ICM
and PT seems to become greater as the system size increases.

In Fig. 2 we plot the median ratio Qnum/Qth as a function
of the system size N for spin-glass problems on a Chimera
lattice. We emphasize that when the ratio becomes unity an al-
gorithm samples optimally. The data show that PT+ICM (blue
squares) performs better than PT (red circles) and that the im-
provement is more significant with increasing system size. In
this work the temperature set for the simulation is specifically
optimized for N = 1152. Large median ratios Qnum/Qth for
smaller system sizes are due to the choice of temperature set.
The statistical error bars are determined by a bootstrap analy-
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FIG. 1: Scatter plot of Qnum
√
n as a function of the ground-state

degeneracy G − 1 for different spin-glass instances with different
system sizes N on a Chimera graph. The data points for PT+ICM
(blue/darker dots) are closer to the theoretical limit than those from
PT (red/lighter dots), and the improvement improves as the system
size increases. The dotted line represents ideal uniform sampling
of ground-state configurations, i.e., Qnum/Qth = 1. Note that any
other heuristic, such as simulated or quantum annealing would per-
form worse than PT [35, 47]. Data for (a) N = 1152, (b) N = 800,
(c) N = 512, (d) N = 288, and (e) N = 128.
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FIG. 2: Median ratio Qnum/Qth for spin-glass instances on Chimera
as a function of the system size N . The data points show that
PT+ICM (blue squares) performs better than PT (red circles) for all
system sizes and the gain is more significant with increasing system
size. Statistical error bars are determined by a bootstrap analysis.

sis using the following procedure: For each system sizeN and
Nsa disorder realizations, a randomly selected bootstrap sam-

ple of the Nsa disorder realizations is generated. The median
ratioQnum/Qth is computed with this random sample. We re-
peat this procedure Nboot = 1000 times for each system size
to obtain an average and error bar using these Nboot = 1000
data points.
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FIG. 3: Scatter plot of Qnum/Qth as a function of the estimated
ground-state degeneracy G for different spin-glass instances with
system size N = 800 on a Chimera graph. Both data for PT and
PT+ICM suggest that the more ground-state configurations, the eas-
ier to sample all ground-state configurations with near-equal proba-
bilities using these heuristics.

In addition to studying how fair sampling behaves with
increasing system size, we also investigate how the quality
of fair sampling is related to ground-state degeneracy and
plot Qnum/Qth as a function of ground-state degeneracy for
N = 800 variables. Figure 3 suggests that the more ground-
state configurations, the easier to sample all ground-state con-
figurations with near-equal probabilities. This is not surpris-
ing because a large ground-state manifold makes the algo-
rithm easier to explore the configuration space. We do em-
phasize, however, that in cases where the ground-state degen-
eracy is exponentially large and with limited resources only
a subset of minimizing configurations is accessible, for these
the sampling improves, the more configurations are present.
Furthermore, careful examination of instances with the same
system size and ground-state degeneracy suggests that the
Qnum/Qth ratio is closely related to the Hamming distances
between ground-state configurations. It is shown in Fig. 4
that the Sidon instances [23, 29] where Jij ∈ {±5,±6,±7}
with large Hamming distances between the ground-state con-
figurations tend to have a high Qnum/Qth ratio compared
to those with small Hamming distances between the states.
Here, PT+ICM achieves more equiprobable sampling with
large Hamming distances. Figure 5 shows two examples of
ground-state configurations with different Hamming distances
on a Chimera graph with N = 128. PT+ICM’s cluster up-
dates allow nonlocal moves in the energy landscape, therefore
reducing Qnum/Qth for instances with large Hamming dis-
tances between the ground-state configurations.

Figure 6 shows Qnum
√
n and Qth

√
n as a function of the
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FIG. 4: Median ratio Qnum/Qth as a function of Hamming distance
for different spin-glass Sidon instances (Jij ∈ {±5,±6,±7}) [23]
with system size N = 800 and degeneracy G = 2 (up to spin re-
versal symmetry) on a Chimera graph. Data for PT and PT+ICM
suggest that the larger the Hamming distance between ground-state
configurations, the harder it is to sample all ground-state configura-
tions with near-equal probability and the more PT+ICM improves
fair sampling over PT. Note that the bar chart represents median ra-
tios Qnum/Qth between Hamming distance 1 − 2, 2 − 4, 4 − 8,
8−16, 16−32, and 32−400, respectively. The statistical error bars
are determined by a bootstrap analysis. Bars are color coded with the
number of instances that have a particular Hamming distance.

ground-state degeneracy G − 1 for different spin-glass in-
stances on a two-dimensional square lattice. Similar to the
Chimera graph case, the data using PT+ICM (blue/dark color)
are closer to the theoretical optimality line than the data using
PT (red/light color), and the discrepancy between PT+ICM
and PT becomes larger as the system size increases. In Fig. 7,
the median ratio Qnum/Qth again demonstrates that PT+ICM
superior to PT in this case for square lattices.

A. Estimating the ground-state degeneracy

We also develop an approximate method to count the num-
ber of ground-state configurations based on the fair sam-
pling capabilities of PT+ICM and compare the results to ex-
act methods [58] for a handful of configurations. Counting
problems [39] typically ask how many solutions exist for a
given instance and belong to complexity class of #P. This
approximate method exploits the fact that if one can sam-
ple ground states uniformly then one can obtain a reasonable
order-of-magnitude estimate of the ground-state degeneracy.
Our renormalization-inspired approach works as follows:

1. Compute the ground-state energyE0 for a fixed number
of Monte Carlo sweeps (see above).

2. Sample the number of ground states G0 for the full sys-
tem for a fixed number of Monte Carlo sweeps.

(b)

(a)

FIG. 5: Two examples of ground-state configurations with different
Hamming distances on a Chimera graph for system size N = 128.
The lines represents the distance between two binary strings (ground-
state configurations). Each dot in the figure represents a ground-
state configuration, black (thick) lines are 1-bit differences, red lines
(medium shade) are 2-bit differences, and lighter colors (light gray
or blue) indicate an even greater difference. In the first example (a)
all ground-state configurations are related by 1-bit differences, while
in the second example (b) the Hamming distances between certain
ground-state configurations can be large—which means that it takes
longer for the system to move from one ground-state configuration
to another, therefore causing larger fluctuations in the ground-state
frequency. Larger Hamming distances have been omitted for better
visibility.

3. Iteratively restrict the number of free variables (i.e.,
those that are not restricted) and estimate the ratio

Ri−1 = Gi−1/Gi

for a fixed number of Monte Carlo sweeps.

4. Repeat until the system size is small enough to be able
to compute the number of ground state configurations
Gfinal exactly, e.g., via enumeration.

5. Multiply the product of ratios by the exact count of
ground-state configurations to estimate the number of
ground states for the full system via

GRG = Gfinal

∏
i

Ri−1.

We compare results of this approximate method to exact
counts on a two-dimensional square lattice with bimodal cou-
pling constants Jij ∈ {±1}. Simulation parameters and re-
sults are shown in Table II. The renormalization-based es-
timates agree with the exact ground-state degeneracy within
error bars.
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FIG. 6: Scatter plot of Qnum
√
n as a function of the ground-state

degeneracy G − 1 for different spin-glass instances with different
system sizes N on a two-dimensional lattice. The data points for
PT+ICM (blue/dark color) are closer to the theoretical limit than
those for PT (red/light color), and this improvement gets better as
the system size increases. Data for (a) N = 1024, (b) N = 784, (c)
N = 576, (d) N = 256, and (e) N = 144.
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FIG. 7: Median ratio Qnum/Qth for spin-glass instances as a func-
tion of the system size N on a two-dimensional lattice. The data
points show that PT+ICM (blue squares) performs better than PT
(red circles) for all system sizes and the gain is more significant with
increasing system size. Statistical error bars are determined by a
bootstrap analysis.

TABLE II: For each instance with system size N = 1024, we run
Nsw = 223 Monte Carlo sweeps for each of the 4NT = 4Nhc =
120 replicas with lowest temperature Tmin = 0.17 and highest tem-
perature Tmax = 1.3. The fixed number of Monte Carlo sweeps and
free variables for each iteration are 1/24Nsw and 1/24N , respec-
tively. The median estimate of the degeneracy GRG is averaged over
10 independent runs and error bars are computed using the jackknife
method.

Instance Gexact GRG error % error
0 2.0094× 1029 1.9415× 1029 ±6.04× 1027 3.00%
1 9.7771× 1034 1.0081× 1035 ±3.58× 1033 3.66%
2 3.3778× 1027 3.3188× 1027 ±1.18× 1026 3.50%
3 1.2826× 1032 1.3041× 1032 ±2.57× 1030 2.00%
4 1.8613× 1039 1.9317× 1039 ±7.59× 1037 4.08%
5 1.4104× 1040 1.4515× 1040 ±7.28× 1038 5.16%
6 9.6510× 1029 9.6105× 1029 ±1.83× 1028 1.90%
7 2.3699× 1038 2.3543× 1038 ±1.66× 1037 7.04%
8 1.4168× 1031 1.3527× 1031 ±1.16× 1030 8.58%
9 1.1265× 1034 1.0789× 1034 ±5.06× 1032 4.69%

IV. CONCLUSIONS

We have demonstrated that PT+ICM – parallel temper-
ing Monte Carlo with isoenergetic cluster moves – samples
ground-state configurations fairly and is an ideal method for
applications where a pool of diverse solutions is needed. We
also find that degeneracy and Hamming distances between
different ground-state configurations are closely related to
the relative standard deviation of frequency with which the
ground states are found, namely: ground states with large de-
generacy and small Hamming distances have a lower relative
standard deviation of frequency. It will be interesting to ex-
ploit near-uniform sampling for model counting [59] and SAT
filter construction [41, 43] in the future.
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[27] D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas,
and V. Smelyanskiy, Phys. Rev. X 5, 031040 (2015).

[28] W. Vinci, T. Albash, G. Paz-Silva, I. Hen, and D. A. Lidar, Phys.
Rev. A 92, 042310 (2015).

[29] Z. Zhu, A. J. Ochoa, F. Hamze, S. Schnabel, and H. G. Katz-

graber, Phys. Rev. A 93, 012317 (2016).
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