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Although many efficient heuristics have been developed to solve binary optimization problems, these typically
produce correlated solutions for degenerate problems. Most notably, transverse-field quantum annealing—the
heuristic employed in current commercially-available quantum annealing machines—has been shown to often
be exponentially biased when sampling the solution space. Here we present an approach to sample ground-state
(or low-energy) configurations for binary optimization problems. The method samples degenerate states with
almost equal probability and is based on a combination of parallel tempering Monte Carlo with isoenergetic
cluster moves. We illustrate the approach using two-dimensional Ising spin glasses, as well as spin glasses on
the D-Wave Systems Inc. quantum annealer chimera topology. In addition, a simple heuristic to approximate

the number of solutions of a degenerate problem is introduced.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-1

I. INTRODUCTION

Quantum annealing [1-9] and, in particular, quantum an-
nealing machines have ignited an ever-increasing interest in
algorithms used in statistical physics to solve hard combina-
torial industrial optimization problems, as well as related ap-
plications. While there has been an extensive body of work
attempting to discern if the D-Wave Systems Inc. special-
purpose quantum annealing machine can outperform algo-
rithms on conventional CMOS hardware [10-14, 14-32],
there have only been few studies [13, 33-36] attempting to
characterize the sampling ability of quantum annealing. Ini-
tial studies [35, 37] suggested that transverse-field quantum
annealing with stoquastic drivers result in biased solution dis-
tributions for degenerate problems. However, more recently,
it was shown [36] that even with high-order drivers the sam-
pling bias can only be removed in special cases.

Many industrial applications rely more on a broad solution
pool then on the minimum of the cost function, with some
prominent examples being propositional model counting and
related problems [38—40], SAT-based probabilistic member-
ship filters [41-44], machine learning applications [45, 46],
or simply estimating the ground-state entropy of a degener-
ate system. In addition, having multiple solutions to a given
problem might allow for the inclusion of constraints in a post-
processing step. Here we demonstrate that Monte Carlo meth-
ods paired with cluster updates can result in algorithms that
asymptotically sample ground-states fairly.

Classical Monte Carlo heuristics based on thermal anneal-
ing are known to almost uniformly sample all ground-state
and low-lying excited state configurations [47, 48]. Stud-
ies on three-dimensional diluted Ising antiferromagnets in a
field and three-dimensional Ising spin glasses show that par-
allel tempering Monte Carlo [49] is more efficient than simu-
lated annealing [50] at finding spin-glass ground-state con-
figurations with near-equal probability [47, 51]. Isoener-
getic cluster moves (ICM) [52], related to Houdayer’s cluster
updates [53], introduced for Ising spin glasses significantly
speed up thermalization on quasi-two-dimensional topolo-

gies, such as D-Wave’s Chimera graph. The combination
of low-temperature parallel tempering (PT) Monte Carlo and
the rejection-free isoenergetic cluster moves (PT+ICM) allow
for a wide-spread sampling of search space and help escape
local minima separated by large energy barriers. Here we
demonstrate that isoenergetic cluster moves paired with par-
allel tempering Monte Carlo (i.e., PT+ICM) enhance the fair
sampling of ground-state configurations for spin-glass prob-
lems better than the previous PT gold standard. We illus-
trate the approach using two-dimensional Ising spin glasses
on a square lattice, as well as the Chimera graph. Higher-
dimensional problems can be embedded in lower-dimensional
graphs where PT+ICM is more efficient via, e.g., minor em-
bedding [54, 55].

The paper is organized as follows. In Sec. II we introduce
the a quality metric for fair sampling, as well as a detailed de-
scription of a fair-sampling algorithm using ICM. Following
that, we present numerical results in Sec. III for both PT, as
well as PT+ICM, and introduce an algorithm to approximate
the number of degenerate states for highly-degenerate prob-
lems. We conclude with a discussion of our results.

II. MODEL AND ALGORITHM

To illustrate the improved sampling of PT+ICM over PT,
we start with an Ising spin-glass model on a nonplanar
Chimera graph [56]. Its nonplanar topology makes finding
ground states of random Ising spin glasses worst-case NP-
hard. The Hamiltonian for the spin-glass model is given by

N
H= _ZJijSi S5, (1)

i<j

where s; € {%1} are Ising spins and the couplers J;; are
drawn for this study from three discrete distributions, namely
{%1,42,+4}, {£5,46,£7} and {£1}). The couplers are
selected based on the range of ground-state degeneracy we
can handle with our high-performance computing cluster, i.e.,



the less symmetries between the different coupler values, the
smaller the ground-state degeneracy.

A. Assessing optimal sampling

Suppose n is the total number of times that ground states
are found for an instance with ground-state degeneracy G.
The probability distribution for finding any particular ground-
state configuration follows a binomial distribution. For the-
oretically perfect sampling, if p = 1/G is the probability of
finding a state and ¢ = 1 — p is the probability of failure in
a given trial, then the expected number of successes in n tri-
als is e = np and the variance of the binomial distribution
is 02 = npq. Therefore, the theoretical relative standard de-
viation given by sampling a finite set of random uncorrelated
numbers @y}, is given by

Qu=0/e=\/(1-p)/mp=(G-1)/n. (2

Assuming that the states are uncorrelated (which is a safe
assumption for large G), an algorithm is said to be optimal
(sampling fairly) if the numerical relative standard deviation
of the frequency of ground-state configurations Q)yuy, deter-
mined experimentally is close or equal to the theoretical value
V(G =1)/n (or Qnum/Qtn = 1). In practice, Qpum for any
algorithm is almost always greater than the theoretical value
Qtn, due to a limited number of measurements via e.g., lim-
ited computing resources.

B. PT+ICM for fair sampling

Our implementation of PT+ICM for sampling purposes can
be summarized as follows:

1. Run N7 replicas of the system at a range of temper-
atures {T1,7T5,...,Tn,}, with each set consisting of
M = 4 copies of the system at the same temperature,
thus 4 x Nt copies of the system with the same disorder
are randomly initialized.

2. Ny, iterations are performed, each iteration consisting
of one Monte Carlo sweep, a parallel tempering update,
and an isoenergetic cluster move (for the lowest Ny,
temperatures).

3. For the first Ny, /2 iterations, keep track of the lowest
energies for the 4 replicas at the lowest temperatures.

4. After Ny /2 iterations, the lowest energies Ey, Fa,
FEs, and E, for the 4 replicas with the lowest temper-
atures are compared, and if £y = Ey = E3 = Fy,
the ground-state energy has been found with high con-
fidence. Once this is the case, configurations at this en-
ergy are recorded, as well as their frequency for the re-
maining Ng,/2 updates.

There is no guarantee that any solution obtained by this
heuristic method is the true optimum, or that we have found

TABLE I: Parameters of the simulation: For each instance class and
system size N, we compute Ny, instances. Ny = 2° is the total
number of Monte Carlo sweeps for each of the 4 Nt replicas for a
single instance, Timin [Tmax] is the lowest [highest] temperature sim-
ulated, and Nt and Ny are the number of temperatures used in the
parallel tempering method and in the isoenergetic cluster algorithm,
respectively.

Topology Couplers N Nsa b Tmin Tmax N1 Npe
2D {£1,£2,+4} 144 360 24 0.05 3.05 35 35
2D {£1,£2,4+4} 256 360 24 0.05 3.05 35 35
2D {£1,+2,4+4} 576 322 24 0.05 3.05 35 35
2D {£1,£2,44} 784 232 24 0.05 3.05 35 35
2D {£1,+2,4+4} 1024 370 24 0.05 3.05 35 35
Chimera {£1,+2,4+4} 128 360 24 0.05 3.05 35 20
Chimera {£1,+2,4+4} 288 360 24 0.05 3.05 35 20
Chimera {+1,+2,44} 512 360 24 0.05 3.05 35 20
Chimera {£1,42,4+4} 800 360 24 0.05 3.05 35 20
Chimera {+£5,+6,+7} 800 976 24 0.10 1.55 30 23
Chimera {=£1,+2,4+4} 1152 223 24 0.05 3.05 35 20

all configurations that minimize the Hamiltonian. However,
we choose to make sure each configuration achieves a min-
imum number of 50 hits in order to increase our confidence
that all accessible ground states have been found. The simu-
lation parameters are shown in Table 1.

III. NUMERICAL RESULTS

To test whether PT+ICM can sample ground-state configu-
rations with near-equal probabilities, we multiply the numeri-
cal relative standard deviation Q .y, by v/n and plot Qnum+/1
as a function of the ground-state degeneracy G — 1. Note
that Q¢n+/n is the square root of the ground-state degeneracy
G — 1, and therefore the function Qin/n = VG —1is a
straight line in logarithmic scale for both the horizontal axis
(G — 1) and the vertical axis (Q¢n+\/1).

Figure 1 shows Quum+/n and Q,+/n as a function of
the ground-state degeneracy G — 1 for different spin-glass
instances on a Chimera graph. As mentioned in the pre-
vious paragraph, the quantity Qnum+/n is almost always
greater than Qyn+/n due to limited computational resources
[57]. However, an algorithm samples optimally if the data
from the numerical relative standard deviation are close to
the theoretical line. It is clear that the data for PT+ICM
(blue/darker color) are closer to a straight line than the data for
PT (red/lighter color), and the discrepancy between PT+ICM
and PT seems to become greater as the system size increases.

In Fig. 2 we plot the median ratio Qyum/Q+tn as a function
of the system size N for spin-glass problems on a Chimera
lattice. We emphasize that when the ratio becomes unity an al-
gorithm samples optimally. The data show that PT+ICM (blue
squares) performs better than PT (red circles) and that the im-
provement is more significant with increasing system size. In
this work the temperature set for the simulation is specifically
optimized for N = 1152. Large median ratios Qpnum/Qsn for
smaller system sizes are due to the choice of temperature set.
The statistical error bars are determined by a bootstrap analy-
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FIG. 1: Scatter plot of Qnum+/n as a function of the ground-state
degeneracy GG — 1 for different spin-glass instances with different
system sizes /N on a Chimera graph. The data points for PT+ICM
(blue/darker dots) are closer to the theoretical limit than those from
PT (red/lighter dots), and the improvement improves as the system
size increases. The dotted line represents ideal uniform sampling
of ground-state configurations, i.e., @num/Qtn = 1. Note that any
other heuristic, such as simulated or quantum annealing would per-
form worse than PT [35, 47]. Data for (a) N = 1152, (b) N = 800,
(¢) N =512,(d) N = 288, and (e) N = 128.
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FIG. 2: Median ratio Qunum /Q+n for spin-glass instances on Chimera
as a function of the system size N. The data points show that
PT+ICM (blue squares) performs better than PT (red circles) for all
system sizes and the gain is more significant with increasing system
size. Statistical error bars are determined by a bootstrap analysis.

sis using the following procedure: For each system size N and
Ny, disorder realizations, a randomly selected bootstrap sam-

ple of the Ny, disorder realizations is generated. The median
ratio Qpum/Q+tn is computed with this random sample. We re-
peat this procedure Nyt = 1000 times for each system size
to obtain an average and error bar using these Npoot = 1000
data points.
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FIG. 3: Scatter plot of Qnum/Q¢n as a function of the estimated
ground-state degeneracy G for different spin-glass instances with
system size N = 800 on a Chimera graph. Both data for PT and
PT+ICM suggest that the more ground-state configurations, the eas-
ier to sample all ground-state configurations with near-equal proba-
bilities using these heuristics.

In addition to studying how fair sampling behaves with
increasing system size, we also investigate how the quality
of fair sampling is related to ground-state degeneracy and
plot Qnum/Q+n as a function of ground-state degeneracy for
N = 800 variables. Figure 3 suggests that the more ground-
state configurations, the easier to sample all ground-state con-
figurations with near-equal probabilities. This is not surpris-
ing because a large ground-state manifold makes the algo-
rithm easier to explore the configuration space. We do em-
phasize, however, that in cases where the ground-state degen-
eracy is exponentially large and with limited resources only
a subset of minimizing configurations is accessible, for these
the sampling improves, the more configurations are present.
Furthermore, careful examination of instances with the same
system size and ground-state degeneracy suggests that the
Qnum/Qtn ratio is closely related to the Hamming distances
between ground-state configurations. It is shown in Fig. 4
that the Sidon instances [23, 29] where J;; € {£5,+6, £7}
with large Hamming distances between the ground-state con-
figurations tend to have a high Qnum/Qn ratio compared
to those with small Hamming distances between the states.
Here, PT+ICM achieves more equiprobable sampling with
large Hamming distances. Figure 5 shows two examples of
ground-state configurations with different Hamming distances
on a Chimera graph with N = 128. PT+ICM’s cluster up-
dates allow nonlocal moves in the energy landscape, therefore
reducing Qnum/Q+n for instances with large Hamming dis-
tances between the ground-state configurations.

Figure 6 shows Qnum+/7 and Q,+/n as a function of the
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FIG. 4: Median ratio Qnum/Q+n as a function of Hamming distance
for different spin-glass Sidon instances (J;; € {£5, £6,+7}) [23]
with system size N = 800 and degeneracy G = 2 (up to spin re-
versal symmetry) on a Chimera graph. Data for PT and PT+ICM
suggest that the larger the Hamming distance between ground-state
configurations, the harder it is to sample all ground-state configura-
tions with near-equal probability and the more PT+ICM improves
fair sampling over PT. Note that the bar chart represents median ra-
ti0s Qnum/Q@¢n between Hamming distance 1 — 2, 2 — 4, 4 — §,
8 — 16, 16 — 32, and 32 — 400, respectively. The statistical error bars
are determined by a bootstrap analysis. Bars are color coded with the
number of instances that have a particular Hamming distance.

ground-state degeneracy G — 1 for different spin-glass in-
stances on a two-dimensional square lattice. Similar to the
Chimera graph case, the data using PT+ICM (blue/dark color)
are closer to the theoretical optimality line than the data using
PT (red/light color), and the discrepancy between PT+ICM
and PT becomes larger as the system size increases. In Fig. 7,
the median ratio Q,um/Qtn again demonstrates that PT+ICM
superior to PT in this case for square lattices.

A. Estimating the ground-state degeneracy

We also develop an approximate method to count the num-
ber of ground-state configurations based on the fair sam-
pling capabilities of PT+ICM and compare the results to ex-
act methods [58] for a handful of configurations. Counting
problems [39] typically ask how many solutions exist for a
given instance and belong to complexity class of #P. This
approximate method exploits the fact that if one can sam-
ple ground states uniformly then one can obtain a reasonable
order-of-magnitude estimate of the ground-state degeneracy.
Our renormalization-inspired approach works as follows:

1. Compute the ground-state energy F for a fixed number
of Monte Carlo sweeps (see above).

2. Sample the number of ground states G for the full sys-
tem for a fixed number of Monte Carlo sweeps.

FIG. 5: Two examples of ground-state configurations with different
Hamming distances on a Chimera graph for system size N = 128.
The lines represents the distance between two binary strings (ground-
state configurations). Each dot in the figure represents a ground-
state configuration, black (thick) lines are 1-bit differences, red lines
(medium shade) are 2-bit differences, and lighter colors (light gray
or blue) indicate an even greater difference. In the first example (a)
all ground-state configurations are related by 1-bit differences, while
in the second example (b) the Hamming distances between certain
ground-state configurations can be large—which means that it takes
longer for the system to move from one ground-state configuration
to another, therefore causing larger fluctuations in the ground-state
frequency. Larger Hamming distances have been omitted for better
visibility.

3. Iteratively restrict the number of free variables (i.e.,
those that are not restricted) and estimate the ratio

Ri_1=Gi1/G;
for a fixed number of Monte Carlo sweeps.

4. Repeat until the system size is small enough to be able
to compute the number of ground state configurations
Gfina) €xactly, e.g., via enumeration.

5. Multiply the product of ratios by the exact count of
ground-state configurations to estimate the number of
ground states for the full system via

G"Y = Ganar [ ] Ricr-

We compare results of this approximate method to exact
counts on a two-dimensional square lattice with bimodal cou-
pling constants J;; € {£1}. Simulation parameters and re-
sults are shown in Table II. The renormalization-based es-
timates agree with the exact ground-state degeneracy within
error bars.
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FIG. 6: Scatter plot of Qnum+/n as a function of the ground-state
degeneracy GG — 1 for different spin-glass instances with different
system sizes [N on a two-dimensional lattice. The data points for
PT+ICM (blue/dark color) are closer to the theoretical limit than
those for PT (red/light color), and this improvement gets better as
the system size increases. Data for (a) N = 1024, (b) N = 784, (¢)
N =576, (d) N = 256, and (e) N = 144.
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FIG. 7: Median ratio Qnum/Q¢n for spin-glass instances as a func-
tion of the system size N on a two-dimensional lattice. The data
points show that PT+ICM (blue squares) performs better than PT
(red circles) for all system sizes and the gain is more significant with
increasing system size. Statistical error bars are determined by a
bootstrap analysis.

IV. CONCLUSIONS

We have demonstrated that PT+ICM - parallel temper-
ing Monte Carlo with isoenergetic cluster moves — samples
ground-state configurations fairly and is an ideal method for
applications where a pool of diverse solutions is needed. We
also find that degeneracy and Hamming distances between
different ground-state configurations are closely related to
the relative standard deviation of frequency with which the
ground states are found, namely: ground states with large de-
generacy and small Hamming distances have a lower relative
standard deviation of frequency. It will be interesting to ex-
ploit near-uniform sampling for model counting [59] and SAT
filter construction [41, 43] in the future.
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